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Abstract

In this paper, we address the problem of auto calibration
of cameras which can rotate freely and change focal length,
and we present an algorithm for finding the intrinsic param-
eters using only two images. We utilize orientation sensors
found on many modern smart phones to help decompose
the infinite homography into two equivalent upper triangu-
lar matrices based only on the intrinsic parameters. We
account for small translations between views by calculat-
ing the homography based on correspondences on objects
that are far away from the camera. We show results based
on both real and synthetic data, and quantify the tolerance
of our system to small translations and errors in the orien-
tation sensors. Our results are comparable to other recent
auto-calibration work while requiring only two images and
being tolerant to some translation.

1. Introduction
Smart phones with sophisticated cameras are now

widespread. There are a wide variety of vision applications

for smart phones; for example, distributed surveillance net-

works [2] and augmented reality systems [18]. Many of

these applications require the intrinsic parameters of the

camera – the focal length, aspect ratio, skew, and prin-

ciple point. However, due to the fact that many newer

smart phones can change focus, zoom, and move freely,

traditional off-line calibration techniques are not practical.

Therefore, auto-calibration is needed to calibrate the cam-

era on-line.

Most Android phones made after 2010 use multiple sen-

sors, such as accelerometers, gyroscopes, and compasses, to

determine the orientation. Accelerometers record linear ac-

celeration and gravity, and thus can give the orientation of

the phone. However, the readings from the accelerometer

can be quite noisy and change quickly with small hand jit-

tering. Compasses are magnetic field sensors, and thus can

be used to get the heading based on the Earth’s magnetic

field. However, any other magnetic field will interfere with

the reading, causing inaccuracies. Gyroscopes sense angu-

lar velocity and give very smooth readings, but the readings

drift over time, and cannot measure gravity [24]. The fusion

of these sensors significantly improves the accuracy and us-

ability of the orientation reading for real applications [27],

with up to 0.03◦ accuracy. We developed our algorithms

using the Samsung Galaxy S3 running Android 4.0.4 Ice-

Cream Sandwich (see Figure 1), which automatically han-

dles the sensor fusion. This allows us to record the orien-

tation of the phone along with an image, and more easily

determine the intrinsic parameters of the camera.

Our contributions are as follows. First, we implement an

algorithm for finding the intrinsic parameters of a camera in

the case of general rotation, zooming, and small translations

using only two images. This algorithm is a modification of

previous work by Junejo and Foroosh [13]. Secondly, we

quantify how translations can affect the final results. We

show that if correspondences are found on an object that is

40m away, then small translations, which are normally due

to shaking or imperfect rotation about the camera center,

are negligible. Finally, we quantify how errors in the ori-

entation measurements affect the final calculated intrinsic

parameters.

The remainder of the paper is as follows. In Section 2,

we describe related works and give context to our work. In

Section 3, we describe our methods for finding the calibra-

tion parameters using only two images. In Section 4, we

show the results of running our algorithm on real data, and

compare the performance to other works. Finally, in Sec-

tion 5, we conclude the paper and give recommendations

for future work.

2. Background and Related Works
Traditional calibration methods [26, 28] achieve high

accuracy; however, these methods are offline and require

physical calibration patterns to be used in the scene. Thus,

they are not practical for use on cameras with dynamically

changing intrinsic and extrinsic parameters, but can be used
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Figure 1: Samsung Galaxy S3 running Android 4.0.4 Ice-Cream Sandwich and Androsens app which shows results of sensor

fusion (courtesy of Christian Schneider’s Androsens app).

for performance comparison.

Auto-calibration, on the other hand, can deal with

dynamically changing intrinsic and extrinsic parameters.

Auto-calibration of a camera is calibration done with se-

quence of images instead of a calibration board, and can be

performed online if necessary. Brown describes a method

of calibrating a close range camera with bundle adjustment

in [3, 4]. The first auto calibration using the Kruppa equa-

tions is described in [6], and handles the problem with con-

stant intrinsic parameters of a freely moving camera. Other

works focus on the problem when the camera can only

translate [17] or when it can only rotate [10]. Finally, some

works calibrate the camera with varying intrinsic parame-

ters, specifically the focal length [13, 11, 12, 14, 19, 21].

Our work is related the most to [13], which in turn is

built off the work in [5, 1]. Junejo and Foroosh [13] show

that with only two images, four independent constraints can

be found by decomposing the infinite homography using a

series of Givens rotations. In our work, however, we do not

need to calculate the Givens rotations, and instead use the

orientation reading directly from the Android phone, which

saves computation time. Unlike [13], we show how to deal

with small translations that are expected from taking images

while holding a phone.

3. Methods
3.1. Notation and General Methods

Camera calibration is the process of finding the invertible

3x3 camera matrix K such that

y ∼ Kx (1)

where x is a 3-dimensional vector representing a 3D point

relative to the camera, y is the corresponding 2D image

point, and ∼ is equality within a scale factor. Specifically,

K =

⎛
⎝
λf s u
0 f v
0 0 1

⎞
⎠ (2)

which contains the 5 intrinsic camera parameters: f is the

focal length, λ is the aspect ratio, s is the skew, and u, v are

the principle point.

Since most cameras generally use CCD (charged-

coupled device) or CMOS (complementary metal-oxide-

semiconductor) type sensors, the transformation between

imaged planes is 2D to 2D, which is called the plane in-

duced homography [9]. This plane induced homography

relates pixels in one image to pixels in the other image, and

can be applied to an entire image to warp it. The infinite

homography is a special type of plane induced homography

which maps features of the plane at infinity of one view to

another, and also can be used to calibrate a camera using

image sequences, as in [15]. In general, we can write the

infinite homography as

H∞
ij ∼ KiR

−1
ij K−1

j = KiR
T
ijK

−1
j . (3)

Our method is summarized as follows. First take two

images and record their orientation values as Euler angles,

which are used to construct R. Then calculate the infinite

homography by obtaining image correspondences between

the images using SIFT. Then, by assuming zero skew, we
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can solve a nonlinear homogeneous system for the intrin-

sics. Finally, these intrinsics are further refined using bundle

adjustment [25]. Note that if there is any translation, then

the calculated homography will not be the infinite homogra-

phy, and error will be introduced. We show that by limiting

our correspondences to those on objects far away from the

camera that this error is negligible (see section 4.1.1).

3.2. Camera Calibration with Two Images – Gen-
eral Rotation and Changing Focal Length

As in [13], we need only two images to calibrate the

camera. We rearrange Eq. 3 into an equivalency between

two upper triangular matrices. This representation provides

four constraints, which, together with the assumption that

the skew s = 0 and that the principle point is constant, will

allow us to solve for all the intrinsic parameters. Thus Eq.

3 becomes

H∞
12 ∼ K1R

T
12K

−1
2 . (4)

Using language from aviation, yaw = α is the rotation

around the z axis, pitch =β is the rotation around the y axis,

and roll = γ is the rotation around the x axis. R12 is defined

as

R12 = Rz(α)Ry(β)Rx(γ)

Rz(α) =

⎛
⎝
cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠

Ry(β) =

⎛
⎝

cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎞
⎠

Rz(γ) =

⎛
⎝
1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎞
⎠. (5)

Multiplying both sides of Eq. (4) on the left by K−1
1 and

R12 gives us

R12K
−1
1 H∞

12 ∼ K−1
2 . (6)

We can rewrite this matrix as an upper triangular matrix

and equate it to the inverse of the second camera matrix,

with the assumption that the skew is zero.

R12K
−1
1 H∞

12 =⎛
⎝
c1 c2 c3
0 c4 c5
0 0 c6

⎞
⎠ ∼

⎛
⎝

1
λf2

0 − u
λf2

0 1
f2

− v
f2

0 0 1

⎞
⎠ (7)

The only unknowns left in this equality are the intrinsic

parameters. Thus, each of the ci are first order polynomials

in terms of only the intrinsic parameters. This equality leads

to four nonlinear first-order homogeneous constraints on the

intrinsic parameters:

c3 + uc1 = 0

c5 + vc4 = 0

c4 − λc1 = 0

c2 = 0 (8)

We assumed the skew is zero and the principle point is

constant; therefore, these four equations are enough to solve

for the four unknowns f, λ, u, v. Moreover, these equations

do not rely on f2, the focal length in the second image.

These equations are first order; however, since they are non-

linear, it is possible to get multiple solutions. We take the

solutions which yield positive intrinsic parameters. If the

focal length of the second image, f2, is desired, we sim-

ply switch the subscripts 1 and 2 in the above derivation

since it is symmetric. The assumption that the principle

point is constant is reasonable, since [20, 1] have shown

performance is not hindered much by these assumptions.

Moreover, bundle adjustment is used to refine the results,

which can alleviate these assumptions.

4. Experiments and Results
We performed several experiments to quantify the errors

of our method, to compare to the method described in [13],

and to quantify how inaccuracies in the measured orienta-

tion would affect the final calculated parameters. We ran

both synthetic experiments and experiments on real data.

4.1. Experiments with Synthetic Data

To measure the accuracy of our system in ideal circum-

stances, we created synthetic data. 3d points were gener-

ated along a quadric surface, and a synthetic camera with

f = 1320.5, λ = .9996, u = 600, v = 600 was placed at

the world origin to project those points into a 2d image. A

random rotation on each axis from [−5◦, 5◦] was applied to

the camera, then SIFT and RANSAC was run to compute a

homography between the two images. Note that the focal

length was held constant in this test. Table 1 shows the re-

sults. The average percent error from the ground truth was

under 1% in all cases.

We then perform a similiar experiment, but with differ-

ing focal lengths. The focal length was changed by a ran-

dom number from [−300, 300], as well as a random rotation
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f λ u u
Ground Truth 1320.5 .9996 600 600

Mean 1319.9 1.003 597.7 599.5

Std Dev 12.9 .006 10.2 5.61

Avg % Error .04 .3 .4 .07

Table 1: Results from synthetic tests without changing the focal length.

f f2 λ u u
Ground Truth .9996 600 600

Mean 1.002 597.3 598.9

Std Dev 11.8 13.1 .005 10.7 5.89

Avg % Error .03 .05 .26 .45 .08

Table 2: Results from synthetic tests with changing the focal length.

Figure 2: Images used in Table 3 for calculating intrinsic parameters. The camera was rotated about all 3 axes with minimal

translation between pairs of images.

on each axis from [−5◦, 5◦] was applied. Those results are

presented in Table 2.

4.1.1 The Effect of Translation

Translations can be caused by the hand shaking while taking

pictures, or by imperfect rotation about the camera center.

According to Hartley and Zisserman [8], image points are

related by the equation

x2 = K2R
T
21K

−1
1 x1 +

K2t

z
= H∞

21x+
K2t

z
(9)

where x1 and x2 are the image correspondences, t is the

translation, and z is the depth measured from the first cam-

era. Thus, if there is no translation between the two cam-

eras, the homography we calculate with SIFT is the infinite

homography. Furthermore, if we solve this equation using

correspondences on objects that lie far from the camera (i.e.

z →∞), the translation term can be negligible.

To test this out, we generated synthetic data. The syn-

thetic camera had the same parameters as in our first ex-

periment: f = 1320.5, λ = .9996, u = 600, v = 600. An

image was created by placing a quadric surface 1m from the

camera and applying the calibration matrix to the points on

the surface. The camera was rotated and another image was

generated. Then, in a loop, without changing the rotation,

the camera was translated in small increments. A plot of the

relative percent error vs. the translation is given in Figure

3. This experiment was repeated by placing the surface at

20m and 40m from the camera. In all three graphs, the error

curves for the parameters are similar; however, note that the

x-axis scale changes between the graphs, which shows that

as the object moves further away, the error decreases. In

fact, at 40m, the camera can move up to 8cm before there is

an error of 7%.
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f f2 λ u v
Mean 578.8628 496.8547 0.9875 325.6590 257.6474

Std Dev 128.7396 66.9009 0.04945 7.5077 51.276

Std Dev [13] 120.5 63.3 0.49 14.29 17.59

Ground Truth 526.8950 526.8950 0.9985 320.5490 255.5600

Percent Error 9.86 5.7 1.1 1.59 0.8

Table 3: Results from calculating intrinsic parameters over all combinations of images.

Figure 3: Effect of small translations on the relative percent error.

4.2. Experiments with Real Data

All real data, i.e. orientations readings and images, were

collected with the Samsung Galaxy S3 running Android

4.0.4 (Ice-Cream Sandwich) at a resolution of 640x480.

The images and corresponding orientations were sent to a

desktop computer running 64-bit Windows 7, where the in-

trinsic parameters were calculated using Matlab 2011. Im-

age feature correspondences were obtained using SIFT [16]

and RANSAC [7] for outlier removal. For each pair of im-

ages, 150 correspondences were obtained.

We measure the performance of the real data in two

ways. The first way to measure the performance is by cal-

ibrating for the parameters from a planar checkerboard of-

fline using Callab and Calde from the Institute of Robotics

and Mechatronics in the German Aerospace Center [23, 22].

We took 15 images of the calibration board at different ori-

entations while not changing the zoom of the camera. Us-

ing this method, we obtained sub-pixel RMS (Root Mean

Square) error, and thus, we use this as the ground truth to

compare to.

The second way we measure performance is similar to

[13]; we take a sequence of images and calculate the intrin-

sic parameters using all possible combinations between the

images. Then we characterize the uncertainty by the stan-

dard deviation over all the calculated parameters.

The results of these methods are compared to the results

from [13], and are displayed in Table 3. As can be seen in

the table, our results are comparable in error. The relatively

high standard deviation for the v parameter was caused by
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(a) Focal length error (b) Aspect ratio error.

(c) Principle point u error (d) Principle point v error

Figure 4: Results for image pair 1,2 with synthetic error added

a single outlier. Moreover, the distance to the object was

around 1m, which, according to Section 4.1.1, means the

results are sensitive to translations.

4.3. Measuring the Sensitivity to Orientation Sensor
Errors

We test how tolerant our system is to orientation mea-

surement errors. To do this, we take a single image pair and

calculate the intrinsic parameters. Then, we introduce syn-

thetic error to the recorded orientations and recalculate the

intrinsic parameters. The error we introduce is from −2◦ to

2◦ in steps of 0.001◦. See Figure 4 for a plot of the results.

For each intrinsic parameter, Figure 4 plots the error in-

troduced (x-axis) vs the relative difference from the original

calculation with no error (y-axis). The error is introduced

to the individual rotations – yaw, pitch, and roll – and then

introduced to all three at the same time.

5. Conclusions and Future Work
We described a method for calibrating a smartphone

camera by taking two images at different rotations while

tolerating small translations. We show how the amount of

error in the smartphone orientation sensors and amount of

translation affects the overall results. We demonstrated with

synthetic data that our results are very close to the ground

truth, and with real data our results are comparable to other

state of the art works.

Our work shows some advantages over other methods.

First, since we are using measured rotation angles, our

methods do not require us to calculate the rotation between

camera positions. Secondly, we require only 2 images and

no calibration board. This lends itself to future works which

can calibrate a camera in real time. Also, in future work,

we would like to remove effects of translation by directly

calculating the infinite homography, H∞, by using van-

ishing points in the scene. This will allow the calibration

to be effective in both indoor environments, which can be

more sensitive to translations but have easy to find vanish-

ing points, and outdoor environments.

In conclusion this paper has 3 contributions. First, we

implement an algorithm for finding the intrinsic parameters

of a camera in the case of general rotation, zooming, and

small translations using only two images. This algorithm

is a modification of previous work by Junejo and Foroosh

[13]. Secondly, we quantify how translations can affect the

final results. We show that if correspondences are found on

an object that is 40m away, then small translations, which

are normally due to shaking or imperfect rotation about the

camera center, are negligible. Finally, we quantify how er-

rors in the orientation measurement affects the final calcu-
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lated intrinsic parameters.
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