
 

 
Abstract 

 
A real-time collision detection system using a body-

mounted camera is developed for visually impaired and 
blind people. The system computes sparse optical flow in 
the acquired videos, compensates for camera self-rotation 
using external gyro-sensor, and estimates collision risk in 
local image regions based on the motion estimates. 
Experimental results for a variety of scenarios involving 
static and dynamic obstacles are shown in terms of time-
to-collision and obstacle localization in test videos. The 
proposed approach is successful in estimating collision 
risk for head-on obstacles as well as obstacles that are 
close to the walking paths of the user. An end-to-end 
collision warning system based on inputs from a video 
camera as well as a gyro-sensor has been implemented on 
a generic laptop and on an embedded OMAP-3 
compatible platform. The proposed embedded system 
represents a valuable contribution toward the 
development of a portable vision aid for visually impaired 
and blind patients. 
 

1. Introduction 
With recent advances in mobile computing 

technologies, mobile devices are increasingly being used 
for running diverse applications intended for the visually 
impaired, such as way-finding [1], or text-to-speech 
converters [2]. One of the potential application areas of 
mobile technology for visually impaired is related to 
mobility enhancement aids (or Electronic Travel Aids) [3]. 
Many of the existing navigation and way-finding tools 
provide high level navigation information required to 
travel from one point to another. Despite their utility as a 
global navigation tool, they seldom provide information 
about immediate vicinity of the user which is often 
variable and unpredictable. The main goal of mobility 
enhancement aids is to allow visually impaired and blind 
people to walk in real world environment without 
bumping into the surrounding objects. We present an 
approach for detecting collisions from a single, body- 

mounted camera and a gyroscope that can predict and 
issue warnings about impending collisions while walking 
under normal circumstances.  

  As a conventional mobility aid, long canes have been 
used by blind people for more than a thousand years. The 
spatial information about the obstacles can be readily 
acquired by the canes. These are extensively used among 
both visually impaired and blind people, and are 
considered reliable, affordable and convenient. To be 
acceptable for targeted users, electronic mobility 
assistance devices should either work more effectively 
than the long canes, or supplement canes by detecting 
high level obstacles and those beyond reach of canes. A 
large number of electronic mobility enhancement 
approaches for the patients rely on the concept of obstacle 
detection, instead of collision detection. Using sonar [4], 
laser range finders [5], or stereo cameras [6, 7], many of 
these existing approaches detect the distances to the scene 
objects, and convey this information to the patients via 
auditory or tactile cues.  Such an approach can overwhelm 
the users with excessive information. Furthermore, not all 
nearby objects in the scene are actually obstacles.  Indeed, 
objects which should be considered are those posing a 
collision threat based on the trajectory of the patients. 
Long canes tend to have limited range and cannot 
effectively deal with dynamic obstacles. Hence, detecting 
collisions rather than obstacles can be more useful for 
walking as it takes into account the dynamic nature of the 
problem. 

Collision detection from a single camera also finds 
applications in areas related to autonomous navigation of 
robotic platforms [8], or collision warning in intelligent 
vehicles [9, 10]. Typically, such approaches rely on 
calculating the time-to-collision, or time-to-contact (TTC) 
to an object in the world. TTC based collision detection 
approaches tend to be efficient and easier to implement as 
compared to stereo camera or range sensor based 
solutions. Time to collision can be obtained directly from 
video data; for example, by computing the object scale 
change in the image [11], based on image spatial and 
temporal derivatives [12, 13], or by scale invariant feature 
matching [14]. While sharing some common principles 
with robotic or vehicular platforms, the problem of 
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collision detection from body-mounted camera presents 
some of its unique challenges ranging from noisy input 
data to operational constraints due to unpredictable 
movements. Implicit in the entire process of collision 
detection from a single camera, is the assumption that the 
obstacle detection and localization in the scene can be 
done accurately. Inaccurate obstacle localization can lead 
to highly erroneous TTC values, which consequently 
affects the collision prediction performance. Needless to 
say, explicit scene segmentation and obstacle detection 
can become extremely challenging in case of a wearable 
camera system.  

While collision detection from a single camera is 
challenging, humans are quite adept at judging collisions, 
even when they are not using stereo vision [15]. It has 
been suggested that both the ratio of object expansion and 
its translational motion are important in collision 
judgment by human visual system [16]. Rate of expansion 
of an object is related to the idea of TTC. Faster the object 
expands over time, smaller the TTC and vice versa. The 
translational motion of the object is associated with the 
collision point on the camera plane. Combining both, the 
collision point, and TTC, can give us the degree of 
collision risk at the given moment.   

Another key idea used here is that the TTC and 
collision point values can be obtained locally based on 
image motion. This local computation, which tends to be 
more robust as compared to a top-down approach, can be 
aggregated into global estimates of collision risk for a 
given frame. Furthermore, in our approach neither explicit 
object segmentation, nor precise shape or area 
computation is required. This allows us to handle a variety 
of complex scenarios commonly observed in the real 
world. Even though our approach requires motion 
estimates, it can handle noisy images with motion blur and 
rapid camera movements. In order to deal with the 
movements of the camera attached to a walking person, 
we correct the effects of camera rotation using an external 
gyroscopic sensor.  

Owing to the above mentioned insights, we can perform 
real-time collision detection in different environments 
using a webcam, gyro-sensor, and a laptop. Our approach 
is also been optimized for an embedded implementation 
for OMAP-3 compatible platforms (hardware similar to 
many popular mobile devices). Experimental results are 
presented to evaluate the collision detection approach as 
well as its embedded implementation in various scenarios. 

2. Collision Detection Approach 
At a high level, the basic steps involved in the collision 

detection algorithm are: motion estimation (including the 
steps for correcting the camera self-rotation), and 
determination of collision risk for each frame, which 
involves computation of local expansion and lateral 
motion. 

2.1. Motion Estimation 
Motion estimation in the acquired video stream is the 

first step of our algorithm. For simplicity and efficiency, 
we estimate sparse optical flow by tracking feature points 
between consecutive frames [17]. Typically, videos 
obtained from a moving body-mounted camera are 
unstable in nature, as the camera undergoes a series of 
rotations and translations in the 3D world. Its 2D 
projection on the image (the observed image motion) 
consists of rotational and translational components. Image 
motion produced by camera translation is more important 
from collision detection perspective, since it contains the 
information regarding object expansion and lateral motion 
that is used for determining the collision risk.  Recovering 
the translational motion component from the overall 
motion can make the collision risk computation more 
robust. With known camera rotation parameters, the 
rotational flow can be separated from the overall optical 
flow field, leaving only the motion due to camera 
translation to be used for further processing. Camera self-
rotation can be corrected primarily in two ways: purely 

(a) tracked features (b) rotational component (c) translational motion 
Figure 1: Motion estimation in the acquired images. (a) Overall motion after tracking feature points between two frames of a
sequence. (b) The rotational component of the motion obtained from gyro-sensor data. (c) The translational component of the 
motion after subtracting the rotational motion in (b) from the overall motion in (a). 
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based on image information such as Mono-SLAM [18], or 
using external motion sensors [19].  We use a gyroscopic 
sensor attached to the camera to measure the angular 
velocities along its three principal axes. The angular 
velocity samples corresponding to a pair of consecutive 
frames are integrated (over a period of time between the 
two frame captures) to obtain camera angular 
displacement. From the camera rotation angles, the 
rotational motion component can be obtained via 
homography [20] and the motion due to camera translation 
can thus be recovered. Figure 1 shows an example where 
sparse optical flow is computed between two frames 
captured by a moving camera and the rotational and the 
translational components are obtained from it. 

2.2. Collision Risk Estimation 
Once the motion estimation has been carried out, the 

next step is to estimate collision risk using local 
computations. In our approach, two quantities are used to 
determine the collision risk: TTC (temporal aspect), and 
collision point (the spatial aspect). In order to perform 
local computations using the image motion, a local 
neighborhood is established based on Delaunay 
triangulation of the tracked point locations.  Let pi be the 
ith feature point detected in the first frame that is tracked to 
a point qi in the next frame. Overall, there are N tracked 
feature points for a given pair of frames (i = 0, 1,…, N-1). 
For every tracked feature point pair (pi, qi), we now have a 
set of feature points that are their immediate neighbors in 
the corresponding frames, given by D(pi, qi). As 
mentioned in [21, 22], the local expansion value for the 
neighborhood of the ith feature point is given by  
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When ei is positive, this means that the local feature point 
neighborhood for the ith feature point is expanding, 
otherwise it is shrinking (Figure 2-(a)). Time to collision, 
computed locally, is inversely related to the local 
expansion (1/ei). Lateral translational motion for each 
feature point is the average motion of the entire 
neighborhood (Figure 2-(b)). Collision point can then be 
computed locally based on the ratio of scale change and 
the lateral translational motion.  

Once the TTC and collision point are computed at local 
level, they are combined to obtain global collision risk 
estimation for the given frame. One way to aggregate the 
information is to cluster the feature points into groups 
belonging to different objects in the world. However, 
clustering methods tend to be computationally expensive. 
We resort to an alternative strategy of aggregating the 
collision point and TTC values computed locally over 

larger spatial regions in the image. This turns out to be a 
much faster, but just as effective approach as compared to 
segmentation of the image region or feature point 
clustering. The main reason for adopting such an approach 
is that for our application, highly accurate obstacle 
localization in the image is not an absolute necessity. For 
the visually impaired, information regarding the coarse 
direction of the potential collision threats can be valuable 
for successfully avoiding the obstacle. Hence, an 
approximate localization of the collision risks in the image 
can suffice, given that TTC and collision point estimates 
are reasonably accurate. In order to obtain the collision 
risk for a frame, aggregated collision point values in the 
image regions are evaluated, and the region with high 
collision point is identified. TTC for the given frame is the 
average of the local TTC values contained in the spatial 
region. If the computed collision point and the TTC for 
the given frame are higher than their preset thresholds 
(user defined and tunable), then the algorithm outputs 
positive collision risk for the given frame. 

3. System Implementation 
 Using inputs from a video camera and a gyro-sensor, 
we have implemented the collision detection algorithm on 
two separate platforms: (i) a generic laptop, and (ii) a 
Texas Instrument digital media processor DM3730 with 
OMAP 3 compatible architecture. 
 The laptop based system uses OpenCV library for 
image acquisition and feature tracking functions. The 
gyroscope data acquisition must be performed at least at 
the rate equal to the camera frame rate, but in practice we 
acquire gyro-sensor data at a much higher rate (200Hz) to 
improve the accuracy of the angular velocity integration 
process. In order to take full advantage of the high sensor 
data rate, angular velocities are acquired in parallel to the 
image acquisition thread. It should be noted that we 
integrate the angular velocities only between two 
successive frames in order to improve the accuracy of 
angular estimation. Synchronization of the camera with 
the gyro-sensor can be performed offline by acquiring the 

Figure 2: (a) Local expansion computation example. The points 
in green have positive local expansion values. (b) Lateral 
translational motion computation. The yellow colored points 
show lower lateral motion as compared to the blue points.  

(a) (b)
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data from both sensors in parallel. This determines the 
delay or offset between the camera and the sensor which 
tends to be constant for a particular system, and can be 
accounted for by buffering the image frames. Collision 
risk is estimated for each acquired frame, and temporal 
smoothing of the estimates over 3 frames is performed in 
order to eliminate false alarms.  
 The embedded system runs on DM3730, consisting of 1 
GHz ARM Cortex A8 processor and an 800-MHz 
TMS320C64x+ DSP [23]. Processing in the embedded 
system proceeds in somewhat similar manner as the laptop 
based system with some key differences owing to 
hardware constrains. Image and sensor data acquisition is 
done in the ARM processor, and the acquired images and 
the corresponding angular rotation values are sent to the 
DSP via ARM-DSP shared memory for further 
processing. Motion estimation is performed in the DSP 
using VLIB [24] and IMGLIB [25] libraries by Texas 
Instruments. The output trajectories of the feature points 
tracked in the DSP using VLIB library are not as accurate 
as those done on laptop with OpenCV because the DSP 
performs lower precision fixed point computation. We 
smooth the output of the feature tracking by performing 
median filtering on the raw motion vectors in a local 
neighborhood to obtain smooth motion. Rest of the 
computation for obtaining collision risk in the DSP is 
similar to the laptop based computation. Estimates 
computed in the DSP are sent back to the ARM for 
performing output processing.  

4. Experimental Results  
 We present experimental evaluation of our collision 
detection approach using a controlled obstacle course, 
followed by the results for sequences captured under more 
unconstrained scenarios, with moving body-mounted 
camera. Finally, we show the collision warning results in 
the case of embedded implementation. 

4.1. Obstacle Course Experiment 
 Figure 3-(a) shows the layout of the obstacle course, 
which consisted of seven stationary obstacles in a room. 
Two pedestrians, carrying a laptop connected to a camera 
and a gyroscope walked along a trajectory that was 
approximately a straight line. For obstacles blocking their 
walking path, they tried to avoid at the very last moment, 
and then rejoined the designated center path. Each person 
repeated the trial three times and the video was recorded 
in the laptop. 

One of the main goals of this experiment was to show 
the ability of our approach to detect the collision risk 
while walking naturally (with a significant amount of 
image shaking) in a cluttered environment.  When one 
moves around in a cluttered environment, not all obstacles 

are positioned along the camera axis. This is an important 
consideration because obstacles may locate at an offset 
with respect to the body center, based on the width of the 
person wearing the camera. Based on the body size of an 
average person, a safety margin of a little over 1’ was set 
on each side of the walking trajectory. Hence, objects 1, 2, 
3, 5, and 7 were deemed to pose a tangible collision risk. 
One of the sequences was chosen for tuning the algorithm 
parameters. Combining the rest of the sequences, there 
were a total of 25 true obstacles, out of which the 
algorithm detected 24 obstacles. A risk of collision was 
detected if a potential obstacle was correctly localized in 
more than 5 frames in a temporal window of 1 sec. For the 
given detection rate of 96%, the false alarm rate was 
0.8%. False alarm rate was computed by counting the 
number of frames in all the sequences for which collision 
warning was given but with a wrong localization or 
timing.  

Figure 3-(b) shows collision warning results for one of 
the trials. Collision warnings are shown as red circles 
overlaid on the spatial map of the obstacle course along 
the center line, and the world distances have been mapped 
to the total time of the trial on the y axis. The collision risk 
increases as the subject approaches the obstacle. For each 
potential obstacle, the image region generating the highest 
collision warnings over a period of 2s when the camera is 
closest to the obstacle are denoted by circles overlaid on 
the input image. The figure demonstrates the ability of the 
algorithm to detect and localize a true collision threat.  

 

(a) (b)
Figure 3: (a) Obstacle course layout along with some snapshots 
captured while walking through the course. (b) Collision 
detection results for one of the subjects during a trial. Each 
image with a circle overlaid on it shows the localization result 
corresponding to each obstacle.  
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4.2. Walking in Natural Environment 
 Figure 4 shows the results of our collision detection 
approach for a variety of scenarios involving stationary 
and moving obstacles in different environments. The red 
circle indicates the localization of the highest potential 
collision risk, while the size of the circle depicts the risk 
level (bigger the circle, higher the risk).  The radius of the 
circle is inversely scaled by the minimum time to collision 
value obtained for that frame (shown below every image 
in Figure 4). The first row shows a case where a person 
walks toward a stationary obstacle (hand sanitizer station) 
in order to simulate a collision, while passing along a 
hallway surrounded by various objects. The true collision 
risk in this sequence is the stationary obstacle and it 
progressively increases as the pedestrian approaches it. 
The TTC reduces at the very end because the approaching 
speed of the camera reduces considerably. The second 

sequence is a minor variation of the first, where the person 
walks past the hand sanitizer. In this sequence there is no 
risk of collision. The third sequence shows two potential 
moving obstacles that pose collision risk. Person with the 
camera walks very close to two other pedestrians. As seen 
in the figure, collision risk is detected for both the 
pedestrians. The last row of Figure 4 shows some frames 
from an outdoor sequence shot at night (using a low light 
CCD camera), where the algorithm is successful in 
estimating the collision risk for a stationary object in spite 
of high amount of image noise. Videos of the collision 
detection results for the sequences shown in Figure 4 are 
available at 
http://www.youtube.com/watch?v=bIo_11K0hHk. 

Even though we do not have accurate ground truth TTC 
values for the sequences shown in Figure 4, it can be seen 
that the algorithm is successful in processing collision risk 
for a variety of scenarios. Table I shows details of 
collision detection statistics for those four test sequences. 

TTC = 1.99s TTC = 1.45s TTC = 0.63s TTC = 1.62s

TTC - TTC - TTC - TTC -

TTC = 1.97s TTC = 0.77s TTC =1.73s TTC = 0.52s

TTC = 2.33s TTC = 1.75s TTC =0.59s TTC = 1.87s

Sequence 1 
Stationary 
obstacle- 
collision 

Sequence 2 
Stationary 
obstacle - 

no collision 

Sequence 3 
Multiple 
moving 

obstacles - 
collision 

Sequence 4 
Nighttime 
sequence - 
collision 

Figure 4: Results of the collision detection algorithm on various real world sequences captured from a camera attached to a
moving person. The red circle with a blue center represents the localization of the highest potential collision risk (obtained from 
the collision point score), and the size of the circle represents the severity of the risk (based on the TTC value). The corresponding 
time to collision values are shown below the frame where collision risk is detected.
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In these sequences, the collision risk is present only for a 
small duration of the entire sequence. Same parameters 
were used for processing all the sequences. Figure 5 
shows the performance of the algorithm over the entire 
length of each sequence. The top row shows the frequency 
of collision detection accumulated over a temporal 
window of 30 frames. In case of sequence 1 and 4, the 
collision risk with respect to a single obstacle is visible in 
the plot, whereas in the case of sequence 3, two peaks are 
visible indicating the presence of two different obstacles. 
As compared to other three cases, sequence 2 does not 
show any tangible collision risk. Bottom row of Figure 5 
shows the corresponding TTC estimates produced by the 
algorithm. The downward trend in the TTC values as well 
as their increased density on the plot is visible as the 
camera approaches the obstacles. This is because TTC 
estimation can be performed more reliably as the camera 
approaches the obstacle. 

The algorithm was run using the following parameters: 
maximum number of feature points = 300, feature 
selection quality threshold = 0.005, feature window size = 
3x3, minimum distance between features = 4 pixels, 
number of pyramid levels = 1 (pyramidal Lucas-Kanade 
was not used), and TTC threshold = 3s. The algorithm 
runs at 20 fps for QVGA images on a laptop with 2.4 GHz 
Intel core 2 duo processor, and 2 GB of memory using an 
unoptimized C++ code. 
 
TABLE I : COLLISION DETECTION STATISTICS FOR THE 

TEST SEQUENCES IN Figure 4. 
 Seq. 1 Seq. 2 Seq. 3 Seq. 4
Total frames  392 430 310 320 
Correct risk localization 58 - 57 27 
False alarm rate 2.05% 2.56% - - 
Earliest warning given 2.45s - 2.98s 2.33s 

4.3. Embedded System for Collision Detection  
As described in Section 3, we have also implemented 

our approach on an OMAP-3 compliant platform. Here we 

demonstrate our prototype for both static and moving 
camera in Figure 6.  The left panel of the figure is 
generated from a static camera and a person approaching 
it with a head-on trajectory. On the right, the camera is 
moved toward stationary objects. Collision risk is shown 
as red circle, similar to Figure 4. The embedded collision 
detection system is successful in predicting collisions by 
processing QVGA images at the rate of 20 fps. 

Since the system was designed with an intention of 
using it as a mobility aid for the visually impaired, we 
generate an auditory signal whenever the collision risk is 
higher than a pre-established threshold. The signal 
consists of a beep that is repeated every frame for which 
the system detect a collision threat. The temporal 
frequency of the audio beeps becomes faster as an 
obstacle approaches and collision risk becomes higher, 
giving the user a strong warning about impending 
collision.  
 

 

5. Conclusion 
We have presented a collision detection approach for a 

body-mounted system that uses a single camera. The 
proposed approach is based on the motion information in 

Figure 6: Collision estimations provided by the portable 
embedded prototype. Red circles identify the colliding objects
for a static camera scenario, where a person is approaching the
camera plane with a head-on trajectory (Left), and moving 
camera in a collision trajectory with surrounding objects
(Right). 

Figure 5: (Top Row) Plots showing frequency of collision warnings (y-axis) accumulated over a temporal window of 1s for the 
length of the test sequences. (Bottom Row) TTC values (y-axis) over the length of the sequences. Red points indicate incorrect
collision risk detections. 

(a) Sequence 1 (b) Sequence 2 (c) Sequence 3 (d) Sequence 4 
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the scene to obtain spatial and temporal components of 
collision risk. An external gyroscopic sensor is used to 
compute the camera rotation which is corrected over time 
to increase robustness of collision detection approach. Our 
approach does not rely on complex object detection or 
scene segmentation methods, and can provide collision 
warnings in real time. The robustness and flexibility of the 
approach has been shown for a variety of scenarios that 
involve stationary and moving obstacles, as well as low 
light and high-noise conditions (i.e. at nighttime).  

We have also implemented the collision detection 
approach on an embedded system with similar hardware 
configuration as that of a mobile device. Due to a small 
form factor and low power consumption, it can be 
potentially used as an electronic travel aid that provides 
collision warnings to the visually impaired and blind 
people via auditory cues. Future work involves refining 
collision warnings temporally for better risk estimation, 
and using positional tracking for better approach 
evaluation. 
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