
Exploiting Unlabeled Ages for Aging Pattern Analysis on A Large Database

Chao Zhang and Guodong Guo
Lane Dept. of CSEE, West Virginia University, Morgantown, WV 26506

cazhang@mix.wvu.edu, guodong.guo@mail.wvu.edu

Abstract

“Big Data” analysis is an emerging topic in computer
vision and pattern recognition. As one example problem of
big data, we study semantic age labels and facial aging pat-
tern analysis on a large database. In aging analysis, one of
the great challenges is the lack of a large number of face
images with ground truth age labels. Unlike many other
example-based recognition problems where human annota-
tions can be used as the ground truth labels for both train-
ing and testing, it is quite difficult to label the exact ages in
face images by human annotators. An alternative is to ex-
ploit the unlabeled ages to enhance the age estimation per-
formance. However, it is unclear whether the face images
with unlabeled ages can be used or not for age estimation,
and how to use the unlabeled data. In this paper, we study
the two problems comprehensively under two paradigms:
the semi-supervised learning and unsupervised learning for
aging pattern analysis. We emphasize the importance of us-
ing ground truth age labels and a large database in order
to derive a meaningful measure in the context of big data.
Our study can make an impact on collecting aging patterns
that is very expensive and time consuming in practice.

1. Introduction

“Big Data” analysis is an emerging topic in computer vi-
sion and pattern recognition. As one example problem of
big data, we study semantic age labels and facial aging pat-
tern analysis on a large database. Human age estimation
has a number of potential applications, including business
intelligence [19] and age-specific human-computer interac-
tion [7]. The useful applications have attracted researchers
to study age estimation deeply and broadly [6] [17], in order
to make age estimation more robust and reliable for practi-
cal use.

There are many challenges to develop a good age esti-
mator. In reality, different people may age quite differently,
because of the gene difference as well as life style and living
condition differences. In age estimation research, probably
the most difficult thing is the aging database collection. It

is much more difficult than collecting a database for face
recognition. A large span of ages, e.g., from very young to
much older, need to be collected with ground truth ages.

In aging database collection, it is important to have the
true age label for each face image, since it is not trivial to
annotate the age by humans for each face image after the
database collection. In a very recent study [28], the authors
have shown that perceiving age in face photos by humans
is a challenging task. The mean absolute error (MAE) for
human age perception is 8.58 years on selected face im-
ages from MORPH [18], and is 8.13 years on face images
from FG-NET [5]. These reported errors on human age per-
ception are even much higher than some computational age
estimation methods, e.g., [9] [14] [29] [15] [10] [22], with
MAEs about or below 5 years on the same databases.

It has also been shown in [16] that the face aging
database collected from the Internet contains outliers of age
labels. Even a robust age estimator was developed to deal
with the age label outliers, the age estimation results still
have large errors. For example, it was reported that when
the age estimator is learned from the collected face database
(with incorrect age labels), and then applied to some stan-
dard databases (with ground truth age labels), the MAE
could be 8.60 years on MORPH [18], and 9.49 years on
FG-NET [5].

So, age labeling is a big issue in the context of “big data.”
It is very important to have age labels for both training and
testing. The performance measure (e.g., MAE) might be in-
correct or inaccurate when the ground truth age labels are
not available for the test face images. Basically, we cannot
rely on human annotations of the age labels for face im-
ages, either training or testing. This is very different from
some other computer vision problems, such as the general
object recognition [27], action recognition [13], and facial
attributes [12]. In those problems, the required labels can be
obtained from human annotators, e.g., Amazon’s Mechani-
cal Turk, without much difficulty.

Is there a way to deal with the age labeling problem?
Suppose there is a collected face database which contains a
number of face images without age labels. Should we only
use the face images with ground truth age labels? Or can
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we utilize the unlabeled ages (i.e., face images without age
labels) to improve the age estimation performance?

In this paper, we study the age labeling problem in age
estimation. We explore the feasibility of using face images
with unlabeled ages to improve the age estimation perfor-
mance. An illustration of the problem is shown in Figure
1. Towards this goal, we put the age labeling problem into
two paradigms: semi-supervised learning and unsupervised
clustering. Both paradigms involve unlabeled ages, in con-
trast to the traditional supervised age estimation [6] [17].
We measure the age estimation performance under these
two paradigms, and compare with the supervised learning
based estimation to assess the usefulness of unlabeled face
images. If the age estimation performance is sufficiently
good using a small amount of labeled ages in combination
with a number of unlabeled face images, there may be no
need to turn to age labeling by human annotations. Human
annotations of age labels are not accurate, and incorrect age
annotations might hurt the age estimation accuracy [16].

Further, we study the problem of how many labeled ex-
amples are needed for age estimation to have a reasonably
good performance on a large database. This is valuable to
reduce the cost and time for aging database construction.

In our study, we emphasize the importance of ground
truth age labels for a meaningful and quantitative measure.
Otherwise, the conclusions may not make any sense as a
practical guide to collecting aging patterns and age labels.

We notice that there was a semi-supervised approach to
perceived age prediction [21], but their goal is very differ-
ent from ours. First, there is no ground truth age labels for
the research in [21], so it is difficult to tell if there is any
advantage to use unlabeled ages for age estimation; Sec-
ond, the work in [21] is about perceived age, while we fo-
cus on chronological age estimation by a computer; Third,
we found that the clustering-based annotation of perceived
ages cannot work well in our experiment with ground truth
ages (see Section 4), since the clustering cannot find correct
cluster centers for the complex and subtle aging patterns.

Our major contributions in this paper include: (1) quan-
titatively assessing the usefulness of unlabeled ages for ag-
ing pattern analysis under different paradigms; and (2) dis-
covering the required amount of labeled ages to develop a
robust estimator through the combination of unlabeled ages.

In the remaining of the paper, we exploit the unlabeled
ages under two paradigms in Sections 2 and 3, respec-
tively. Several learning methods are investigated within
each paradigm. Then we present experiments on a large
database in Section 4. Finally, we draw conclusions.

2. Exploiting Unlabeled Ages by Semi-
Supervised Learning

To assess the usefulness of unlabeled ages for aging
pattern analysis, we place the problem into two learning

Figure 1. Illustration of the problem we study: Is it feasible to
utilize the unlabeled ages for aging pattern analysis? And how to
use them? (The red patterns are labeled ages, and blue unlabeled.)

paradigms: (1) semi-supervised learning [30], and (2) un-
supervised learning [25]. We explore the semi-supervised
learning paradigm in this section, and unsupervised learning
next. Both paradigms are compared to a supervised learn-
ing method to have a quantitative measure. The supervised
learning is based on the support vector machines (SVMs)
[23] trained on the labeled ages only.

We investigate the feasibility of executing semi-
supervised learning for aging pattern analysis, and discover
how useful the unlabeled ages could be for age estimation.
We also study the required amount of labeled ages to de-
velop a robust age estimator.

There are a number of techniques developed for semi-
supervised learning [30]. For our study, we investigate three
methods to exploit the unlabeled ages. A brief description
of the methods is presented below.

2.1. Semi-supervised Discriminant Analysis

Suppose we have a set of l face images with age labels
{(xi, yi)}l

i=1, and a set of u face images without age la-
bels {xi}l+u

i=l+1. The classic Linear Discriminative Analysis
(LDA) aims to find a projection vector a such that the ratio
of aT Sba over aT Sta is maximized, where the between-
class scatter matrix Sb and total scatter matrix St (the sum-
mation of the within-class and between-class scatter matri-
ces) are computed from the labeled data set.

A regularizer can be imposed to the standard LDA to
change the optimization problem into the following [11],

max
a

aT Sba
aT Sta + αJ(a)

(1)

where the regularizer J(a) controls the learning complex-
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ity and the coefficients α balances between the model com-
plexity and the empirical loss. The regularizer J(a) also
provides the flexibility to incorporate the manifold structure
of the unlabeled examples when they are available [2].

The unlabeled data are used to construct a p-nearest
neighbor graph G to model the relationship between nearby
data points. Thus, a natural regularizer can be defined as
follows:

J(a) =
∑
ij

(aT xi − aT xj)2Wij = 2aT XLXTa (2)

L = D−W is the Laplacian matrix. W is the weight matrix
defined by

Wij =
{

1, if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise,

(3)

where Np(xi) denotes the set of p nearest neighbors of xi.
D is a diagonal matrix; its entries are the column sum of
W , Dii =

∑
j Wij .

Using the regularizer derived from unlabeled face im-
ages, the objective function of semi-supervised discriminant
analysis (SDA) [2] is given by,

max
a

aT Sba
aT (St + αXLXT )a

. (4)

The projection vector a that maximizes the objective func-
tion is given by the solution of the following generalized
eigenvalue problem:

Sba = λ(St + αXLXT )a (5)

The solution of (5) is a set of eigenvectors learned from
face images with and without age labels for aging pattern
analysis.

2.2. Manifold Regularization

Belkin et al. [1] proposed a graph-based manifold reg-
ularization (MR) framework that allows to incorporate the
intrinsic geometrical structure of the input data as a reg-
ularization term. It can be performed as semi-supervised
learning when unlabeled samples are available. The man-
ifold regularization framework employs two regularization
terms:

f� = arg min
f

1
l

l∑
i=1

(f(xi)− yi)2 + γA‖f‖2K + γI‖f‖2I
(6)

where the first term is an arbitrary loss function, in our case,
it is defined as the residue square error over all labeled ex-
amples. K is a ‘base kernel’, e.g., a linear or RBF kernel.
I is a regularization term induced by the labeled and unla-
beled data. γA controls the complexity of the function in

the ambient space, while γI controls the complexity of the
function in the intrinsic geometry.

Sindhwani et al. [20] gave a semi-supervised kernel that
can cover all input data, including both labeled and unla-
beled. The kernel supports induction. Then the objective
function becomes:

f� = arg min
f

1
l

l∑
i=1

(f(xi)− yi)2 + γA‖f‖2K+

γI

(u + l)2

l+u∑
i,j=1

(f(xi)− f(xj))2Wij

(7)

where Wij is defined by Eq. (3).
According to [1], the minimizer of problem (7) admits

an expression

f∗(x) =
l+u∑
i=1

αik(x,xi) (8)

where α = (α1, . . . , αl+u)T are the parameters to be
learned by either a least square solver or a SVM quadratic
programming solver [1], T denotes the transpose, and
k(x,x′) is a kernel function. l and u denote the number
of labeled and unlabeled face images, respectively.

Expression (8) is used to map an aging pattern x to the
corresponding age label.

2.3. Spectral Regression Discriminant Analysis

Let x̄i = xi − μ be the centered aging pattern, where
μ is the total mean vector over the training set. X̄(k) =
[x̄(k)

1 , · · · , x̄(k)
mk ] is the centered data matrix of kth age class,

and mk is the number of aging patterns in the kth class.
Then the between class scatter matrix can be re-written as

Sb =
c∑

k=1

X̄(k)W (k)(X̄k)T = X̄WX̄T , (9)

and the total scatter matrix is St = X̄X̄T , where X̄ is the
centered data matrix, and W (k) is a mk×mk matrix with all
the elements equal to 1/mk. W is a m×m block-diagonal
matrix, assuming there are m training examples,

W =

⎡
⎢⎢⎢⎣

W (1) 0 . . . 0
0 W (2) . . . 0
...

...
. . .

...
0 0 . . . W (c)

⎤
⎥⎥⎥⎦ .

Therefore the generalized eigenproblem for LDA can be
represented as

X̄WX̄Ta = λX̄X̄Ta, (10)
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Let ȳ be the eigenvector of the eigenproblem

Wȳ = λȳ (11)

with eigenvalue λ, and let X̄Ta = ȳ, then a is the eigenvec-
tor of the eigenproblem in (10) with the same eigenvalue λ,
according to [3]. Thus, instead of solving the eigenproblem
in (10), the LDA basis functions can be obtained through
two steps: (1) solve the eigenproblem (11) to get ȳ; and (2)
find the a that satisfies X̄Ta = ȳ in the least squares sense,
a = argmina

∑m
i=1(a

T x̄i − ȳi)2, where ȳi is the ith ele-
ment of ȳ. A regularization term is usually used to derive a
stable solution for the least squares regression,

a = argmin
a

(
m∑

i=1

(aT x̄i − ȳi)2 + α‖a‖2
)

. (12)

Because the above two-step procedure involves spectral
analysis of the graph matrix W and the regression tech-
nique, it is called spectral regression discriminant analy-
sis (SRDA) [3]. It can be generalized to deal with semi-
supervised age estimation by constructing the graph matrix
W using both labeled and unlabeled aging patterns.

3. Unsupervised Learning of Aging Patterns

To further assess the usefulness of unlabeled ages, we
also study the unsupervised learning paradigm for ag-
ing pattern analysis, in addition to the semi-supervised
paradigm. For unsupervised aging pattern analysis, we use
the classic k-means clustering algorithm and a more ad-
vanced spectral learning technique [24].

To test the clustering result of the aging patterns for each
algorithm, we compare the clusters with the ground truth
age labels. Specifically, the majority of the age labels within
each cluster is used as the cluster’s age label, and assigned
to each pattern within that cluster as the “estimated” age.
Then we can compute the estimation errors for the whole
data set.

3.1. K-Means Clustering of Aging Patterns

We use the k-means clustering method for unsupervised
aging pattern analysis. The classic k-means algorithm re-
mains a popular choice for real-world clustering tasks [26].
We explore if the aging patterns can be clustered into differ-
ent age classes using the k-means method.

The k-means optimization problem is to find k clus-
ter centers c ∈ Rm from a set of aging patterns
xi ∈ Rm by minimizing the following objective function:
min

∑
xi∈X ||f(C,xi)− xi||2, where f(C,xi) returns the

nearest cluster center c ∈ C to xi from all clusters C using
Euclidean distance. The optimization process starts with k
initial seeds (randomly selected) and iterates until conver-
gence to a local optimum. We attempt different k values to
measure the difference.

3.2. Spectral Clustering of Aging Patterns

Spectral clustering [24] is a category of more advanced
unsupervised learning techniques, which are usually more
effective to find clusters and can outperform some tradi-
tional methods. Here we exploit if there is any advantage
to use spectral clustering for aging pattern analysis. The ba-
sic idea of spectral clustering is to measure the similarity
between pairs of aging patterns and construct a similarity
graph G = (V, E), where each vertex vi represents one
aging pattern xi. Two vertices are connected if the simi-
larity sij between the corresponding patterns xi and xj is
positive or larger than a certain threshold, and the edge is
weighted by sij . A typical similarity function is computed

by sij = exp
(
− ||xi−xj ||2

2σ2

)
, where σ is a scaling parameter

to adjust the similarity measure. The clustering problem is
then to partition the similarity graph into groups such that
the edges between different groups have very low weights
and the edges within a group have high weights.

The spectral clustering can have various similarity mea-
sures and be solved with different methods. In our aging
pattern analysis, we adopt a very recent technique [4] to
cluster the aging patterns.

4. Experiments

Now we exploit the unlabeled ages for aging pattern
analysis based on several experiments. First, the database is
introduced for this study. Second, the experimental designs
are described. Third, the experimental results based on the
semi-supervised learning paradigm are presented. Fourth,
the results of unsupervised learning or clustering are given.
Finally, a comparison with an exiting approach is performed
on our database with ground truth age labels.

4.1. Database and Aging Pattern Representation

We use the MORPH-II [18] database for our study,
which contains more than 50,000 face images of different
gender and ethnicity along with a span of ages from 16
to 67 years. All face images have the ground truth labels
of age, gender, and ethnicity, which are important for our
quantitative study of the age labeling problem. In MORPH-
II, however, the distribution of gender and ethnicity is very
unbalanced. For example, it has about 77% Black faces,
19% White, and 4% other races, e.g., Hispanic, Asian, and
Indian. There are also more males than females. To study
the age labeling problem on a relatively balanced distribu-
tion of various populations, we selected partial data from
MORPH-II, following the suggestion in previous research
[8]. Almost all White face images are used, and a matched
number of Black faces is used to balance the number of face
images in the two races. In total, we have a database of
21,060 face images chosen from the MORPH. In the se-
lected database, there are 2,570 White Female (WF), 7,960
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White Male (WM), 2,570 Black Female (BF), and 7,960
Black Male (BM) face images. To avoid the influence of
gender and ethnicity on our studies, our age estimations are
performed on each gender and ethnicity group separately.
Then the average over the four groups is computed as the
final quantitative measure.

The face images in the database are aligned with detected
eye centers, and cropped and normalized into a fixed size,
e.g., 60 x 60. For the aging pattern representation in face
images, we use one of the state-of-the-art methods to ex-
tract the biologically inspired features (BIF) [10]. The sup-
port vector machines (SVMs) [23] are used for learning the
aging functions in each case of age estimation.

4.2. Experimental Design

To exploit the unlabeled ages for aging pattern analysis,
we design age estimation experiments under two different
paradigms: (1) semi-supervised learning, and (2) unsuper-
vised learning or clustering. The results are compared to the
traditional supervised learning based age estimation, which
is considered as the baseline. In supervised learning, only
the labeled ages are used to learn the aging functions with
the SVMs, while the unlabeled ages are not used. The aging
patterns for testing are the same for all methods.

Under either paradigm, we perform 10 random runs of
the methods and compute the average and standard devia-
tion. The purpose is to get a statistically meaningful results
and avoid possible perturbations caused by the randomness.

Under the semi-supervised learning paradigm, we also
study the age estimation performance with different per-
centages of labeled and unlabeled ages, so that we can mea-
sure how many labeled ages are needed to develop a robust
age estimator. This quantitative measure is of great value
in practice, considering the expensive and time-consuming
aging pattern collection. Three methods are investigated un-
der the semi-supervised learning paradigm to compare with
each other and with the supervised learning results. All
three methods are new to aging pattern analysis.

Under the unsupervised learning or clustering paradigm,
we will discover if the clustering based methods can work
or not, and evaluate the results using different numbers of
cluster centers. The classic k-means clustering algorithm
and an advanced spectral clustering method are used for this
investigation.

From our data set of 21,060 face images, 2,112 is ran-
domly selected as the fixed test set, which is about 10% of
the whole data set. Then the remaining 18,948 face images
are used as the training set. In the training set, we randomly
selected a different amount of data, e.g., 10%, 20%, · · · ,
90%, as the labeled ages, while the remaining as the unla-
beled ages in which the age labels are assumed unknown for
the semi-supervised learning paradigm.

4.3. Results under Semi-Supervised Learning

The age estimation results under the semi-supervised
learning paradigm are shown partially in Table 1. The age
estimation is performed within each gender and ethnicity
group, and the average over the four groups is shown in
Figure 2. The MAEs of age estimation are measured w.r.t.
the different amount of labeled ages, ranging from 10% to
90%. We can observe that (1) when more labeled ages are
used for training, the age estimation errors are reduced for
each semi-supervised method or the supervised learning ap-
proach; (2) the investigated semi-supervised methods are
consistently better than the supervised learning approach,
which demonstrates that the unlabeled ages are useful to
improve the age estimation performance compared to the
supervised learning, using the same amount of labeled ages.
Thus the unlabeled ages can be helpful under the semi-
supervised learning paradigm; (3) the three semi-supervised
learning methods perform differently in age estimation: the
SDA is better than the MR, and the SRDA performs the best
among the three; (4) the age estimation performance is dif-
ferent in the four gender and ethnicity groups, the White
Male group has the smallest MAEs, the White Female and
Black Male have comparable MAEs, and the Black Female
has the highest MAEs; and (5) about 20-30% of labeled
ages can make the MAE reduced to about one year differ-
ence from the 90% labeled ages. For a better method, e.g.,
SRDA, the MAE difference (from the 90% labeled ages) is
smaller than other methods.

The average MAEs over the four groups are also shown
in Table 1 partially, ranging from 10% to 50% and the last
one 90% of labeled ages. The MAEs corresponding to dif-
ferent percentages of labeled ages are compared to the 90%,
and the MAE differences are computed and shown in the ta-
ble. We can see that about 20-30% of labeled ages can be
good enough to reduce the MAE to about one year differ-
ence from the 90% labeled ages. This finding is very useful
and valuable in practice. A small percentage of age labels
can be collected together with a large number of unlabeled
ages to develop a good age estimator. This new finding has
not been discovered by any previous research, to the best of
our knowledge.

4.4. Results under Unsupervised Clustering

The results of exploiting unlabeled ages under the unsu-
pervised clustering paradigm are shown in Figure 3. Only
the aging patterns for testing are used for this experiment,
since there is no training data needed in this paradigm. As
stated in Section 3, the majority of the patterns within each
cluster is considered as the cluster’s age label. Then the
ground truth age labels can be used to compare with the
cluster labels for MAE measure. The averages over ten ran-
dom runs with the deviations are shown for each clustering
result. The clustering is performed on the four gender and
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Table 1. Exploiting the unlabeled ages with the semi-supervised learning paradigm, comparing to a supervised learning method where
only the labeled ages are used for learning. The age estimation results are measured by the popularly used mean absolute error (MAE)
in years. Using 90% labeled ages gives better results than less percentages in each case, and it is used as the basis to measure the MAE
difference (denoted by “Diff.”) when other percentages of labeled ages are used. “MR” represents the manifold regulation method, “SDA”
for semi-supervised discriminant analysis, and “SRDA” for spectral regression discriminant analysis.

Method
Percentage of Labeled Ages (%)

10% 20% 30% 40% 50% 90%
MAE Diff. MAE Diff. MAE Diff. MAE Diff. MAE Diff. MAE

Supervised 7.52 1.97 6.94 1.39 6.67 1.12 6.39 0.84 6.17 0.62 5.55
MR 7.07 2.44 6.34 1.71 5.84 1.21 5.62 0.99 5.25 0.62 4.63
SDA 6.34 2.00 5.48 1.14 5.13 0.79 4.83 0.49 4.64 0.30 4.34

SRDA 5.73 1.67 5.07 1.01 4.79 0.73 4.58 0.52 4.45 0.39 4.06

ethnicity groups and then averaged. Different numbers of
cluster centers are attempted, ranging from 50 to 300, for
both the k-means and spectral clustering methods. We find
that the clustering methods cannot work well for aging pat-
tern analysis. The advanced spectral clustering approach ac-
tually results in higher errors than the classic k-means clus-
tering algorithm. This observation is different from those
on many databases in machine learning, revealing the spe-
cial property of the aging patterns. Both clustering methods
have much higher errors compared to the semi-supervised
or supervised learning results shown in Table 1 or Figure
2. As a result, the unsupervised clustering paradigm cannot
work well for unlabeled aging pattern analysis. The reason
may be that the aging patterns are subtle and could not be
grouped naturally into separate clusters.
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Figure 2. The average performance of age estimation over the four
groups of gender and ethnicity. The three semi-supervised learn-
ing based age estimation methods (MR, SDA, and SRDA) are con-
sistently better than the supervised learning method.

4.5. Comparison with Another Approach

We noticed that there was a semi-supervised approach to
perceived age prediction [21], where there are no ground
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Figure 3. The results of aging pattern analysis under the unsuper-
vised clustering paradigm. The MAEs are averaged over ten ran-
dom runs and the deviation bars are shown. The results are mea-
sured with different numbers of cluster centers, from 50 to 300.
The advanced spectral clustering method performs even worse
than the classic k-means clustering algorithm, and both cannot per-
form well for aging pattern analysis. This empirical study shows
that aging patterns are too complex to do unsupervised clustering.

truth age labels in their experiment. The study in [21] can-
not tell whether the unlabeled ages are useful or not for ag-
ing pattern analysis. Although the goal of [21] is differ-
ent from ours, we plan to compare the scheme in [21] with
our approaches to discover more things. We implemented
the method in [21] by ourselves and do a similar age pre-
diction experiment on our database where all ground truth
age labels are available. The result based on the method in
[21] is shown in the first row in Table 2. The MAE is 9.70
years, which is significantly worse than our approaches. It
is about 91.3% higher than our result based on the SRDA
method. The results of our approaches are shown in rows 2-
4 in Table 2, where 20% labeled ages are used for our semi-
supervised learning, which is the minimum amount needed
based on our quantitative study shown in Table 1 and Figure
2, respectively.
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Table 2. Age estimation using the semi-supervised approach in
[21] based on our implementation and evaluated on our database.
The emphasis of only 200 labeled ages [21] and other reasons
result in a MAE of 9.70 years, which is much higher than our
approaches to age estimation based on semi-supervised learning
methods using 20% of labeled ages for training.

Method #Labeled #Unlabeled # Test MAE
[21] 200 18748 2112 9.70

MR(ours) 3800 15148 2112 6.34
SDA(ours) 3800 15148 2112 5.48

SRDA(ours) 3800 15148 2112 5.07

In [21], the emphasis is their active learning scheme to
determine the number of age labels to be annotated by hu-
mans, which is actually a k-means clustering of the unla-
beled data. Only 200 cluster centers are used in [21] based
on their active learning on their large database comparable
to the size of our database. Based on our investigation of the
unsupervised learning paradigm in Section 4.4, the cluster-
ing method is not proper for aging pattern analysis.

In addition to the problem caused by the clustering, there
are some other issues that interpret the high errors using the
approach in [21]. One is that the number of labeled exam-
ples, 200, advocated in [21] is too small to provide sufficient
labeled ages, another is that the semi-supervised learning
method used in [21] might not be so good as the methods we
explore here, and there is no consideration of gender and/or
ethnicity groups in their perceived age prediction [21].

5. Conclusions

We have studied how to exploit the unlabeled ages
for aging pattern analysis using two paradigms, semi-
supervised learning and unsupervised clustering. Several
methods have been explored under the two paradigms for
our quantitative study. Based on our empirical evaluations
on a large database, we have discovered that the unlabeled
ages are useful to enhance the age estimation performance
when they are properly utilized. The semi-supervised learn-
ing paradigm is appropriate to take advantage of the un-
labeled ages, while the unsupervised clustering paradigm
cannot work well for aging pattern analysis. The reason
might be that the aging patterns are very subtle and their
distribution is too complex to have a natural separation by
clustering. The labeled ages are necessary in exploiting un-
labeled ages. Based on our quantitative study, we found that
about 20% to 30% of labeled ages can be sufficient to de-
velop a robust age estimator, comparing to using almost all
labeled ages (e.g., 90%). This finding can make an impact
on collecting aging patterns and age labels, which are very
expensive and time consuming in the context of “big data.”
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