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Abstract

We propose a mobile food recognition system the pur-
poses of which are estimating calorie and nutritious of
foods and recording a user’s eating habits. Since all the
processes on image recognition performed on a smart-
phone, the system does not need to send images to a server
and runs on an ordinary smartphone in a real-time way.

To recognize food items, a user draws bounding boxes
by touching the screen first, and then the system starts food
item recognition within the indicated bounding boxes. To
recognize them more accurately, we segment each food item
region by GrubCut, extract a color histogram and SURF-
based bag-of-features, and finally classify it into one of the
fifty food categories with linear SVM and fast x* kernel. In
addition, the system estimates the direction of food regions
where the higher SVM output score is expected to be ob-
tained, show it as an arrow on the screen in order to ask a
user to move a smartphone camera. This recognition pro-
cess is performed repeatedly about once a second. We im-
plemented this system as an Android smartphone applica-
tion so as to use multiple CPU cores effectively for real-time
recognition.

In the experiments, we have achieved the 81.55% clas-
sification rate for the top 5 category candidates when the
ground-truth bounding boxes are given. In addition, we ob-
tained positive evaluation by user study compared to the
food recording system without object recognition.

1. Introduction

In recent years, food habit recording services for smart-
phones such as iPhone and Android phones have become
popular. They can awake users’ food habit problems such
as bad food balance and unhealthy food trend, which is use-
ful for disease prevention and diet. However, most of such
services require selecting eaten food items from hierarchical
menus by hand, which is too time-consuming and trouble-
some for most of the people to continue using such services
for a long period.

Due to recent rapid progress of smartphones such as
iPhone and Android phones, they have obtained enough
computational power for real-time image recognition. Cur-
rently, a quad-core CPU is common as a smartphone’s CPU,

which is almost equivalent to a PC’s CPU released several
years ago in terms of performance. Old-style mobile sys-
tems with image recognition need to send images to high-
performance servers, which must makes communication de-
lay, requires communication costs, and the availability of
which depends on network conditions. In addition, in pro-
portion to increase number of users, more computational re-
sources of servers is also required, which makes it difficult
to recognize objects in a real-time way.

On the other hand, image recognition smartphone is
much more promising in terms of availability, communica-
tion cost, delay, and server costs. Then, by taking advantage
of rich computational power of recent smartphones as well
as recent advanced object recognition techniques, in this pa-
per, we propose a real-time food recognition system which
runs on a common smartphone. To do that, we adopt a linear
SVM and a fast 2 kernel based on kernel feature maps [ 13]
and implement a system as a multi-threaded system for us-
ing multiple CPU cores effectively.

Figure 1 shows the screenshot of the proposed system
which runs as an Android smartphone application. First a
user point a smartphone camera to foods, draws a bound-
ing box (represented in the yellow rectangular in the figure)
by dragging on the screen, and then food image recogni-
tion is activated for the given bounding box. The top five
candidates for the yellow bounding box are shown on the
left side of the screen. If a user touches one of the candidate
items, the food category name and the photo are recorded as
a daily food record in the system. In addition, the proposed
system has functions on automatic adjustment of bounding
boxes based on the segmentation result by GrubCut [12],
and estimation of the direction of the expected food regions
based on Efficient Sub-window Search (ESS) [5]. Since this
recognition process is performed repeatedly about once a
second, a user can search for good position of a smartphone
camera to recognize foods accurately by moving it continu-
ously without pushing a camera shutter button.

In the experiments, we have achieved the 81.55% clas-
sification rate for the top 5 category candidates when the
ground-truth bounding boxes are given. In addition, we
obtained positive evaluation by user study compared to the
food recording system without object recognition.

To summarize our contribution in this paper, it consists
of four folds: (1) implementing an interactive and real-time
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Figure 1. The screenshot of the main screen of the proposed sys-
tem.
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food recognition and recording system running on a con-
sumer smartphone, (2) using a liner SVM with a fast y? ker-
nel for fast and accurate food recognition, (3) adjustment of
the given bounding box, and (4) estimation of the direction
of the expected food region automatically.

The rest of this paper is organized as follows: Section
2 describes related work. In Section 3, we explain the
overview of the proposed system. In Section 4, we explain
the detailed method for food recognition. In Section 5 de-
scribes the experimental results and user study, and in Sec-
tion 6 we conclude this paper.

2. Related Work
2.1. Food Recognition

Food recognition is difficult task, since appearances of
food items are various even within the same category. This
is a kind of fine-grained image categorization problem. As
food recognition, Yang et al. [14] proposed pairwise lo-
cal features which exploit positional relation of eight ba-
sic food ingredients. Matsuda et al. [9] proposed method
for recognition multiple-food images, which first detects
food put regions by several detectors, next recognizes by
extracted color, texture, gradient, and SIFT using multiple
kernel learning(MKL).

As a food recording system with food recognition, Web
application FoodLog [3] estimates food balance. It divides
the food image into 300 blocks, from each blocks extracts
color and DCT coefficients, next classifies to five groups
such as staple, main dish, side dish, fruit, and non-food.

The TADA dietary assessment system [7] has food iden-
tification and quantity estimation, although it has some re-
striction that food must be put on white dishes and food
photos must be taken with a checkerboard to food quantity
estimation.

In all the above-mentioned systems image recognition
processes perform on servers, which prevents systems from
being interactive due to communication delays. On the

other hand, our system can recognize food items on a client
side in a real-time way, which requires no communication
to outside computational resources and enables user to use
it interactively. Note that our current system recognize only
50 food categories, and it requires user’s assistances to es-
timate food volumes by touching a slider on the system
screen.

2.2. Mobile Device and Computer Vision

With the spread of smartphones, some mobile applica-
tions exploiting computer vision technique have been pro-
posed. Google Goggles ' is one of the most well-known
application which recognizes specific object, returns to user
about object information. Kumar et al. [4] proposed rec-
ognize 184 species application Leaf snap. For Leaf image
on the solid light-colored background segment and extract
curvature-based shape features. Maruyama et al. [8] pro-
posed a system which extracts color feature and recognizes
30 kinds of food ingredients on a mobile device. As a mo-
bile device application emphasizing real-time image recog-
nition, Lee et al. [6] proposed a system which trains tem-
plates, then decomposes descriptors such as intensity and
gradient orientation. At the time of testing, template match-
ing at multiple scales enables the system to detect and track
objects in a real-time way. In the above-mentioned mobile
vision systems, local-feature-based specific object recogni-
tion was performed, while we tackle category-level object
recognition on foods on a mobile device.

As an interactive mobile vision system, Yu et al. [15]
proposed Active Query Sensing (AQS) the objective of
which is localization of the current position by matching
of street photos. When the system fails in location search,
it suggests the best viewing direction for the next reference
photo to a user based on the pre-computed saliency on each
location. Our system is also built as an interactive system
which detects object regions based on the bounding boxes a
user draws and suggests the direction of food regions where
the higher evaluation output score is expected.

3. System Overview

The final objective of the proposed system is to sup-
port users to record daily foods and check their food eating
habits. To do that easily, we built-in food image recognition
technique on the proposed system. In this paper, we mainly
describe a food image recognition part of the proposed sys-
tem.

Processing flow of typical usage of the proposed system
is as follows (See Figure 2 as well):

1. A user points a smartphone camera toward food items
before eating them. The system is continuously ac-
quiring frame images from the camera device in the
background.

2. A user draws bounding boxes over food items on the
screen. The bounding boxes will be automatically ad-

Thttp://www.google.com/mobile/goggles/
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Figure 2. System process flow

justed to the food regions. More than two bounding
boxes can be drawn at the same time. .

3. Food recognition is carried out for each of the regions
within the bounding boxes. At the same time, the di-
rection of the region having the higher evaluation score
is estimated for each bounding box.

4. Asresults of food recognition and direction estimation,
the top five food item candidates and the direction ar-
rows are shown on the screen.

5. A user selects food items from the food candidate list
by touching on the screen, if found. Before selecting
food items, a user can indicate relative rough volume
of selected food item by the slider on the right bottom
on the screen. If not, user moves a smartphone slightly
and go back to 3.

6. The calorie and nutrition of each of the recognized
food items are shown on the screen.

In addition, a user can see his/her own meal record and
its detail including calories and proteins of each food items
on the screen as shown in Figure 3(a). Meal records can
be sent to the server, and a user can see them on the Web
(Figure 3(b)).

4. A Method of Food Recognition

Before starting to recognize food items for the frame im-
ages taken by a smartphone camera, first the system requires
that a user draws bounding boxes which bounds food items
on the screen by dragging along the diagonal lines of the
boxes.

In this section, we explain the following three process-
ing: (1) Adjustment of bounding boxes, (2) Recognition of
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Figure 3. Meal records.

food items with the given bounding boxes, and (3) Estima-
tion of the direction of the possible food region.

4.1. Bounding Box Adjustment

First, a user draws bounding boxes roughly on the screen
by dragging. The bounding boxes a user draws are not al-
ways accurate and sometimes they are too large for actual
food regions. Therefore, we apply well-known graph-cut-
based segmentation algorithm GrabCut [12], and then mod-
ify the bounding boxes so as to fit them to food regions
segmented by GrabCut. GrabCut needs initial foreground
and background regions as seeds. Here, we provide Grub-
Cut the regions within bounding boxes as foreground and
the areas out of the doubly-extended boxes of the original
bounding boxes as background. Since the computational
cost of GrabCut is relatively high in the real-time recogni-
tion system, the bounding box adjustment is performed only
once after it was drawn.

4.2. Food Recognition

Food recognition is performed for each of the window
images within the given bounding boxes. Firstly, image
features are extracted from each window, secondly feature
vectors are built based on the pre-computed codebook, and
finally we evaluate the feature vectors with the trained lin-
ear SVMs on 50 food categories. The top five candidates
which have the top five SVM scores over 50 categories and
all the bounding boxes are shown on the screen as food item
candidates.

4.3. Image Features

Since we aims for implementing a mobile recognition
system which can run in the real-time way, image features to
be extracted should be minimum requisites. Then we evalu-
ated and compared performance and computational costs of
various kinds of common image features including global
and local features such as color histogram, color moment,
color auto correlogram, Gabor texture feature, HoG, PHoG,
and Bag-of-SURF. Finally we chose the combination of
color histogram and Bag-of-SURF. To save computational
cost, if the longer side of a bounding box is more than 200,
the image extracted from the bounding box is resized so that
the longer side becomes 200 preserving its aspect ratio.



Color Histogram: We divide an window image into 3 X
3 blocks, and extract a 64-bin RGB, color histogram from
each block. Totally, we extract a 576-dim color histogram.
Note that we examined HSV and La*b* color histograms
as well, and RGB color histogram achieved the best among
them.

Bag-of-SURF: As local features, we use dense-sampled
bag-of-SURF. SURF [!] is an invariant 64-dim local de-
scriptor for scale, orientation and illumination change. We
sample points by dense sampling in scale 12 and 16 with
every 8 pixel with the window. To convert bag-of-features
vectors, we prepared a codebook where the number of code-
word was 500 by k-means clustering in advance. We apply
soft assignment [ I] by 3 nearest-neighbor assigned recip-
rocal number of Euclid distance to the codeword, also we
use fast approximated-nearest-neighbor search based kd-
tree to search the codebook for the corresponding codeword
for each sampled point. Finally, we create a 500-dim bag-
of-SUREF vector.

4.4. Classification

As a classifier, we use a linear kernel SVM, and we adopt
the one-vs-rest strategy for multi-class classification. In
the experiment, since we prepared 50 food categories, we
trained 50 linear SVM classifiers.

Linear kernel is defined as the inner product of two vec-
tors. In advance, we computed the inner product of a sup-
port vector and the weight of the corresponding support vec-
tor, then Linear SVM can be written as follows:

M M
f) = D piaiK(x,x) +b =Y yici(x,x;) +b
=1 i=1
M
= <Zy¢aiXi,X> +b=(w,x)+b (1)
i=1

where x is an input vector, f(x) is an output SVM score,
x; is support vector, y; € {+1, —1} is a class label, «; is a
weight of the corresponding support vector, b is a bias vec-
tor, and M is the number of support vector. By this trans-
formation, we can save memory to store support vectors as
well as calculation of kernels. Therefore, when N is the
dimension of feature vector, calculation of a SVM score re-
quires O(NN) operations and O(N) memory space. We train
SVMs with LIBLINEAR [2] in off-line.

Although a linear SVM is fast and can save memory,
classification accuracy is not as good as a non-linear ker-
nel SVM such as a SVM with y2-RBF kernel. To com-
pensate weakness of a liner SVM, we use explicit embed-
ding technique. In this work, we adopt kernel feature maps.
Vedaldi et al. [13] proposed homogeneous kernel maps for
x2, intersection, Jansen-Shanon’s and Hellinger’s kernels,
which are represented in the closed-form expression. We
choose mapping for x? kernel and we set a parameter so
that the dimension of mapped feature vectors are 3 times
as many as the dimension of original feature vectors. This

mapping can be applied for L1-normalized histogram [13].
Then we apply this to L1-normalized color histograms and
Bag-of-SURF vectors. In the experiments, we compared
this x? kernel mapping with the square-rooting feature vec-
tor which corresponds to an exact mapping for Hellinger’s
kernel the effectiveness of which was demonstrated by Per-
ronnin et al. [10].

In the experiment, we use both a RGB color histogram
and bag-of-SURF and integrity them by a linear weighting
with the weights estimated by cross-validation.

4.5. Estimation of the more reliable direction

In case that no categories with high SVM scores are ob-
tained, camera position and viewing direction should be
changed slightly to obtain more reliable SVM evaluation
scores. To encourage a user to move a smartphone camera,
the proposed system has a function to estimate the direction
to get the more reliable SVM score and show the direction
as an arrow on the screen as shown in Figure 1.

To estimate the direction of the food regions with
more reliable SVM score, we adopt an effective window
search method for object detection, Efficient Sub-window
Search (ESS) [5], which can be directly applied for a com-
bination of a liner SVM and bag-of-features.

The weighting factor w of an input vector of the SVM
classifier represented in Equation (1) can be decomposed
into a vector w' including positive elements and a vector
w including negative elements.

w=w+w" 2)

Therefore, an SVM output score for one rectangular region
can be calculated in O(1) operation by making use of w™
and w integral images according to the ESS method [5].
In case of the above-mentioned soft assignments to code-
words, the output score can be calculated by a product of w
and assigned values to codewords. We search for the win-
dow which achieves the maximum SVM score by Efficient
Sliding Windows search so as to keep more than 50% area
being overlapped with the original window. Finally the rela-
tive direction to the window with the maximum score from
the current window are shown as an arrow on the screen
(See Figure 1).

5. Experiments

In this section, we describe experimental results regard-
ing recognition accuracy and time. In addition, we also ex-
plain the evaluation result by user study.

In the experiments, we prepared a fifty-category food
dataset which has more than 100 training images per cat-
egory all the food item in which are marked with bound-
ing boxes. The total number of food images in the dataset
is 6,781. Figure 4 shows all the category names and their
sample photos.

5.1. Evaluation on classification accuracy

In this subsection, we evaluate the effectiveness of fea-
ture map-based fast y? kernel, bounding box adjustment,
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and estimation of the expected food regions for mobile food
recognition.

We evaluate food classification accuracy with the 50-
category food dataset by 5-fold cross-validation, which
corresponds to food recognition under the condition that
ground-truth bounding boxes are given.

Firstly, we evaluated and compared performance in food
recognition with various kinds of common image features
including global and local features such as color histogram,
color moment, color auto correlogram, Gabor texture fea-
ture, HoG, PHoG, and Bag-of-SURF. Figure 5 shows the
classification rate using single features. From this table,
RGB color histogram and Bag-of-SURF with fast y? are
regarded as being effective. RGB color histogram with
fast x2 achieved the classification rate 65.90% within the
top five, while bag-of-SURF with fast x? achieved 71.34%
within the top five, which outperformed the result with bag-
of-SURF with Hellinger’s kennel with the twice number of
codewords. For all the cases, bag-of-SURF by soft assign-
ment are better than by hard assignment. We also tried re-
cent proposed local binary descriptor based BoF, but very
poor accuracy, consider cause by bigger quantization error
for little information. Finally we chose the combination of
color histogram and Bag-of-SURF as image features for the
proposed system.

Figure 6 shows the classification rate with RGB color
histogram, Bag-of-SURF and their combination with a fast
x? liner SVM. Regarding the combined feature, the rates
with a standard linear SVM and a non-linear RBF-y? SVM
are also shown in the Table. In case of two feature com-
bination with a fast x? liner SVM and a standard linear
SVM, the classification rates were 53.5% and 39.1%, and
the classification rates within the top five candidate was
81.6% and 71.0%, respectively. Moreover, in case of a stan-
dard non-linear RBF-x2 kernel SVM which is much more
time-consuming and is not appropriate for real-time recog-
nition, the rate was 57.3%, and the rate within the top five
was 83.2%. From these results, the results by a fast x? lin-
ear SVM outperformed the results by a standard linear SVM
by more than 10 points, and a fast y> SVM is almost com-
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Figure 5. Classification rates with single features within top 1 and
top 5.

parable to a non-linear SVM, which means that a fast X2
linear SVM is very effective for both speed and accuracy
which are requirements for a mobile image recognition sys-
tem. Since the proposed system shows the top five candi-
date on the screen, 81.6% can be regarded as the rate that a
true food name are shown in the candidate list.

Next, we made an experiments to examine effectiveness
of bounding box adjustment. We magnified ground-truth
bounding boxes of test images with 25% in terms of bound-
ing box size. In fact, we used only 1912 food images
as test images in the 5-fold cross-validation classification
experiment, since for some food photos their size are al-
most the same as the size of attached bounding boxes and
they do not includes 25% backgound regions. We com-
pared groundtruth bounding boxes, 25%-magnified bound-
ing boxes, and adjusted bounding boxes after 25% magni-
fication in terms of classification rate under the same con-
dition as the previous experiment. Figure7 shows the re-
sults, which indicates that 25% maginifation of groundtruth
bounding boxes degraded the classification rate within the
top five by 10.1%, while 25% maginification with bound-
ing box adjustment degraded the rate by only 4.4%. From
this results, GrubCut-based bounding box adjustments can
be regarded as being effective.

Finally, we made an experiment on estimation of the di-
rection of a food window. We evaluated error in the direc-
tion estimation in case of sifting the ground-truth bounding
boxes by 10, 15, 20, and 25% to each of eight directions
around the original boxes. Figure 8 show cumulative clas-
sification rates of the estimated direction in case of using
soft and hard assignment, which proved that soft assignment
was better than hard assignment. Figure9 shows cumulative
classification rates of the estimated direction with different
shifts. The rates with less than £20° error and +40° er-
ror were 31.81% and 50.34% in case of 15% shift, and are
34.54%, and 54.16% in case of 25% shift. From these re-
sults, when the difference between the ground-truth and the
given bounding box is small, estimation of the direction of
the ground-truth bounding box is more difficult. This is be-
cause the difference of SVM scores between them is small
in case that the difference in the location of the bounding
boxes is small.
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5.2. Evaluation of processing time

We implemented the proposed system as Android ap-
plication assuming that quad core is available. High-cost
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Table 1. Average processing time.

average time [sec]

Bounding Box Adjustment 0.70

Recognition 0.26

Search Food Region 0.091

Recognition +. 034
Search Food Region

SUREF descriptor extraction, assignment to codewords, eval-
uation of 50 kinds of fast x2 linear SVMs and direction es-
timation are carried out over four cores in parallel, while
low-cost color histogram extraction is performed on a sin-
gle core.

We measured processing times on the latest smartphone,
Samsung Galaxy Note II (1.6GHz Quad Core with Android
4.1). The results are shown in Table 1. Processing time for
recognition and direction estimation are 0.26 seconds, 0.09
seconds, while bounding box adjustment is relatively high-
cost, which takes 0.70 seconds. This is why bounding box
adjustment are carried out once after drawn. Among 0.26
seconds for recognition, color histogram extraction and lin-
ear SVM classification takes only 0.003 seconds, and most
of the time are taken for extraction of SURF descriptors and
searching of the codebook to create bag-of-features vectors.
Because the total time of recognition and estimation of the
direction is 0.34 seconds, three bounding boxes can be pro-
cessed in around one second at the same time.

5.3. User Study

We asked five student subjects to evaluate quality of
the proposed system in five step evaluation regarding food
recognition, how easy to use, quality of direction estima-
tion, and comparison of the proposed system with the base-
line which has no food recognition and requires selecting
food names from hierarchical menus by touching. The eval-
uation score 5, 3 and 1 means good, so-so, and bad, respec-
tively. At the same time, we measured time for selecting
food items with food recognition, and compared it with the
time for selecting food items from the hierarchical menu by
hand.

Figure 10 shows the spent time for selecting each food
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Table 2. User study results which are the average of five-step eval-
uation scores.

Outcome Measure average score

Recognition quality 34

Facility to use 4.2

Quality of Direction Suggestion 24

Proposed System Quality 33
(compared with hand-selection) ’

item. The median time were 5.1 second with food recog-
nition, and 5.7 second by hand. This means the proposed
system can help a user select food names faster than from a
hierarchical menu by hand. However, for some food items
which not able to be recognized, it spent long time to find
food names using food recognition.

Table 2 shows the system evaluation by the five grade
evaluation. Except for suggest direction, more than three
points are obtained. Especially, usability of the system is
good, since recognition is carried out in a real-time way.
On the other hand, estimation of the expected food region
is not evaluated as being effective, since the classification
accuracy is not so good for practical use. We will improve
it as a future work.

6. Conclusions and Future Work

In this paper, we propose a real-time food recognition
system on a smartphone. The system adopts a liner SVM
with a fast 2 kernel, bounding box adjustment and estima-
tion of the expected direction of a food region. In the ex-
periment, we have achieved 81.55% classification rate with
the top five candidates when ground-truth bounding boxes
are given. In addition, we obtained positive evaluation by
user study compared to the food recording system without
object recognition.

As feature works, we plan to extend the system regarding
the following issues:

e Touch just a point instead of drawing bounding boxes
to specify food regions.

e Use multiple images to improve accuracy of food item
recognition.

e Improve accuracy of estimation of expected food re-

gions or move the bounding boxes automatically in-
stead of only showing the direction.

e Take into account additional information such as user’s

food history, GPS location data and time information.

e Increase the number of food categories to make the

system more practical.

Note that Android application of the proposed mobile
food recognition system can be downloaded from http:
//foodcam.mobi/ .
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