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Abstract

We aim at designing interactive playgrounds that auto-
matically analyze the behavior of children while playing
games, in order to adapt the gameplay and make the games
more engaging. In this paper, we focus on recognizing roles
in tag games, where children are taggers or runners. We
start by tracking the location and motion of individual play-
ers, and subsequently recognize pairwise interactions: ap-
proach, chase and avoid. At each moment in time, we in-
spect the full set of pairwise interactions to determine the
role of each player. Our approach is fully probabilistic,
deals with any number of players and can easily be extended
to include other interactions and roles. We evaluate our al-
gorithm using simulations, which show promising results.
We intend to extend our framework to recognize variants of
the tag game, and to address actual play interactions.

1. Introduction
Sensing and interpreting human behavior has been an ac-

tive field of research in computer vision for many years.

Many tracking algorithms have been proposed [9], as well

as activity recognition methods [19]. These works mainly

considered the behavior of individuals. Recently, there has

been a shift towards the analysis of behavior of groups, for

example to determine group activity [3] or analyze pedes-

trian movement [18]. The developed models all adhere to

unseen forces, social or psychological, that determine the

proximity of people in groups [13, 1, 12].

When it comes to games, these forces are less apparent

or non-existent. This makes it difficult to identify groups

during games since physical proximity is no longer a key

cue. For instance, two children far away from each other

might be passing a ball between them, and it would make

sense to think they belong to the same group. In a social set-

ting, two people in a crowd passing a ball at each other from

far away would be frowned upon. Analyzing individual ac-

tions such as walking or jumping will not be sufficient to

understand the joint activity of the two children. Therefore,

we propose to analyze interactions between individuals to

understand what is going on in the game.

We propose to recognize two roles during tag games, tag-

gers and runners, using pairwise interactions between the

players. We refer to pairwise interactions as events that re-

quire and are limited to two children: one which executes

the action and one whom is on the receiving end of it. For

instance, a child that follows another child. A benefit of us-

ing this definition is that any scenario can be broken down

into simple pairwise interactions. For instance, even if a

child is being chased by two (or more) children, each one

has a pairwise relationship with the chased child. As a re-

sult, the proposed model can deal with any number of play-

ers. It is important to note that not all pairwise interactions

are meaningful in recognizing roles during games. More-

over, there are interactions that are difficult to define, due to

the chaotic nature of children’s play. This makes the recog-

nition of roles in game settings a challenging task. We an-

alyze three interactions that we consider the most relevant

for our purposes: approach, chase, and avoid. These in-

teractions are common in children’s play, and our approach

is general enough to add other interactions. As such, it is

possible to cover different games and their variants.

We first introduce tag games and how these could be

made more engaging by introducing technology into the

playground. Next, we discuss related work on group analy-

sis. We describe our algorithm in Section 3, and evaluate it

on simulated data in Section 4. We conclude in Section 5.

2. Interactive Tag Game Playgrounds
Tag games are popular children’s games where one or

more taggers have to chase the runners. When a tagger

touches a runner, the roles of the two switch. As such, tag

is a dynamic game since the roles that children play change

frequently during the game. The number of chasers and run-

ners can vary. Variations of tag games exist, for instance,

those where a tagged runner is “out”, “frozen”, or becomes

a tagger without the tagger assuming the runner role.

We are interested in implementing an interactive tag

game playground that is able to recognize the roles of chil-
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dren while they are playing. The playground will be en-

hanced with sensors and actuators to sense the children’s

behavior and provide adequate feedback. For instance, tag-

gers and runners could have either red or blue circles pro-

jected around them, and arrows could point from a tagger to

the closest runner, or to the runner that has not been tagged

for a while. Additionally, we also want to study how adapt-

ing the game could be used to influence the playing behavior

of children. For instance, if changing the color of a child’s

circle could encourage him to change his role. This could

be used to promote positive behavior such as encouraging

shy children to adopt a more proactive role in the game, i.e.

the tagger role [14].

Current interactive playgrounds use computer vision to

sense children’s behavior. For instance, Tetteroo et al.
designed an interactive playground that tracks children’s

movement and recognized some actions using cameras and

accelerometers [20]. Depending on the children’s positions

and their actions, shapes projected on the floor responded in

different ways. Tracking children in playgrounds is useful

to create interactive systems. However, reaching a higher

understanding of play is difficult relying solely on this.

Studying social context during play, the interactions that

children engage in and with whom, would allow us to un-

derstand more clearly what is happening in the playground.

2.1. Vision-Based Analysis of Groups

A substantial amount of research has considered the

analysis of groups, specifically proxemics, a term coined

by Hall [12]. One of the first studies that hinted how so-

cial forces could affect behavior was carried out by Argyle

and Dean, who proposed the equilibrium theory [1]. This

theory stated that people dynamically adapt their postures,

gestures, gaze and proximity to others depending on how

intimate their relationship is. Similarly, Hall also proposed

that we regulate our distance to others when interacting, and

that these distances are dependent on our social intimacy

with them [12]. More recently, Helbing and Molnár pro-

posed that the motion of pedestrians is subject to influence

from other pedestrians as well as internal motivations in

their social force model [13]. All these theories state that an

individual’s behavior is influenced by other people present

in their surroundings, and that modeling these relationships

helps to explain the exhibited behavior.

Following this line of research, the computer vision com-

munity has begun to automatically analyze grouping behav-

ior because modeling social forces also helps in tracking

and understanding behavior [8]. In pedestrian tracking, the

consideration that social factors influence people’s behav-

ior, helps in the prediction of their movement when alone or

in groups. Leal-Taixé et al. developed a people tracker that

worked in semi-crowded environments and considered so-

cial and grouping behavior that helped in predicting move-

ment and handling occlusions[16]. Ge et al. developed a

tracker of small groups in crowded scenarios [10]. They

used knowledge from sociological models of human col-

lective behavior, exhibited by people when in groups. Ya-

maguchi et al. proposed a method to improve pedestrian

tracking algorithms by modeling social, personal and en-

vironmental factors [22].

The notion of social norms has also helped in the under-

standing and recognition of individual, pairwise and group

activities. Groh et al. developed a system that classified

when people were engaging in social interactions using in-

terpersonal distances and body orientation [11]. Bazzani et
al. also used body orientation, represented by the subjective

view frustum, along with spatial cues to infer when people

were interacting [4]. On a related study, they proposed a de-

centralized particle filter for joint individual-group tracking

to recognize the birth, life, and death of groups in outdoor

settings [2]. Kong et al. proposed the use of semantic mo-

tion relationships between two interacting people to recog-

nize human interactions [15]. They called these descriptors

interactive phrases, and allowed them to recognize actions

such as boxing and handshake. Several studies have pro-

posed diverse methods to recognize group activities such as

fighting, walking in groups or queuing by analyzing indi-

vidual and group information together [6, 7, 17]. Activities

have also been recognized in games, however their chaotic

nature means that all the players must be observed. Wang et
al. presented an algorithm that exploited repetitions in so-

cial games to recognize stages during play and pairwise so-

cial interactions even in unstructured collections of videos

[21]. Their games involved only two participants.

In this study, we leverage the concept of “social con-

text” to a set of pairwise interactions, as a way to deal with

the chaotic nature of play and the notion of different roles

that govern these interactions. Our approach is similar to

that of Chang et al., whom proposed a probabilistic group-

level motion analysis for recognizing group behavior in un-

constrained surveillance environments [5]. They recognize

scenarios such as meeting, following and loitering. The

main difference with our approach is that they use prox-

emics to define groups. They propose a soft-grouping ap-

proach, where physical proximity and a path-based connec-

tivity method define to which group an individual belongs

to. Afterwards, they use this information together with the

analysis of the individuals’ behavior to recognize given sce-

narios. In contrast, we use spatial information to interpret

the behavior of the individuals which is used afterwards to

define their roles. Thus, the players are grouped based on

their roles and not on how close to each other they are. In

surveillance settings, the use of proxemics to define groups

is common, however our setting is that of games and play-

grounds, where proxemic conventions do not hold and the

identification of teams is more meaningful.
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3. Role Recognition in Tag Games

Our algorithm starts by describing the location and mo-

tion of individual players. From these, we determine pair-

wise interactions between players. For tag games specifi-

cally, we consider chasing, avoiding and approaching be-

havior. Finally, from the full set of pairwise interactions,

we determine the role of each player. We discuss these three

steps in the following three sections.

3.1. Individual Motion Analysis

The first step in the recognition of the players’ interac-

tions is the analysis of their motion. Consider a player i with

a speed vi and direction φi. Based on the individual move-

ment information, we can classify the player’s type of mo-

tion (mt) into one of two states, where mt ∈ {stand, run}.
Other motion types could also be recognized, such as walk-

ing or jumping, however they are not informative in our

current context. We use sigmoid functions, defined as
1

1+e−a(x−c) , to model the probability of each motion type.

The variable a determines how severe the threshold should

be (i.e. how steep), and c controls the function’s displace-

ment from the origin. The value assigned to c is usually

based on facts or common knowledge, for instance, the av-

erage running speed of children to decide the speed thresh-

old for running. On the other hand, a is assigned based on

how quick the probability should change when approaching

the threshold and is more subjective. The sigmoid responses

of mt against the speed of the players can be seen in Fig. 1.
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Figure 1. Probabilities of mt and mφ based on sigmoid functions.

3.2. Probabilistic Recognition of Pairwise Interac-
tions

Next, we recognize important pairwise interactions

present in tag games. Given players i and j, we denote a

pairwise interaction executed by player i towards player j
as aij ∈ {chase, approach, avoid, none}. Each interac-

tion is defined by several terms which can include a rela-

tive direction term, a motion type term and a distance term.

These definitions are based on the observation of game ses-

sions and common knowledge of tag games. The advantage

of defining the pairwise interactions this way is that restric-

tions, limitations and other terms can be added easily with-

out the need to retrain the models. The modular represen-

tation of the pairwise actions also makes the system easily

extendable in the future. Ad hoc actions or rules could be

defined for specific types of tag games. Moreover, these

relationships are also appropriate for games other than tag.

To recognize the pairwise interactions, we first need to

compute the distance vector (dij) between i and j, and its

angle (φij). Afterwards, we calculate the angle difference

between the movement direction of i and vector dij . This

value informs whether i is moving towards j and is defined

as φi,ij = |(φi − φij)|. We also calculate the angle differ-

ence between the movement direction of both j and i, de-

fined as φj,i = |(φj −φi)|. A graphical description of these

variables can be seen in Fig. 2. Based on the relative move-

ment information, we classify relative directions, defined as

mφ ∈ {same, opposite, neither}. We use sigmoid func-

tions to model the probability of the relative directions. The

probability distribution for mφ can be seen in Fig. 1.

i

j

dij

oij

oi

oi,ij

Figure 2. Graphical description of the motion analysis variables.

The informal definition for each pairwise interaction is

the following. Player i approaches player j when i runs

in the same direction of j, and j is standing. When i is

running in the direction of j and j is running away from

him, i is chasing j. Player i avoids player j when i runs in

the opposite direction of where j is, and j is running in the

direction of i. Formally, the interactions are defined as:

P (aij = approach) = P (mφ
i,ij = same) (1)

·P (mt
j = stand) · P (mt

i = run) · prx(i, j).

P (aij = chase) = P (mφ
i,ij = same) (2)

·P (mφ
j,i = same) · P (mt

i = run) · P (mt
j = run) · prx(i, j).

P (aij = avoid) = P (mφ
i,ij = opposite) (3)

·P (mφ
j,ji = same) · P (mt

i = run) · P (mt
j = run) · prx(i, j).

where prx(i, j) is a 2-D Gaussian function. This func-

tion gives more importance to the interactions of players
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that are nearby. Given the location of two players [xi, yi]
and [xj , yj ], and the standard deviation σ (function’s dis-

tance falloff rate), prx(i, j) is defined as:

prx(i, j) = exp(−( (xi − xj)
2

2σ2
x

+
(yi − yj)

2

2σ2
y

)). (4)

The probabilities of the pairwise interactions are stored

in a matrix A ∈ R : T + 2N + C, where C is the number

of possible interactions, N is the number of players, and T
is the number of frames in the video. In addition to A, we

use matrix Ac with the same dimensions to store accumu-

lated and filtered probabilities over time. If an interaction

is performed consecutively, but the recognition probability

is low, the confidence that the recognition is correct should

increase. This leads to better recognition when an interac-

tion is not recognized accurately, for instance, as a result of

tracking inaccuracies. At each frame f, if no interaction was

recognized with a probability above the recognition thresh-

old δ, we compare the interaction with the highest recogni-

tion probability âfi,j = argmaxa(A
f
i,j,a), with the one in

the previous frame âf−1
i,j . If the interaction is the same, we

re-evaluate the probability of that interaction in frame f. The

new value is calculated as follows:

maxP = max(âfi,j , â
f−1
i,j )

minP = min(âfi,j , â
f−1
i,j ) (5)

newP = maxP · 0.75 +minP · 0.25

This calculation is biased towards the highest recogni-

tion probability between adjacent values, but only when the

same interaction is recognized in subsequent frames. If the

subsequent interactions are not the same, no new estimation

is performed since there is no temporal correlation, which

means no interaction is classified confidently at frame f .

3.3. Role Estimation

After the pairwise interaction values have been calcu-

lated, we estimate the roles of the players. In tag games,

a player can only be assigned one of two roles, thus we de-

fine a player’s role as r ∈ {Tagger,Runner}. Because the

interactions are closely related to the roles, the assignment

becomes trivial. We estimate each player’s role as:

ri =

{
Tagger if ∃j|Ai,j = Approach ∨ Chase,

Runner Otherwise.

This rule represents each role’s specific type of behavior:

a tagger’s goal is to chase and tag runners, whereas runners

have to avoid being tagged. In the particular case of tag

games, if a player is not chasing anyone, he has to be either

avoiding someone who is chasing him, or just moving away

from the taggers to maximize his escape possibilities. Ap-

proaching is seen mostly in the corners of the playing area,

where players have no room to run away.

4. Evaluation and Simulated Data

We evaluated the algorithm on simulated data, which al-

lowed us to analyze the influence of different factors such as

the number of players while avoiding potential errors made

due to tracking inaccuracies.

4.1. Setup

We used two sets of 50 simulations: the tag set and the

run set. The tag set simulates different tag games, whereas

the second set consists of players running inside the play

area. While the former set has defined roles, and conse-

quently interactions between players, the run set is used to

look at incidental recognition of roles. In this set, we did

not specify interactions between players. Both sets are sim-

ulated with varying numbers of players, ranging from two

to six. Each simulation lasted 200 frames, which gave us a

total of 20,000 frames. We assumed a 10 frames per sec-

ond capture rate, which means each play session lasted 20

seconds. The players moved at a maximum speed of 3 me-

ters per second, the average running speed for a 10-year old.

The playing area was set to 10 × 10 meter. The starting po-

sitions of the players were random, making each simulation

different. We also varied the number of taggers and chasers

in the simulations to simulate diverse playing conditions.

4.2. Simulation

The tag set represents realistic but simple tag game be-

havior. The taggers’ behavior consisted of chasing the clos-

est runner, whereas every runner tried to maximize his dis-

tance to every tagger (Fig. 3). Both taggers and runners

ran at the same speed, but to prevent the runners from run-

ning away in straight lines, their movement direction was

modified by adding a random angle (± 0◦-45◦) to it in each

frame. This led to a more natural running away behavior,

while maintaining the same speed. In the case a runner hit

the playing area boundary, he moved parallel to the wall.

However, sometimes, the runners would hit a corner and be

unable to get out when being chased. While this is some-

what unrealistic, we did not want to make the simulation

behavior too complicated to allow for understanding and

reproduction. In the case a tagger managed to tag a run-

ner, their roles would switch. The new runner would imme-

diately start running away, whereas the new tagger had to

wait 10 frames before he could start chasing. In the run set,

the players had no implemented chasing or avoiding behav-

ior, only slightly randomized movement deviation similar to

the tag set. When the players reached one of the walls, they

would bounce in a random direction.
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Figure 3. Example frames from two simulations (top and bottom

rows) with different number of players. The white arrow indicates

the direction the taggers are moving.

GT Tagger GT Runner
Guessed Tagger 12,782 1,319

Guessed Runner 1,253 19,576
Table 1. Confusion matrix for the tag set over all sequences.

4.3. Results

The ground truth for the roles and interactions of the tag

set was known beforehand because the simulation behavior

is based on it. We compared our algorithm’s estimated roles

against the ground truth for every frame (except the first one

where there is no speed information available yet), for each

player, in every simulation. We used a recognition threshold

δ = 0.8. It must be noted that because of the tag cooldown

experienced by recently tagged players, we disregarded the

algorithm’s classification for that particular player, for those

10 frames. The confusion matrix of the role classification

can be seen in Table 1 (GT stands for ground truth).

The algorithm estimates the roles with an overall accu-

racy of 92.6%. The precision scores for the tagger and run-

ner roles are 90.6% and 94%, respectively, and their recall

91.1% and 93.7%. These differences are partly due to dif-

ferent ratios of taggers and runners. Most of the misclas-

sifications occurred when runners hit the boundaries or the

corners of the playing area. Instead of running away from

the tagger, runners had to run alongside the wall. When in

a corner, runners moved back and forth trying to get away

from the corner, which resulted in the chase and approach

interactions not being classified correctly. In the run set,

none of the players should be classified as taggers. How-

ever, some of the pairwise interactions could be such that

the emergent behavior appears as tagging. In 12.1% of the

cases, a player was falsely classified as a tagger.

These results were obtained over all the sequences.

However, it is likely that there are differences between set-

tings. Using the tag set, we first analyze the effect of the

N GT Tagger GT Runner

2 Guessed Tagger 36.86% 0%

Guessed Runner 6.87% 56.29%

3 Guessed Tagger 39.90% 2.10%

Guessed Runner 3.76% 54.25%

4 Guessed Tagger 38.96% 1.07%

Guessed Runner 4.09% 55.87%

5 Guessed Tagger 39.59% 3.63%

Guessed Runner 2.70% 54.08%

6 Guessed Tagger 30.80% 7.82%

Guessed Runner 2.78% 58.60%
Table 2. Confusion matrices of the tag set for different number of

players.

Players per role GT Tagger GT Runner
1 Guessed Tagger 25.21% 3.85%

2 Guessed Runner 3.13% 67.81%
2 Guessed Tagger 56.09% 0.16%

1 Guessed Runner 4.44% 39.31%
2 Guessed Tagger 30.37% 5.79%

3 Guessed Runner 2.63% 61.21%
3 Guessed Tagger 49.45% 1.32%

2 Guessed Runner 2.78% 46.45%
3 Guessed Tagger 38.22% 6.62%

3 Guessed Runner 3.14% 52.01%
2 Guessed Tagger 23.80% 8.95%

4 Guessed Runner 2.45% 64.81%
Table 3. Confusion matrices of the tag set for different tag-

ger/runner distributions

number of players. The breakdown appears in Table 2. As

the number of players increases, there are more misclassifi-

cations. This is especially true for runners being classified

as taggers. This is expected since runners that are not be-

ing chased try to maximize their distance from the taggers,

which can cause two or more runners to run in the same di-

rection, one behind the other. We also analyzed how role

estimation varied with the number of taggers and runners.

Table 3 shows the confusion matrices for different distribu-

tions of taggers and runners. We omitted the sessions where

the number of taggers and runners was equal. When there

are more runners (3 or 4), the number of false positives for

the tagger role increases. This is the same case as before,

where a high number of players increased the chance of run-

ners running away in the same direction.

Finally, we varied the recognition threshold δ. We tested

the algorithm using 0.7 and 0.9 as thresholds. The results

are summarized in Table 4. As expected, as the threshold

increases, the precision of the tagger role increases in detri-

ment of its recall. Because the runner role is classified as the

complement of the tagger role, it is understandable that its

precision and recall have the opposite behavior. Regardless,

the accuracy of the algorithm does not change significantly.
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Thresh. GT Tagger GT Runner Acc.

0.7 Tagger 37.47% 4.83%
92.4%Runner 2.73% 54.97%

0.8 Tagger 36.59% 3.78%
92.6%Runner 3.59% 56.04%

0.9 Tagger 33.34% 2.92%
90.2%Runner 6.84% 56.90%

Table 4. Confusion matrices and accuracy of the tag set for differ-

ent thresholds.

The highest accuracy was obtained when δ = 0.8.

5. Conclusion
We introduced a probabilistic algorithm that estimates

the roles of players in tag game simulations by determin-

ing their pairwise interactions. The algorithm is designed to

identify two roles: tagger and runner. Given that social in-

formation can improve the understanding and classification

of human behavior, we detect three pairwise interactions:

approach, chase and avoid. These are inferred from the

players’ individual and relative motion and location. The

algorithm was tested on simulations and recognized roles

with a 92.6% accuracy. Additionally, we looked at the ef-

fect of changing the number of taggers and runners and the

recognition threshold δ.

Since the recognized interactions are very common in

children’s play, role estimation could be attempted in a mul-

titude of different games and their variants. Moreover, other

interactions could be included in the model, or different

modalities, to further improve the possibilities of recogni-

tion and enrich the play experience. The next step in our

research agenda is to test the algorithm with real tag game

play sessions. Afterwards, an interactive tag game play-

ground could be built where the system recognizes roles

and adapts the feedback to create engaging game experi-

ences. We believe this would be an important step towards

designing socially aware interactive playgrounds.
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