This CVPR2013 Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Pedestrian Detection at Warp Speed: Exceeding 500 Detections per Second

Floris De Smedt*, Kristof Van Beeck*, Tinne Tuytelaars and Toon Goedemé
EAVISE, ESAT-PSI-VISICS, KU Leuven, Belgium

firstname.lastname@esat.kuleuven.be

Abstract

Object detection, and in particular pedestrian detection,
is a challenging task, due to the wide variety of appear-
ances. The application domain is extremely broad, ranging
from e.g. surveillance to automotive safety systems. Many
practical applications however often rely on stringent real-
time processing speeds combined with high accuracy needs.
These demands are contradictory, and usually a compro-
mise needs to be made. In this paper we present a pedes-
trian detection framework which is extremely fast (500 de-
tections per second) while still maintaining excellent accu-
racy results. We achieve these results by combining our
fast pedestrian detection algorithm (implemented as a hy-
brid CPU and GPU combination) with the exploitation of
scene constraints (using a warping window approach and
temporal information), which yields state-of-the-art detec-
tion accuracy. We present profound evaluation results of
our algorithm concerning both speed and accuracy on the
challenging Caltech dataset. Furthermore we present eval-
uation results on a very specific application showing the
full potential of this warping window approach: detection
of pedestrians in a truck’s blind spot zone.

1. Introduction

A pedestrian detector which is at the same time fast and
accurate would open up a wide variety of applications, in-
cluding robotics, surveillance and automotive safety. These
applications clearly benefit from the high robustness most
recent algorithms can achieve. Indeed, over the past few
years impressive accuracy improvements were obtained on
challenging benchmark datasets, containing a wide variety
of poses and appearances. Unfortunately, high accuracy of-
ten comes at the cost of high computation time, making
these algorithms unfeasible in real-life applications. We
overcome this problem via algorithmic optimization and via
the exploitation of scene constraints. We present an efficient
pipelined hybrid CPU/GPU pedestrian detector implemen-

* F. De Smedt and K. Van Beeck contributed equally to this paper.

622

tation. While being fast on its own, we further improve
the speed-up using both the warping window approach we
proposed in [18], and the integration of temporal (tracker-
based) information. This warping window approach allows
to limit the search space and thereby reduces both the false
positive rate and the detection time while allowing arbitrary
non-linear camera distortion and extreme viewing angles.
We benchmark our hybrid pedestrian detector implementa-
tion both with respect to accuracy as to speed on the Cal-
tech dataset [9, 10], and show that despite the speed-up, we
achieve state-of-the-art accuracy. Moreover, we quantita-
tively demonstrate how the warping window approach fur-
ther increases the accuracy on the Caltech dataset. Finally,
we propose experiments and results on a second dataset tar-
geting a demanding application: the detection of pedestri-
ans in the blind spot camera images of a truck. Using this
application we illustrate the full potential of this warping
window approach, and achieve excellent accuracy results
with very high processing speeds (500 detections per sec-
ond). Such speeds are useful for e.g. crowded scenes or
when implementing on embedded hardware with limited
processing power. This paper is structured as follows. We
first describe related work in section 2. In section 3 we de-
scribe our hybrid CPU/GPU pedestrian detector, while in
section 4 we discuss the warping window approach with
quantitative accuracy improvement results. We then com-
bine both approaches in section 5, and show how our speed-
up is realized. We conclude this work in section 6.

2. Related work

Excellent and detailed evaluation benchmarks of recent
pedestrian detectors can be found in the literature [9, 10,
11]. Here we briefly discuss only the most relevant ones.
Initially Dalal and Triggs [S] proposed the Histograms of
Oriented Gradients (HOG) pedestrian model for human de-
tection. To further improve the accuracy their idea was
extended by Felzenszwalb et al. to a part-based HOG
model [14]. Increasing the complexity of the model evi-
dently leads to higher computational complexity and hence
lower processing speeds. To overcome this burden the same
authors presented a cascaded version of their object detec-

tion scheme [13], in which pruning of false detections is
achieved early in the detection stage (much like proposed
by [19] in their work using Haar wavelets). These algo-
rithms employ a so-called sliding window approach: one
searches across all possible scales and locations in the im-
age. This is challenging when targeting real-time applica-
tions. To cope with this, several algorithmic optimisations
have been proposed. Lampert et al. [16] present a branch
and bound scheme to reduce calculation time. Dolldr et
al. propose their Fastest Pedestrian Detector in the West
(FPDW) [7] where intermediate feature responses are ap-
proximated from feature responses of nearby scales, elimi-
nating the need to construct a full feature pyramid. Based on
this approach, in [2], Benenson et al. propose work in which
they perform model rescaling instead of image rescaling
to speed-up detection. Their detector is based on [8] and
combined with their stixel world approximation [1], they
achieve fast pedestrian detection. Recently the authors pro-
posed their Roerei detector which achieves state-of-the-art
accuracy results [3]. We aim to develop a pedestrian detec-
tor solely on monocular information, and exploit scene con-
straints combined with a fast hybrid CPU/GPU implementa-
tion to improve both accuracy and calculation time. In [17]
Prisacariu and Reid propose a fast GPU implementation of
the standard HOG model, coined fastHOG, which is closely
related to our work. Since our work is based on the part-
based pedestrian detector from Felzenszwalb et al. [12], we
achieve much higher accuracy results. Even when using
no scene constraints, our pedestrian detector implementa-
tion is slightly faster. Concerning the use of scene con-
straints, Cho ef al. achieve real-time pedestrian detection
results on the Caltech dataset using standard ground-plane
assumptions [4]. However, our warping window approach
as proposed in [18] is more flexible as compared to this (as
illustrated in section 4), and our fully integrated implemen-
tation outperforms theirs with respect to processing speeds.

3. Hybrid Pedestrian Detector

Speed improvement can be obtained in two ways: either
optimize the execution or decrease the search space (or a
combination of both). In this section we discuss the first,
while in the next section (section 4) we target the latter. The
accuracy and speed results discussed in this section there-
fore are measured without scene constraints, thus applying
a full scale-space search. The object detection algorithm we
start from is based on the cascade latent SVM detector pro-
posed by Felzenszwalb et al. [14]. This detector achieves
state-of-the-art accuracy results. Their algorithm works as
follows. To be able to detect pedestrians at multiple scales, a
first step is the construction of a scale-space pyramid (which
is model independent). For each layer, feature responses are
computed resulting in a feature pyramid. These feature re-
sponses are based on the HOG features from [5]. A second

623

Figure 1. The proposed HOG model from [10]. Left: root filter.
Middle: HOGs of parts. Right: deformation costs for each part.

step consists of the actual pedestrian detection in this fea-
ture pyramid (a model evaluation step). This is done by
matching a pretrained HOG model (visualized in figure 1)
in each layer of the feature pyramid. The model consists of
a HOG root filter (fig. 1 left), representing the rough shape
of a pedestrian, and several parts representing the head and
limbs (fig. 1 middle). The position of these parts are latent
variables. A deformation cost (fig. 1 right) penalizes each
part based on its deviation from the optimal location, al-
lowing for a spring-like interaction with the root filter. The
score of the root model at a specific scale is combined with
the score for each part at twice the resolution, resulting in a
final detection score. Using this original part-based pedes-
trian detector implementation [12] as a baseline, we propose
two new implementations. In the first implementation we
ported the calculation of the feature pyramid to the GPU,
resulting in a significant speed-up. Our second implemen-
tation consists of a multi-threaded hybrid CPU/GPU imple-
mentation, achieving a speed-up of 12.7x over the origi-
nal implementation. In section 5 we then integrate this last
implementation with scene constraints and temporal infor-
mation, and propose our WSPD (Warp Speed Pedestrian
Detector), which achieves pedestrian detection at 500 de-
tections per second. For the remainder of this section we
discuss our first implementation (feature pyramid on GPU)
in subsection 3.1, the multi-threaded hybrid CPU/GPU im-
plementation in subsection 3.2, and give evaluation results
concerning both speed and accuracy in subsection 3.3.

3.1. GPU Feature pyramid implementation

The feature pyramid consists of multiple layers, each
containing the features of a rescaled version of the source
image. The publicly available implementation (referred fur-
ther as LatSVMV4 (original) - referring to the latent vari-
ables) does not suffice for real-time applications. Therefore
as a first step towards a GPU implementation we reimple-
mented the algorithm to C++. Since GPU hardware benefits
from the use of floats, our C++ reimplementation (further
referred to as WSPD-v0.1 (float)) uses float variables (as op-
possed to the original double implementation). One could
argue that this leads to a decrease in accuracy. We show

however, that this is not the case (see subsection 3.3 below).
Based on this C++ implementation we implemented the fea-
ture pyramid calculation on GPU using CUDA. In essence
CUDA is a C extension that allows the use of Nvidia GPU
hardware as an execution device, enabling faster execution
of algorithms that use data parallelism. In previous work we
implemented the feature pyramid in OpenCL [6], however
the new implementation proposed here is faster due to the
use of this hardware specific language. We further refer to
this GPU implementation as WSPD-v0.2 (GPU).

3.2. Multi-threaded hybrid implementation

Although the use of GPU hardware allows for a signif-
icant speed-up, it does not fully exploit the capabilities of
the hardware system, since the CPU is only active when
the GPU is idle and vice versa. To further speed-up the
algorithm, and to circumvent this problem, we propose an
implementation using a pipelined object detection scheme.
In particular, we calculate both the feature pyramid of a
frame (on GPU) while at the same time performing the
model evaluation step for each layer in the feature pyramid
from the previous frame (on CPU). This way the CPU
and GPU are both active as a hybrid system, allowing
an increased detection throughput. Besides running the
feature pyramid and model evaluation in parallel on CPU
and GPU, we can further increase the detection throughput
by matching the execution time of each step in the pipeline.
The feature pyramid e.g. is almost twice as fast as the
model evaluation step, so for each feature pyramid process
we run two model evaluation processes, leading to a higher
speed. An even faster detection throughput is achieved
when running multiple instances of the detection pipeline
in parallel. Figure 2 shows a schematic overview of our
implementation structure, which we further refer to as
WSPD-v0.3 (hybrid). This structure focusses on the use
of eight threads (one per block). As shown, we use two
detection pipelines in parallel. We will discuss each block
of the schematic overview in more detail below.

Preprocessing Here, all preprocessing (e.g. cropping,
rescaling, rotating and search space pruning) is performed.
The results are placed in the image queue for further
processing.

Feature Pyramid In this block the feature pyramid is
calculated. The images are gathered from the image queue,
while the feature pyramids are pushed into the pyramid
queues. Since the calculation of the feature pyramids is
executed on GPU, the data transfer to the GPU is also
included here. In the schematic overview of fig. 2, two
instances of the feature pyramid are displayed, indicating
that the feature pyramid of two frames is computed in
parallel. Due to the modular approach of our innovative

624

Preprocessing

Figure 2. A schematic overview of the hybrid detector.

hybrid detecting scheme the implementation is easily hard-
ware scalable. In our experiments each feature pyramid
instance ran on a seperate CUDA device (our GPU includes
two such devices). Although it is possible to run multiple
instances on the same CUDA device, this is evidently
limited by the GPU resources.

Model Evaluation For each calculated feature pyramid,
we need to evaluate the pretrained model on each layer in
the pyramid. Each feature pyramid feeds two model eval-
uation processes: this is needed since the feature pyramid
calculation is almost twice as fast as the model evaluation.
Since the feature pyramids are independent of the model to
be detected, each instance of the model evaluation block is
able to search for another model, thereby reducing calculat-
ing time if one aims to detect multiple object classes at once.

Output This final block gathers all the processed re-
sults and performs the post processing such as NMS (non-
maximum suppression), reordering the frames, displaying
detections and saving the frames.

3.3. Evaluation

We performed thorough experiments concerning both
speed and accuracy of our implementations. Note that, at
this point, all experiments are still performed without scene
constraints, which we introduce in section 4. The speed
comparison of our and publicly available implementations
is given in table 1. All speed measurements were obtained
on the same hardware (Intel Core i7 CPU 965 @ 3.20GHz
with 12GB RAM and one Nvidia GTX295 GPU). Our ex-
periments were performed on both the original image size
(640 x 480) as well as on an upscaled version (1280 x 960).

| 640 x 480 | 1280 x 960 | Speed-up

LatSVMV4 (orig.) 1.33 FPS 0.33 FPS 1x
WSPD-v0.1 (float) 1.6 FPS 0.37 FPS 1.12x
WSPD-v0.2 (GPU) 2.97 FPS 0.85 FPS 2.58 %
WSPD-v0.3 (hybrid) | 12.9 FPS 4.17 FPS 12.7x%
fastHOG 10.6 FPS 2.67 FPS

Table 1. Speed results of our warp speed pedestrian detectors com-
pared to the public implementation of the algorithm and fastHOG.
We upscaled the image (x2), needed to detect pedestrians with a
height around 50 pixels. No scene constraints are applied yet

This upscaling is needed if one wants to detect small pedes-
trians (around 50 pixels) since the HOG model is optimised
for pedestrians with a height around 100 pixels. These up-
scaled image versions are used for our benchmark. We com-
pared the relative speed-up we obtained to the original algo-
rithm and fastHOG [17], a publicly available fast implemen-
tation of the HOG algorithm [5]. As can be seen in the ta-
ble, our C++ reimplementation with floats is slightly faster
than the original implementation. With our implementa-
tion of the feature pyramid on GPU we achieve a speed-
up of 2.58x. While already faster, the overall speed-up
is limited since we only implemented the feature pyramid
on GPU. Our multi-threaded hybrid CPU/GPU implemen-
tation achieves a speed-up factor of 12.7x, thereby allow-
ing real-time processing of 640 x 480 images (12.9 FPS). As
mentioned in related work (section 2), the main motivation
for using more advanced object detection algorithms in real-
life applications is the increased accuracy. This however
imposes a constraint on the allowed accuracy loss for fast
implementations. Therefore we compared our reimplemen-
tations of the algorithm with existing algorithms on the pub-
licly available Caltech dataset [9]. All experiments are per-
formed on the challenging reasonable labeled pedestrians.
Our results are visualized in figure 3, where we display the
miss rate versus the false positives per image (FPPI). The

miss rate

— 68% HOG [5] *
= = = 65% FastHOG [18] *
64% LatSVMV2 [14]
59% LatSVMV4 [14]
= = = 58% WSPD-v0.1 (float)
57% FPDW [7]
e 57% WSPD—-v0.2 / WSPD-v0.3
= = = 56% ChnFtrs [8]
T ;

.30

.20 * -
107 10°
false positives per image

3 2

10 10

Figure 3. Comparison of existing detectors and our implementa-
tion. The results of HOG [5] and FPDW [7] are obtained from [10]

625

part-based detector (LatSVMV4 [14]) achieves excellent ac-
curacy results as compared to other state-of-the-art detec-
tors (e.g. FPDW [7], ChnFtrs [8]), which was our motiva-
tion to use this detector as a baseline. These part-based de-
tectors perform best on large-scale pedestrians [10]. How-
ever, detection accuracy loss on small pedestrians is mini-
mal. Concerning our implementations, our speed-up does
clearly not come at the cost of a performance drop.

4. Applying scene constraints (warping win-
dow approach)

As mentioned in section 3, besides a fast implemen-
tation, a speed improvement is achievable by decreasing
the search space. Traditional object detectors use a slid-
ing window paradigm, of which one of the bottlenecks is
the large search space since at each position in the image
every scale is evaluated. Often, ground plane assumptions
are used for this matter [4]. They allow for a reduction in
search space, while at the same time reducing the false posi-
tive rate. Such simple ground-plane assumptions have their
limitations though: they cannot cope with e.g. non-linear
camera distortions. Therefore, to speed-up detection we in-
tegrate our warping window approach that we introduced
in [18] with our hybrid pedestrian detector and integrate
temporal information to achieve higher processing speeds.
This warping window approach can handle more complex
scenarios, e.g. extreme camera viewpoints and wide-angle
lens distortions. In this section we discuss the warping win-
dow approach, and quantitatively show how we use it to
improve the accuracy on the Caltech dataset. In the next
section (section 5) we then describe this integration and
achieve extremely high detection speeds, even in the case
of non-trivial camera viewpoints. In section 5, we illustrate
this based on a challenging application: detecting pedestri-
ans in the blind spot zone of a truck. In figure 4 an example
input frame is shown from this dataset [18].

The key idea of the warping window approach is that,
for each image position x = [z,y], we model the trans-
formation caused by distortion locally. As can be seen in
this example input frame, the pedestrians appear rotated and
scaled. Assuming a flat ground-plane, their rotation ¢ and
scale s only depends on the position in the image. Thus, if
for each pixel position in the image the rotation and scale is
known, detection time can drastically decrease. Instead of
a full frame search, we can warp the region of interest and
thereby eliminate the need for an entire scale-space search.
Detecting pedestrians then consists of four steps: an extrac-
tion step (extract the ROI from the image), a warp step, run-
ning a detector on the warped image and finally retransform
the detections to the initial image. This is visualized in fig-
ure 4. In the warp step the pedestrians are transformed to
an upright position at a fixed height (140 pixels - as moti-
vated in our previous work [18]), thus in the detection step

rotation

scale

Use 2D LUF

o = / i
Retransform bounding box

One-scale
ped. det.

Figure 4. Illustration of the warping window approach [18].

a pedestrian detector is needed at only one specific scale,
which obviously is very fast. If modelled with a rotation
and scale, one can apply the warping window approach to
pedestrians ROIs (I) using I,,q,p = T'I where transforma-
tion matrix 7" equals:

scos) —ssinf 0
T = ssinff scosf 0 (D
0 0 1

Note that this warping window approach is much more
flexible as opposed to standard ground-plane assumptions.
This approach is easily generalizable to complex arbitrary
camera viewpoints, and situations where non-linear camera
distortion and extreme viewing angles occur (e.g. surveil-
lance cameras, wide-angle lenses and so on). A one-time
calibration step is needed in order to obtain the scale and
rotation value for each pixel position. These scale and ro-
tation values are obtained by fitting 2D functions through
manually labelled sparse sample points in the image dur-
ing a calibration step (see figure 5), and thus form 2D
look-up-functions (LUF). Let us now demonstrate how
we can benefit from the warping window approach. Since
no public datasets with large distortion are available, we

rot. = f(x,y)

2D LUF

| scale =f(x,y)

Calibration Images Extract rotation/scale

Figure 5. A one time calibration is needed, yielding the LUF for
both the rotation and scale [18]

626

miss rate

66% Prune (0.50))
s 57% WSPD-v0.3 (hybrid) — reference “
= = =53% Prune (3.00) -

50% Prune (1.30)

T

.30

T i
10 107"
false positives per image

107
Figure 6. Accuracy improvement achieved on the Caltech dataset
when using the warping window approach

first illustrate the gain in accuracy on the Caltech bench-
mark dataset. Note that here we use the warping window
as a post-processing step to show the potential accuracy
improvement, whereas the warping window approach nor-
mally is used as a pre-processing step to reduce the search
space. Due to the basic camera viewpoint there, the full po-
tential of the warping window is not yet exploited here. In
section 5 we discuss the application of the warping window
approach in a much more complex setting, and give quanti-
tative speed results as well. As a reference, we start from the
detection results of our multi-threaded hybrid pedestrian de-
tector from section 3 (WSPD-v(.3) on the Caltech dataset.
Here, due to the camera viewpoint no rotation is needed,
hence we only model the pedestrian scale at each image po-
sition. Since the camera is positioned in a forward-looking
manner, we assume that at each horizontal pixel line the
scale is constant, reducing the dimensionality of the func-
tion to one in this case. Based on the labelled Caltech train-
ing data from [10] (see figure 7a for an example frame),
we extract the height of each labelled pedestrian (normal-
ized w.r.t. 480 pixels, the image height) at each pixel po-
sition, and average those observations per horizontal pixel
line. Detections above the horizon are discarded. These dat-
apoints are visualized in figure 7(b). Next we fit a third or-
der polynomial function through these datapoints (solid red
line). The dotted red lines illustrate two times the standard
deviation (20) at each horizontal line. This transformation
model can then be used to warp the ROIs to a fixed height.
However, as noted above, here we use it to prune the results
to show the potential accuracy improvement. If the height
of a new detection is inconsistent from what is expected
at that particular position, the detection is discarded. As a
measure of inconsistency, we use the degree of deviation. If
we allow much deviation no or only slight improvements
are obtained since little pruning is applied, while on the
other hand limiting the possible deviation too much leads
to a significant drop in the recall rate. We empirically deter-

@
8

Vertical pixel position in the image

Pedestrian height vs position in the image (Caltech)
0

Deviation vs Recall (precision = 0.8)

Recall

0 02 . 0. 08
Relative pedestrian height

(a) Example Caltech frame with labeled
pedestrians

(b) Pedestrian height vs y-position

1

(¢) Influence of k-value on recall rate

Figure 7. The warping window approach applied to the Caltech dataset

mine the maximum allowed deviation (expressed as ko) and
evaluated the recall rate at a constant precision rate (80%).
These results are displayed in figure 7(c). Here one clearly
sees that the optimal deviation is found around 1.3¢, while
at higher values of k the recall rate converges to the recall
rate of the reference implementation (displayed as the dot-
ted blue line). Figure 6 gives the miss rate versus the FPPI
for both the original implementation along with three values
of the deviation; an optimum is reached at 1.30. Applying
the warping window approach thus leads to an accuracy im-
provement: at e.g. 0.1 FPPI, the miss rate decreases from
58% to 50%. In the next section we demonstrate how we
use this approach to also increase the detection speed.

5. Warp Speed Pedestrian Detector

In this section we now present the combination of the
previously discussed warping window approach (section 4)
and the multi-threaded hybrid CPU/GPU implementation
(section 3). As mentioned, this implementation achieves
12.9FPS without the use of scene constraints. Here we
demonstrate the integration of the warping window ap-
proach and propose our Warp Speed Pedestrian Detector
(WSPD) which achieves pedestrian detection at up to 500
detections per second, without loss in accuracy. We illus-
trate its potential on a challenging real-life problem: detect-
ing pedestrians in the blind spot zone of a truck.

5.1. Single ROI selection

In section 4 we described how the warping window ap-
proach is used to reduce the search space. At each pixel
location only one scale needs to be evaluated. To fur-
ther reduce the search space, we can use techniques that
limit the number of locations where a detection needs to
be performed, based on some detection probability mea-
sure. In a fixed scene, simple and efficient background
modelling techniques (e.g. background subtraction) can be
used. However, in moving scenes with a highly dynamical

627

background more complex techniques are necessary. One
such technique is pedestrian tracking. If we are able to
track the pedestrians throughout the scene, we can predict
the search location (called tracking-by-detection), thereby
reducing calculation time. Moreover we observe that in
most applications the position where pedestrians enter the
scene is predictable (e.g. doors). In the demonstrated blind
spot application (discussed below), the Kalman tracker [15]
has proven to be a robust technique for this purpose [18].
It predicts future positions based on detections in the past
combined with a specific motion model. Based on this pre-
diction, pedestrian ROIs are determined. For more detailed
information on this we refer to [18].

5.2. Blind spot application

In most real-life computer vision applications, due to
the specific position of the camera, distorted camera view-
points occur. Due to its flexiblity, the warping window ap-
proach can cope with these specific distortion. To show its
full potential we use an application with a challenging cam-
era viewpoint: detection of pedestrians in blind-spot camera
images. Because of the 115° wide-angle lens a specific dis-
tortion pattern occurs introducing non-linear camera distor-
tion (see figure 4 for an example frame). Since the camera
is mounted on a moving truck, we have to deal with a highly
dynamic background. The LUFs (as described in section 4)
are obtained by fitting 2D second order polynomial func-
tions through sparse datapoints obtained during a one-time
calibration step (fig. 5).

5.3. Pedestrian detection at Warp Speed

The crux of the matter is that we can use the warping
window approach in combination with a Kalman tracker,
and use the predicted search locations as input for our hy-
brid CPU/GPU pedestrian detector (section 3.2). This way
we are able to perform pedestrian detection at unprece-
dented high speeds. Since we reduced the search space
to a single scale and a single ROI, our detector only fo-

Detection speed
700 T T

600 -

500~

= = = FPS (frames per second) 100x54
= = = Hz (detections per second) 100x54
== FPS (frames per second) 140x75

m— Hz (detections per second) 140x75

5 10 15 2‘0
Number of pedestrians per image
Figure 8. Speed results of our Warp Speed Pedestrian Detector for
different ROI sizes.

25

cusses on image content with high probability of contain-
ing pedestrians at a fixed scale, thus being very fast. The
speed of our detector evidently depends on the size of the
ROI(s) we extract from the source image. This influence is
given in figure 8, where we give the speed of our detector
for two ROI sizes!. We display both the framerate (FPS)
and the number of pedestrian detections per second (Hz)
we can achieve with respect to the number of pedestrians
in the image. Initially with only one pedestrian in the im-
age we achieve 480 FPS, using the 140 pixels high ROI as
motivated in section 4. If there are more pedestrians per im-
age our pipeline is used more efficiently, thus the number
of detections per second increases. However, this evidently
leads to a decrease in the number of frames per second. At
e.g. 20 pedestrians per image we still achieve an impressive
framerate of 25 FPS.

6. Conclusion & Future Work

We have presented the combination a fast hybrid
CPU/GPU implementation and the exploitation of scene
constraints, resulting in our WSPD. Using our hybrid de-
tection algorithm while reducing the searching space allows
pedestrian detection at 500 detections per second. Experi-
ments concerning both accuracy and speed on the Caltech
dataset show that this speed-up does not lead to a decrease
in accuracy. We proposed a challenging real-life use-case
for our WSPD: detecting vulnerable road users in the blind
spot camera of trucks. In the future we plan to modify the
hybrid detector to allow more flexible hardware configura-
tions, since currently we depend on the presence of CUDA-
capable GPUs for the feature pyramid calculation and mul-
ticore CPUs for model evaluation. Furthermore, we seek
to develop a GPU implementation of the model evaluation
part, such that both feature pyramid and model evaluation
can be executed on both CPU and GPU, allowing the use of
our detector in an arbitrary manner on any combination of
CPUs and GPUs.

Both warping and detection times are taken into account here.

628

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

R. Benenson, M. Mathias, R. Timofte, and L. Van Gool. Fast
stixel computation for fast pedestrian detection. In Proc. of
ECCV, pages 11-20, 2012.

R. Benenson, M. Mathias, R. Timofte, and L. Van Gool.
Pedestrian detection at 100 frames per second. In Proc of.
CVPR, pages 2903-2910, 2012.

R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool.
Seeking the strongest rigid detector. In CVPR, 2013.

H. Cho, P. Rybski, A. Bar-Hillel, and W. Zhang. Real-time
pedestrian detection with deformable part models. In /EEE
Intelligent Vehicles Symposium, August 2012.

N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. of CVPR, volume 2, pages 886—
893, June 2005.

F. De Smedt, L. Struyf, S. Beckers, J. Vennekens, G. De
Samblanx, and T. Goedemé. Is the game worth the candle?
Evaluation of OpenCL for object detection algorithm opti-
mization. In Proc. of PECCS, 2012.

P. Dolldr, S. Belongie, and P. Perona. The fastest pedestrian
detector in the west. In Proc. of BMVC, 2010.

P. Dollér, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In Proc. of BMVC, 2009.

P. Dolldr, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: A benchmark. In Proc. of CVPR, June 2009.

P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: An evaluation of the state of the art. In IEEE
PAMI, 99, 2011.

M. Enzweiler and D. M. Gavrila. = Monocular pedes-
trian detection: Survey and experiments. [In IEEE PAMI,
31(12):2179-2195, Dec. 2009.

P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.

P. F. Felzenszwalb, R. B. Girshick, and D. Mcallester. Cas-
cade object detection with deformable part models. In Proc.
of CVPR, 2010.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. In IEEE PAMI, 32(9):1627-1645, 2010.

R. E. Kalman et al. A new approach to linear filtering
and prediction problems. In Journal of basic Engineering,
82(1):35-45, 1960.

C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond
sliding windows: Object localization by efficient subwindow
search. In Proc. of CVPR, pages 1-8, 2008.

V. Prisacariu and I. Reid. fastHOG - a real-time gpu imple-
mentation of HOG. Technical report, Department of Engi-
neering Science, Oxford University, 2009.

K. Van Beeck, T. Tuytelaars, and T. Goedemé. A warping
window approach to real-time vision-based pedestrian detec-
tion in a truck’s blind spot zone. In Proc. of ICINCO, 2012.

P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. of CVPR, volume 1,
pages 511-518, 2001.

