
Efficient GPU-based Graph Cuts for Stereo Matching

Young-kyu Choi
Computer Science Department

University of California, Los Angeles
ykchoi@cs.ucla.edu

In Kyu Park
School of Information and Communication Engineering

Inha University
pik@inha.ac.kr

Abstract

Although graph cuts (GC) is popularly used in many
computer vision problems, slow execution time due to its
high complexity hinders wide usage. Manycore solution us-
ing Graphics Processing Unit (GPU) may solve this prob-
lem. However, conventional GC implementation does not
fully exploit GPU’s computing power. To address this is-
sue, a new GC algorithm which is suitable for GPU en-
vironment is presented in this paper. First, we present a
novel graph construction method that accelerates the con-
vergence speed of GC. Next, a repetitive block-based push
and relabel method is used to increase the data transfer ef-
ficiency. Finally, we propose a low-overhead global rela-
beling algorithm to increase the GPU occupancy ratio. The
experiments on Middlebury stereo dataset shows that 5.2X
speedup can be achieved over the baseline implementation,
with identical GPU platform and parameters.

1. Introduction
Graph cuts (GC) has been successfully applied to many

computer vision and pattern recognition tasks. Examples

include stereo matching, segmentation, 3D reconstruction,

and object recognition. In contrast to local decision-making

algorithms, GC performs global optimization on the graph

models, integrating both observation and the prior knowl-

edge. This allows GC, along with belief propagation, to be

one of the most accurate algorithms in solving many vision

problems [13].

In spite of its high accuracy, one of the main obstacle

in using GC is its high complexity. Even with high-end

computers, it may take several seconds to process a sin-

gle mid-sized frame. In order to increase the execution

speed of such complex problem, it has become popular

to use massively parallel solution [12] [14] on NVIDIA’s

general-purpose computing on graphics processing unit

(GPGPU) platform called Compute Unified Device Archi-

tecture (CUDA). However, conventional GC implementa-

tion on GPGPU still suffers from problems such as mem-

ory bottleneck, low utilization ratio, and slow convergence

speed. As a result, fully exploiting the computational power

of GPGPU remains to be a challenging task.

In this paper, we propose a novel GC algorithm that is

suitable for GPGPU framework. First, we present a new

graph construction method that can be easily applied to ac-

celerate the convergence speed of GC. A reordering heuris-

tic and initialization method is employed to further improve

the execution speed based on the proposed graph construc-

tion method. Next, we propose block-based push and re-

label method to reduce the memory bottleneck. A repeti-

tive scheme is used to increase the data transfer efficiency.

Finally, we present a low-overhead global relabeling algo-

rithm that increases the GPU occupancy by reducing the

kernel launch overhead.

The effectiveness of the proposed algorithm is demon-

strated using the stereo matching problem, since it is one of

the most fundamental problems in computer vision. Note

that the presented algorithm can also be applied to any other

GC-related problems as well.

This paper is organized as follows. The background

knowledge is explained in Section 2. Section 3 intro-

duces our efficient graph construction method. In Section 4,

block-based repetitive push and relabel is presented. Low-

overhead global relabeling is explained in Section 4. The

experimental result is shown in Section 6, and we conclude

in Section 7.

2. Background

2.1. Graph Cuts: Basics

Graph cuts algorithm can solve the minimum energy cut

problem by finding the maximum flow in a graph. Let G =
(N,E) be a directed graph with N node set and E edge set.

Two special nodes exist: source, which emits flow into the

graph, and sink, which accepts flow from the graph. Each

edge between node p and q has a flow value f(p, q), and it

must be less than the edge capacity c(p, q). Note that the

flow has anti-symmetry property (i.e. f(p, q) = −f(q, p)).
The net flow

∑
q f(p, q) into a node p is called excess e(p),

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.97

636

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.97

636

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.97

636

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.97

642

and a node with excess value larger than zero is called an

active node.

The objective of the algorithm is to send as much flow

as possible from the source to the sink. This process of

sending excess to another node is called pushing. In order

to push flow to the correct direction, height h(p) is intro-

duced to obtain the distance from node p to the sink. The

excess of a node may be pushed to other nodes only if the

height of the sender node is larger than that of the receiving

node. If pushing is no longer possible for an active node,

the height of the node is promoted to a higher value in the

relabel stage. Relabeling, however, often makes inefficient

local decision; thus, global relabeling is periodically per-

formed to assign correct height information [8]. Push, re-

label, and global relabel are iteratively performed until no

active node exists.

Note that the process explained above is based on the

push-relabel method [8]. Initially, this method tries to send

as much flow as possible, by saturating all edges from the

source (f(source, p) := c(source, p)). Next, the exces-

sive flows are pushed to the sink until all possible paths to

the sink have been saturated. Then, the remaining flows

are pushed back to the source and the algorithm terminates.

In this paper, push-relabel approach is taken, because it is

more parallelizable than those based on augmenting path

(e.g. [5]).

2.2. Stereo Matching Using Graph Cuts

Stereo matching is a process of comparing two images

to find the distance to the objects. Closer object results in

larger disparity in the image pair. Dense stereo matching

algorithms measure this disparity by finding the correspon-

dence for every pixel.

Graph cuts algorithm can be used to solve the stereo

matching problem as follows, similar to [6]. The sink and

the source are assigned to disparity labels, and the nodes

are assigned to pixels. The capacity of the edges between

sink/source to the nodes is assigned the likelihood of match-

ing a disparity label to each pixel. The capacity of the

edges between the pixel nodes reflects the penalty of vi-

olating smoothness among neighboring pixels. With such

formulation, solving minimum cuts problem with GC be-

comes equivalent to partitioning pixels into labels that has

the minimum energy. The labeling with minimum energy is

then considered as the solution to the stereo matching prob-

lem.

For graph construction, Kolmogorov’s method [11] is

used as a baseline. In contrast to Boykov’s method [6], Kol-

mogorov’s method does not introduce any auxiliary nodes.

Thus, a grid-like graph structure is maintained, which al-

lows GPUs to make regular memory access. The graph for-

mulation is shown in Figure 1.

Note that GC can only solve bi-label optimization prob-

Figure 1. Kolmogorov’s graph construction method

lems. For multi-label problems, such as stereo matching,

α-expansion heuristic is popularly used [6]. α-expansion

breaks down multi-label energy optimization problem into a

series of bi-label optimization problem. Each bi-label prob-

lem is solved by GC. For each GC, the current label α is

assigned to a source node, and the previous label α is as-

signed to the sink node. This labeling method is shown in

Figure 1. After performing GC on label α, a pixel may re-

tain its previous label α, or switch to label α if lower energy

configuration can be obtained. Performing bi-label GC over

all available labels are called a cycle. After GC is repeatedly

performed for several cycles, the energy of the labeling de-

creases and converges to a minimum value.

2.3. CUDA Architecture

NVIDIA’s CUDA [1] is briefly explained in this sec-

tion. CUDA consists of an array of multithreaded Stream-

ing Multiprocessors (SMs). Each SM has 32 processor

cores and 48 KB of shared memory. The GTX 580 proces-

sor used in this paper has 16 SMs (512 cores) and 1.5 GB

of global memory. Each SM can concurrently execute 32

threads, called a warp. Higher performance can be obtained

if the threads in a warp execute the same instruction.

For computation, each SM needs to transfer data from

the global memory. However, the latency of accessing the

global memory typically takes hundreds of cycles. Thus,

it is important to reduce the access to the global memory.

Commonly used strategy is to store frequently used data

into the shared or local memory, which takes much less time

to access.

In order to activate GPU, host CPU first copies data from

main memory to the GPU global memory. Next, host CPU

commits the GPU program, called a kernel, into the GPU

work queue. Note that there is several microseconds delay

between the CPU kernel commit and the GPU kernel exe-

cution.

3. Graph Construction for Fast Convergence
3.1. Related Works

As α-expansion heuristic progresses, almost identical

cut is repeatedly obtained for many different labels and cy-

cles. Thus, some acceleration techniques were proposed to

637637637643

Cycle
Execution Time (sec)

Kolmogorov’s Proposed

1 1.60 1.54

2 0.92 0.63

3 0.88 0.56

4 0.86 0.54

Total 4.28 3.28

Table 1. Acceleration of later cycles using the proposed graph con-

struction method for Teddy image

reuse the solution obtained from the previous GC cycle. The

graph reparameterization technique reuses the flow [2] [10],

whereas the active graph cuts method reuses the cuts [9].

Compared to these algorithms, the merit of the proposed

method lies in its simplicity. Although it does not achieve

the 2-6 speedup reported in these literatures, it also does not

require dynamic cut/capacity modification features which

involves extensive modification to the original push-relabel

algorithm. It also does not suffer from the memory over-

head of storing previous flows. As will be explained in the

remainder of this section, only a simple modification to the

graph construction or initialization is required to obtain a

reasonable speedup of 2.37X.

3.2. Proposed Method

The first step is simple: modify Kolmogorov’s formu-

lation in Figure 1 by reversing the α label and the pre-

vious label (α). The experiment shows that such simple

measure brings an average performance improvement of

1.24X. Table 1, which contains the execution comparison

for Teddy image, shows that most of the speedup is obtained

from later (2-4) cycles of α-expansion. The reason for this

speedup can be found in the intrinsic characteristic of push-

relabel algorithm when combined with α-expansion. As α-

expansion progresses, most of the edges with smaller capac-

ity tends to gather closer to the source (α) with the proposed

graph construction method. Larger capacity is inclined to

be assigned to the sink-connected edges. Although push-

relabel GC starts by saturating the capacity of all source-

connected edges, most of these flows from the source can

be sent directly out to the sink in the first few iterations, be-

cause the edges connected to the source would have larger

capacity than the edges connected to the sink. In the orig-

inal Kolmogorov formulation, on the other hand, most of

the nodes still have excess after first iteration, and it takes

several additional iterations to find a path to push them out

to the sink.

Figure 2 shows the comparison of the decrease rate of

active nodes on Tsukuba test image. It confirms that most

of the nodes become inactive in first few iterations with the

proposed graph construction method.

These findings suggest that the proposed scheme allows

Figure 2. Comparison of decrease rate of active nodes (4th cycle,

16th label expansion of Tsukuba image)

execution time to decrease more rapidly, if α label con-

verges to the minimum energy label as soon as possible.

3.3. Initialization

In the previous subsection, it was shown that less time

would be taken to execute a single cycle of GC if α label has

lower energy label assignment. This suggests that employ-

ing accurate initial label assignment will reduce the overall

execution time with the proposed scheme. This is one of the

major advantages of the proposed method.

Thus as a second step, we modified the initial label

assignment of all zeros to local winner-take-all (WTA)

method with 9×9 window aggregation [13]. Although

WTA with 9×9 windows takes longer initialization time,

experiment shows that the overall execution time is reduced

by 1.68X. The reason is that GC converges faster with ac-

curate initial labeling with the proposed graph construction

method.

3.4. α-Expansion Reordering

For multi-label problems such as stereo matching, the

execution speed can be further accelerated by changing the

order of α-expansion. Performing GC on a label that al-

lows faster convergence to a smaller energy labeling will

decrease the execution time.

We propose a heuristic of choosing the label in the order

of most frequent occurrence. The reason is that it will allow

more pixels to switch to that label in the early stage of α-

expansion. This is shown in Figure 3. Experiment shows

that the execution speed of the first cycle is improved by

1.40X (overall speedup: 1.14X). Adopting better heuristic

could further decrease the execution time. Note that the

accuracy of the final disparity map may slightly change as

a result, since the result of α-expansion changes depending

on the order of label expansion.

638638638644

Figure 3. Execution time comparison between reordered label ex-

pansion (most frequent first) and sequential label expansion (from

1 to 16) (1st cycle of Tsukuba image)

4. Repetitive Block-Based Push & Relabel
4.1. Motivation

We use a repetitive block-based push & relabel method

to reduce the memory bottleneck problem. Accessing the

global memory takes a very long time in CUDA architec-

ture. Accessing the shared memory, on the other hand,

takes much less time. Thus, it is advantageous to move

data into the shared memory, if the data is accessed fre-

quently. A block size of 32×32 pixels has been chosen, and

512 threads are invoked to process a block.

In conventional parallel implementation of push-relabel

algorithm, push or relabel is performed only once per global

memory data fetch, before proceeding to the next iteration

of push or relabel. As a result, flow and capacity data are ac-

cessed only a small number of times before getting evicted

out of the shared memory. This leads to frequent global

memory access and causes memory bottleneck problem.

4.2. Proposed Method

To increase the number of computation per data trans-

fer, a repetitive block processing technique is employed.

After performing a push operation, flow data is not writ-

ten back to the global memory for subsequent relabel op-

eration. Instead, relabeling is performed based only on the

flow information inside the block. Next, push is performed

with the relabeled height information. This process is re-

peated for some iterations, updating only the information

inside a block. The excess flow toward neighboring blocks

after each iteration is not directly written to global memory;

they are temporary stacked on the block boundary. After

the block processing is over, these outward flows are syn-

chronously updated to the neighboring blocks.

Note that the flow and the height information from out-

side the block no longer needs to be fetched from the global

memory on each iteration, because they are assumed to re-

main constant. One side effect is that excess may flow to a

wrong direction due to the limited scope of local relabeling.

However, the advantage of reducing the data transaction be-

tween the shared memory and the global memory surpasses

such a disadvantage.

A strategy similar to our proposed method can be found

in [7]. They suggest a block discharge scheme, which iter-

ates until all excess is completely pushed out of a block.

The problem with this method is that intra-block global

relabeling is frequently performed, which is a very time-

consuming operation. Moreover, the height information

obtained from intra-block global relabeling is not accurate

enough, compared to the global relabeling on the entire

graph.

In the proposed scheme, on the other hand, a limitation

is set on the number of iterations that an intra-block push

and relabeling may perform. When this limitation has been

reached, the content within a block is flushed to the global

memory, and global relabeling is triggered. The reasoning

behind this strategy is that relabeling with only information

inside a block becomes gradually inaccurate after several

iterations, and eventually, global relabeling over the entire

graph becomes more efficient.

Experiment shows that our scheme over-performs the

block discharge strategy [7] by 1.60X, and the conventional

strategy with single iteration of push / relabel per global

memory fetch by 1.91X.

Note that ‘wave’ push scheme [12] [14] is employed in

this work. If no constraint is given, threads may compete

with other threads when updating the flow and excess value.

The wave push scheme avoids this conflict by pushing flows

in only one direction. When all threads complete, they are

synchronized and proceed to the next direction.

5. Low-Overhead Global Relabeling
Global relabeling may adopt a similar strategy as the

push & relabel processing technique explained in the pre-

vious section. But for global relabeling, the performance

can be further improved by increasing the GPU occupancy

ratio. To do so, we explain a new way to launch kernels

in this section. We define new terminology: the group of

pixels that has been fetched into the shared memory of SM

is called a pixel block, and SM’s threads that process the

pixels are called a thread block.

5.1. Conventional Method

The simplest way to launch thread blocks is to execute

every block. This strategy may work in the early stage of it-

eration when most of the blocks are active. However, when

blocks are sparsely active, this method suffers from poor

work-efficiency.

To solve this problem, Narayanan and Vineet proposed

a scheme to execute only active blocks [12]. After execut-

639639639645

Algorithm 1 : Low overhead global relabeling

1 : Launch global relabeling kernels for M thread blocks

2 : Add 1 pixel block (that has been initially assigned)

to each thread block’s FIFO list

3 : while FIFO list is not empty

4 : Read flow and height from global memory

5 : Generate new height information for all pixels

in the pixel block

6 : if height of neighbor blocks must be updated then
7 : if the neighbor block is included in another

thread block’s FIFO then
8 : Do nothing

9 : else
10 : Add that neighbor block to its own FIFO list

11 : end if
12 : end if
13 : Write new height to global memory

14 : end while
15 : Terminate current thread block and process next block

ing a single iteration, the list of active blocks is sent to the

host CPU. Then, CPU only launches kernel for those block

that are active. This method allows us to maintain work-

efficiency.

However, some problems still remain with this approach.

Since a list of active blocks are sent to CPU on every itera-

tion, memory transfer overhead increases as a result. An-

other problem is that it requires several kernel launches,

as illustrated in the top part of Figure 4. Frequent kernel

launch decreases the GPU occupancy, because there is sev-

eral microseconds delay between CPU kernel commit and

GPU kernel execution.

5.2. Proposed Method

To address problems with the conventional method, we

propose a low-overhead global relabeling algorithm which

involves only a single kernel launch. In contrast to the con-

ventional scheme where each processor holds a FIFO queue

(e.g. [3][4][7]), the key idea of the proposed algorithm is

that each thread block maintains a FIFO list of pixel blocks

to be processed. After processing a pixel block, the thread

block moves onto the next pixel block in its FIFO list. Un-

like [12], it becomes possible to revisit pixel block in a sin-

gle kernel launch, if another thread block attempts to update

the information on the already-processed pixel block.

The kernel code for proposed global relabeling is shown

in Algorithm 1. Kernel is launched only once (step 1). Ini-

tially, each thread block is assigned 1 pixel block, and this

is added to its FIFO list (step 2). After reading information

from the global memory (step 4), the kernel generates new

height information by finding the minimum distance to the

sink (step 5). Before the generation, the thread block stores

Figure 4. Kernel launch overhead reduction using proposed strat-

egy. The execution time is reduced since only 1 kernel launch is

needed for global relabeling.

a list of neighboring blocks’ adjacent pixels that previously

had no height information. If any pixels in current block ad-

jacent to them obtained new height information after current

block’s global relabeling, it means that blocks neighboring

the updated pixels should be updated (step 6). The thread

block refers to a list of pixel block occupancy flags to check

if that neighboring pixel block is included in another thread

block’s FIFO (step 7). If so, nothing is performed (step 8),

because that pixel block is going to be processed by another

thread block. If not, add it to its own FIFO list (step 10), so

that it can be visited later.

The advantage of thread block, rather than processor,

having FIFO list is that thread blocks are more flexible.

They can be processed by any processor. Also, it gives finer

granularity, making it easier to load-balance pixel blocks

among SM automatically. Another important advantage is

that only a single kernel launch is needed. As a result, the

kernel launch time overhead is reduced and the GPU occu-

pancy ratio can be increased, as shown in Figure 4.

Experimental result shows that the proposed kernel

launch scheme reduces the execution time of global rela-

beling part by 1.64X compared to the active block only

scheme [12]. Note that push & relabel part cannot adopt

similar single-kernel strategy, because global relabeling

must be performed periodically in between.

6. Experimental Result
6.1. Experimental Setup

The experiment is conducted on NVIDIA GTX580 GPU.

It has 16 SMs, each with 32 cores and 48 KB of shared

memory. The cores run at 1.5 GHz.

We used 7 stereo image pairs (Tsukuba, Venus,

Teddy, Cones, Cloth3, Rocks2, Aloe) from Middlebury

dataset [13]. Test parameter is optimized for each dataset,

as shown in Table 2. For matching cost, we use combi-

nation of SAD (sum of absolute difference), SSD (sum of

squared difference), or SGRAD (sum of absolute gradient

640640640646

Image
Size

λ
Matching Static

(pixels) Cost Cue

Tsukuba 384×288 4.0 SAD no

Venus 434×383 10.0 SSD no

Teddy 450×375 2.0 SAD + SGRAD yes

Cones 450×375 3.0 SAD + SGRAD yes

Cloth3 626×555 5.0 SAD + SGRAD yes

Rocks2 638×555 5.0 SAD + SGRAD yes

Aloe 641×555 5.0 SAD + SGRAD yes

Table 2. Parameter setting for each stereo matching dataset

difference) of the pixel intensity. For smoothness cost, we

use the truncated linear function to model the slanted sur-

face. In order to encourage similar labeling in low-textured

regions, larger smoothness cost is assigned on pixels with

similar intensity (called static cue [6]). Note that we use 4

cycles of α-expansion.

6.2. Performance Comparison

The measure the effect of the proposed techniques, we

constructed a baseline GPU implementation which is based

on the following conventional GPU techniques: It uses Kol-

mogorov’s graph formulation in Figure 1. Push/relabel are

performed once per global memory data fetch, and pro-

ceeds to the next push/relabel. Global relabeling is based on

Narayanan’s method that processes only active blocks [12].

The same GPU platform and the same parameter setting for

each test images are used for both the baseline GPU and the

proposed GPU implementation.

Figure 5. Cumulative execution time improvement (averaged over

Tsukuba, Venus, Teddy, Cones)

The execution speed improvement can be observed in

Figure 5. The speedup factor was obtained by averag-

ing the relative execution time over 7 images. The pro-

posed graph construction method increases the total exe-

cution speed by 2.37X, because it takes fewer iterations to

push excess to the sink. Repetitive block-based processing

brings 1.92X speedup, due to the reduced memory transfer.

Push + Relabel Global Relabel Total

Tsukuba
0.25s 0.11s 0.40s

3.1X 5.0X 3.3X

Venus
0.59s 0.35s 1.0s

2.8X 4.7X 3.3X

Teddy
1.2s 0.53s 2.0s

3.7X 6.7X 4.1X

Cones
1.0s 0.43s 1.7s

3.9X 8.0X 4.5X

Cloth3
2.9s 2.1s 5.7s

5.0X 10.9X 6.7X

Rocks2
2.6s 1.4s 4.7s

6.2X 19.2X 9.4X

Aloe
4.5s 2.6s 8.0s

3.9X 8.8X 5.1X

AVG 4.1X 9.0X 5.2X

Table 3. Detailed profiling result for the proposed GC method

(Time (sec), Speedup over baseline GPU implementation (X))

(a) (b) (c) (d) (e)

Figure 6. Test input and result images (a) left image (b) right image

(c) ground truth (d) baseline disparity map (e) final disparity map,

for Tsukuba, Venus, Teddy, and Cones

Low-overhead kernel launch scheme increases the speed of

global relabeling by 1.64X (overall 1.14X). The detailed

profiling result of the final proposed GC is shown in Table 3.

Note that the total execution time also includes various mi-

nor parts such as initialization or graph construction time,

in addition to push, relabel, and global relabeling. Over-

all, the comparison with the baseline implementation shows

that total of 5.2X speedup can be obtained by employing the

proposed GC algorithm.

The qualitative comparison on the accuracy of the dis-

parity map between the baseline and the proposed method

can be made in Figure 6. Quantitatively, it is measured by

counting the number of pixels that has more than 1 label

difference from the ground truth (called bad pixel %). This

641641641647

Image Baseline Proposed GC Difference

Tsukuba 1.84% 2.07% +0.23%

Venus 0.62% 0.73% +0.11%

Teddy 5.23% 5.31% +0.08%

Cones 3.22% 3.29% +0.07%

Cloth3 1.48% 1.45% -0.03%

Rocks2 2.40% 2.44% +0.04%

Aloe 5.25% 5.61% +0.36%

AVG – – +0.12%

Table 4. Comparison of bad pixel percentage

Vineet [14] Proposed GC

Time (sec) Time (sec) Speedup (X)

Tsukuba 0.95s 0.40s 2.4X

Venus 2.87s 1.0s 2.9X

Teddy 6.89s 2.0s 3.4X

AVG – – 2.9X

Table 5. Comparison with state-of-the-art GPU-based GC [14]

value is presented in Table 4. It shows an average degra-

dation of 0.12% in accuracy. Considering high speedup of

5.2X, the degradation can be considered as negligible.

6.3. Comparison with Related Work

A comparison with current state-of-the-art GPU-based

GC [14] is made in Table 5. It shows that the proposed

GC has better performance by an average of 2.9X on three

images. Note that a fair comparison is difficult due to 3 rea-

sons. First, the referenced work uses GTX280 (G80 archi-

tecture [1], 933 GFLOPS) whereas we use GTX580 (Fermi

architecture [1], 1581 GFLOPS). Second, it contains stereo

matching result for only smaller images (Tsukuba, Venus,

Teddy). Third, their work heavily utilizes graph reparame-

terization technique [2] [10] for speedup, at the cost of in-

creased global memory consumption.

7. Conclusion
We have presented a novel GPU-based GC algorithm

for stereo matching. A new graph construction method

was proposed to reduce the number of iterations. The pro-

posed method allows accurate initialization and label ex-

pansion reordering to further accelerate the convergence

speed. Next, a repetitive block-based push and relabel

strategy was employed to increase the number of compu-

tation per global to shared memory data transfer. Finally,

a new global relabeling algorithm that reduces the kernel

launch overhead was presented. Experiments on Middle-

bury dataset show that, compared to conventional GPU im-

plementation techniques, 5.2X speedup in execution time

can be obtained with 0.12% degradation in accuracy.

Acknowledgement
This research was supported by the Basic Science Re-

search Program through the National Research Foundation

of Korea funded by the Ministry of Education, Science and

Technology (2012R1A1A2009495).

References
[1] CUDA C programming guide. NVIDIA Corporation, 2012.

http://docs.nvidia.com/. 2, 7

[2] K. Alahari, P. Kohli, and P. Torr. Reduce, reuse & recycle:

Efficiently solving multi-label MRFs. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 1–8, June

2008. 3, 7

[3] R. Anderson and J. Setubal. On the parallel implementa-

tion of Goldberg‘s maximum flow algorithm. In Proc. 4th
Annual ACM Symp. Parallel Algorithms and Architectures,

pages 168–177, June 1992. 5

[4] D. Bader and V. Sachdeva. A cache-aware parallel imple-

mentation of the push-relabel network flow algorithm and

experimental evaluation of the gap relabeling heuristic. In

Proc. 18th ISCA Intl. Conf. Parallel and Distributed Com-
puting Systems, September 2005. 5

[5] Y. Boykov and V. Kolmogorov. An experimental compar-

ison of min-cut/max-flow algorithms for energy minimiza-

tion in vision. IEEE Trans. Pattern Anal. and Mach. Intell.,
26(9):1124–1137, September 2004. 2

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Trans. Pattern Anal.
and Mach. Intell., 23(11):1222–1239, November 2001. 2, 6

[7] A. Delong and Y. Boykov. A scalable graph-cut algorithm

for N-D grids. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pages 1–8, June 2008. 4, 5

[8] A. Goldberg and R. Tarjan. A new approach to the maximum

flow problem. In Proc. the 18th Annual ACM Symp. Theory
of Computing, pages 136–146, May 1986. 2

[9] O. Juan and Y. Boykov. Active graph cuts. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pages

1023–1029, June 2006. 3

[10] P. Kohli and P. Torr. Dynamic graph cuts for efficient infer-

ence in Markov random fields. IEEE Trans. Pattern Anal.
and Mach. Intell., 29(12):2079–2088, December 2007. 3, 7

[11] V. Kolmogorov. What energy functions can be minimized

via graph cuts? IEEE Trans. Pattern Anal. and Mach. Intell.,
26(2):147–159, February 2004. 2

[12] P. Narayanan, V. Vineet, and T. Stich. Fast graph cuts for

computer vision. GPU Computing Gems, pages 439–450,

2011. 1, 4, 5, 6

[13] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. Intl.
Journal of Computer Vision, 47(1–3):7–42, April 2004. 1, 3,

5

[14] V. Vineet and P. Narayanan. Solving multilabel MRFs us-

ing incremental α-expansion on the GPUs. Lecture Notes in
Computer Science, 5996 (ACCV 2009):633–643, September

2010. 1, 4, 7

642642642648

