This CVPR2013 Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Stereo Vision Algorithms for FPGAs

Stefano Mattoccia
Department of Computer Science and Engineering, University of Bologna

stefano.mattoccia@unibo.it

Abstract

In recent years, with the advent of cheap and accurate
RGBD (RGB plus Depth) active sensors like the Microsoft
Kinect and devices based on time-of-flight (ToF) technol-
0gy, there has been increasing interest in 3D-based appli-
cations. At the same time, several effective improvements to
passive stereo vision algorithms have been proposed in the
literature. Despite these facts and the frequent deployment
of stereo vision for many research activities, it is often per-
ceived as a bulky and expensive technology not well suited
to consumer applications. In this paper, we will review a
subset of state-of-the-art stereo vision algorithms that have
the potential to fit a target computing architecture based on
low-cost field-programmable gate arrays (FPGAs), without
additional external devices (e.g., FIFOs, DDR memories,
etc.). Mapping these algorithms into a similar low-power,
low-cost architecture would make RGBD sensors based on
stereo vision suitable to a wider class of application scenar-
ios currently not addressed by this technology.

1. Introduction

In recent years, with the widespread diffusion of 3D sen-
sors, there has been increasing interest in consumer and
research applications based on dense range data. Some
of these sensors provide a depth map and an RGB (or
monochrome) image of the sensed scene. For this reason,
these devices are often referred to as RGBD (RGB plus
Depth) sensors. A well-known and representative example
of such devices is the Microsoft Kinect, a cheap and ac-
curate RGBD sensor based on structured light technology.
Since its presentation in 2010, it has been deployed in many
scientific and consumer applications. This technology re-
lies on a standard colour camera, an infrared projector, and
an infrared camera. The projected pattern is sensed by the
infrared camera and analysed according to a patented tech-
nology in order to infer depth. The Kinect enables the user
to obtain accurate depth maps and images at VGA resolu-
tion in indoor environments. Another interesting technol-
ogy that gained popularity in recent years is Time of Flight

636

(ToF) technology. In this case, the sensor emits a modu-
lated light; by measuring the time required to receive the
bounced light, it is possible to infer depth. This technol-
ogy also provides a monochrome image of the sensed scene
and hence belongs to the class of RGBD sensors. How-
ever, compared to the Kinect technology, ToF currently pro-
vides a depth map and images at a reduced resolution. In
both cases, especially for ToF sensors, there have been at-
tempts to improve their performance by means of sensor
fusion techniques (e.g. [2]) combining the depth map pro-
vided by these sensors with images acquired with registered
high-resolution cameras. The Kinect and ToF technologies
have specific strengths and limitations [13]; however, both
sensors are ill-suited to environments flooded with sunlight
(the Kinect in particular becomes useless in these circum-
stances).

Stereo vision is a well-known technology for inferring
depth and, excluding projection-based approaches, it is
a passive technology based on standard imaging sensors.
Stereo vision systems infer dense depth maps by identify-
ing corresponding projections of the same 3D point sensed
by two or more cameras in different positions. This chal-
lenging task, often referred to as the correspondence prob-
lem, can be tackled with many algorithms, and conse-
quently produces different outcomes in terms of accuracy
and computational complexity. This means that, in stereo
vision, the algorithm aimed at tackling the correspondence
problem plays a major role in the overall technology. Of
course, stereo vision systems intrinsically provide RGB or
monochrome images, and thus belong to the class of RGBD
sensors. Compared to active technologies, stereo vision
may provide unreliable results in regions where the cor-
respondence problem becomes ambiguous (e.g., in poorly
textured regions). However, compared to active technolo-
gies, it is suited to both indoor and outdoor environments,
as well as to close-range and long-range depth measure-
ments. Finally, being a passive technology, multiple stereo
vision sensors sensing the same area do not interfere with
each other. Nevertheless, despite its positive aspects and
widespread deployment in many research applications in
the last few decades, stereo vision is often perceived as a



bulky and expensive technology not suited to mainstream
or consumer applications. In this paper, we will try to ad-
dress this concern by outlining a simple computing architec-
ture based on a low-cost FPGA. We will also review stereo-
matching algorithms that have the potential to entirely fit
within this constrained architecture without any other ex-
ternal device (e.g., FIFOs, DDR memories, etc.), with the
exception of a high-speed communication controller. The
topic addressed in this paper is related to on-going research
activity aimed at developing a cheap, accurate, self-powered
RGBD sensor based on stereo vision technology, deploying
as a computing platform only the reconfigurable logic avail-
able in standard low-cost FPGAs.

2. Related Work

Dense stereo vision has been a widely researched topic
for decades [15] and, due to its highly demanding compu-
tational requirements, many different computing platforms
(e.g., CPUs, GPUs, DSPs, FPGAs, ASICs, etc.) have been
deployed to obtain depth maps in real time. However, some
of these computing architectures, such as those based on
standard CPUs or GPUs, are currently not well-suited to
consumer/embedded applications due to their high power
requirements, cost, and size. Computing architectures, such
as those based on high-end FPGAs, are often too expensive,
while solutions based on custom application-specific inte-
grated circuits (ASICs), despite the limitations regarding
their reconfigurability and time to market compared to FP-
GAs, represent a less-expensive solution in large volumes.
Finally, we point out that interesting low-power, low-cost,
reconfigurable architectures for real-time dense stereo vi-
sion are represented by those based on embedded CPUs
coupled with integrated DSPs, such as the OMAP platform,
as reported in [5]. A recent and detailed review of stereo vi-
sion algorithms for different computing architectures can be
found in [16]. In this paper, we will consider a simple com-
puting architecture based entirely on low-cost FPGAs that,
in our opinion, represent an optimal solution to obtaining
compact, low-cost, low-power 3D sensors based on stereo
vision.

2.1. Field Programmable Gate Arrays

FPGAs can be configured, and in most cases reconfig-
ured many times, by means of hardware description lan-
guages (HDLs) such as VHDL or Verilog. The internal
structure of an FPGA consists of a large amount of logic
cells containing a small amount of elementary logic blocks
(e.g., Flip-Flops, multiplexers, and lookup tables). Also dis-
tributed into the FPGA are small multi-port memories, often
referred to as block RAM, with fast access time. Moreover,
modern low-cost FPGAs often integrate configurable DSPs
for efficient arithmetic operations, clock managers, and
high-speed transceivers. All these components can be con-

637

figured by programmers/designers according to their spe-
cific requirements by using HDLs. For instance, consider-
ing a Xilinx Spartan 6 Model 45 FPGA, we can find roughly
44,000 logic cells, 116 dual-port block RAMs (18Kb each),
58 DSPs, 4 clock managers, and 358 configurable I/O pins.
It is worth noting that the reconfigurable logic of an FPGA
can be configured/programmed with HDLs at a higher level
of abstraction using a behavioural programming methodol-
ogy. However, mapping computer vision algorithms on the
reconfigurable logic is not as simple as mapping the same
algorithms on CPUs with traditional high-level languages.
Nevertheless, recent years have seen the appearance of ef-
fective high-level synthesis (HLS) tools that enable the au-
tomatic conversion of code written in a standard program-
ming language, such as C/C++ or Matlab, into HDLs. De-
spite this positive fact, because of the hardware resources
of the reconfigurable logic being constrained, a clear under-
standing of the overall FPGA architecture and its resources
is crucial to writing optimized code with HDLs, as well as
with HLS tools. Thanks to its complete reconfigurability, an
FPGA can be programmed to massively exploit parallelism,
enabling one to obtain the optimal performance/Watt.

2.2. Stereo vision

Stereo vision [15] is a technique aimed at inferring dense
or sparse depth maps from two or more views of the same
scene observed by two or more cameras. Although increas-
ing the number of cameras has the potential to improve ac-
curacy and reliability, the binocular setup (i.e., deploying
two imaging sensors) is frequently employed in practice.
Due to the many applications that can take advantage of
range data, this topic has received constant research interest
in the last few decades, and significant algorithmic improve-
ments have been proposed in recent years [15, 9]. However,
most dense stereo vision algorithms are computationally de-
manding, and parallel computing architectures are in most
cases mandatory if one is to obtain dense depth measure-
ments in real time. Not surprisingly, FPGAs have attracted
the interest of many researchers working in this field [16].

3. Target Computing Architecture

Our target computing architecture is depicted in Figure
1. It is based on a single FPGA and aims to obtain dense
depth maps at more than 30 fps with WVGA (752 x 480)
stereo pairs and with minimal power requirements (e.g.,
less than 2.5 Watt provided by a standard USB 2.0 port),
size, and costs. Observing the figure, we can see that the
two synchronized colour or monochrome imaging sensors
are connected, through two low-voltage differential signal-
ing (LVDS) channels for clocks and pixels, to the FPGA.
This choice, plus the additional LVDS link between the two
imaging sensors, enables us to put the sensors and the com-
puting platform in arbitrary positions, even at distances of



Stereo
Matching

Stereo
Rectification

Host

Video I

stream
USB or

and
Ehthernet

i Commands
FIFO &
Controller

USB/GigaE
Front-end

Post

Filtering

FPGA i

Figure 1. Basic architecture of the target computing platform. The
overall design contains the imaging sensors (e.g., at WVGA res-
olution), a low-cost FPGA (e.g., a Spartan 6 Model 45), and an
external high-speed communications controller (e.g., USB 2.0 or
3.0, GigaEthernet). The overall processing pipeline, including the
FIFO aimed at handling transfers to/from the high-speed commu-
nications controller and a supervisor soft core, is synthesized into
the reconfigurable logic of the FPGA.

meters, in order to deal with different setups suited to dif-
ferent application requirements.

Figure 1 also shows the main steps executed by a prac-
tical stereo vision system. Once the raw images provided
by the image sensors are sent to the FPGA, they are recti-
fied in order to compensate for lens distortions. Moreover,
the raw stereo pair is put in standard form (i.e., epipolar
lines are aligned to image scanlines). Both steps require
a warping for each image of the stereo pair, which can be
accomplished by knowing the intrinsic and extrinsic param-
eters of the stereo camera. Both parameters can be inferred
by means of an off-line calibration procedure. Once the rec-
tified images are in standard form, potential corresponding
points are identified by the stereo matching module. Un-
fortunately, since not all of the correspondences found by
the previous module are reliable, outlier detection is cru-
cial. This step typically consists of multiple tests aimed at
enforcing constraints to the inferred disparity maps (e.g.,
left-right consistency check, uniqueness constraint), the in-
put images, or the matching costs computed by the previous
matching engine. The filtered disparity map is then sent to a
FIFO connected to the external communications controller
by means of control logic synthesized in the FPGA. The
host computer, once it has received the disparity map, will
compute depth by triangulation according to the parame-
ters inferred with calibration. Although in this paper we
will focus our attention on the stereo matching module, the
overall goal consists of mapping all the blocks depicted in
Figure 1 into a low-cost FPGA, such as the Xilinx Spartan 6
Model 45 or better. A similar design would allow for small
cost, size, weight, power requirements, and reconfigurabil-
ity. Moreover, the upgrade of the whole project to newer
FPGAs (typically cheaper and with better performance in
terms of speed and power consumption than the previous

638

generation) is almost straightforward. Finally, we point out
that, with the availability of integrated solutions based on
reconfigurable logic, plus embedded processors such as the
Xilinx Zynq [17], a self-contained FPGA module for the
depth map engine would make feasible the design of a fully
embedded 3D camera with complete on-board processing.

4. Stereo vision algorithms suited to the con-
strained computing architecture

A computing architecture similar to that outlined in the
previous section poses significant constraints to the compu-
tational structure of the algorithms that can be implemented.
In fact, considering a representative case study of the Xil-
inx Spartan 6 FPGA family [17], we can see that the overall
block memory available is about 261 KB for the Model 45
(and about 600 KB for the Model 150). This means that,
ignoring other requirements, we would not even be able to
store a stereo pair at WVGA resolution (about 720 KB) in
the 150 device. This observation, plus the limited overall
reconfigurable logic available (about 43,000 and 147,000
logic cells for the Model 45 and 150, respectively), dictates
that stream processing is mandatory. This technique con-
sists of processing pixels as soon as they are available from
the imaging sensors, with minimal buffering requirements.
Of course, for the same reason, the resulting output can-
not be stored in the FPGA and must be sent to the commu-
nications controller as soon as it is made available by the
processing pipeline. We also point out that another relevant
constraint is concerned with the overall reconfigurable logic
available for processing (e.g., about 55,000 flip-flops for the
Model 45 and 185,000 flip-flops for the Model 150).

In the next sections, we will consider some relevant
stereo vision algorithms potentially suited to this con-
strained target architecture. For this purpose, we will adopt
the classification proposed in [15], where algorithms are
classified into two major categories, local approaches and
global approaches, making some further distinctions when
dealing with approaches not completely described by these
two broad categories.

4.1. Local approaches

Local approaches do not enforce an explicit smoothness
constraint on the target disparity map, and, typically, for
each disparity candidate, compute the matching cost by ag-
gregating neighbouring pixels (on rectangular patches re-
ferred to as support windows, as depicted in Figure 2).
Cost aggregation is often explicitly done by summing up
the matching costs within the support window, as depicted
in Figure 2. However, it is worth noting that some recent
approaches implicitly aggregate costs in constant time, in-
dependently of the support size [14, 3]. In local algorithms,
the best disparity for each point can be identified accord-
ing to a simple winner-takes-all (WTA) strategy finding the



X x-d X

Figure 2. Support windows, of size M x N, for cost aggregation
in local algorithms. In the reference image the support window is
centered on point x) while in the target image the support windows
are centered on points [X,X-dmaz].

candidate with the best aggregated cost. For the reasons
outlined previously, local algorithms are inherently paral-
lel and, hence, are ideal candidates for implementation in
FPGAs. Detailed reviews and evaluations of local stereo al-
gorithms can be found in [15, 9, 16], while an exhaustive
review and evaluation of cost functions suited to practical
stereo vision systems can be found in [8].

4.1.1 Fixed Window algorithm

In spite of their simplicity and intrinsic parallel nature of
local algorithms, even the mapping of the simplest one to
the constrained target architecture should be carefully op-
timized. This algorithm is often referred to as fixed win-
dow (FW) or block matching and simply sums up all the
matching costs within the support window. With a support
of size M x N and a disparity range of [0, d;yq4], the num-
ber of arithmetic operations is proportional to M x N x
(dmaz + 1). Considering that plausible values for these pa-
rameters could be M = 15, N = 15, and d,,,, = 63, the
number of arithmetic operations required might easily ex-
ceed the hardware resources available in the target recon-
figurable logic. However, the number of operations can be
significantly reduced by adopting well-known incremental
calculation techniques [11]. For example, Figure 3 shows
that, for a single image of the stereo pair, the overall cost
aggregation for the support depicted in the left side can be
obtained more efficiently by deploying a 1D optimization.
In fact, the aggregate costs required by the operations in the
left side of Figure 3 can be reduced by observing that the
overall cost for the central point in red can be obtained by
updating the overall cost computed in the previous position
along the scanline, adding the aggregated costs in green,
and subtracting the aggregated costs in blue. In deploying
this 1D optimization strategy, the number of operations is
reduced by a factor of M. Nevertheless, a further reduction
can be obtained by deploying a 2D incremental scheme that
stores intermediate results for each column. In this case, the

639

_l

Figure 3. An incremental 1D technique aimed at reducing the num-
ber of basic operations for cost aggregation in FW (full-cost com-
putation, left, and 1D optimization, right).

number of operations per window is constant, though at the
expense of the memory footprint.

4.2. Algorithms based on adapting weights

Although the FW approach is widely used in practical
applications, it is clearly outperformed by more recent ap-
proaches based on cost aggregation techniques that aggre-
gate costs according to weights assigned by examining the
image content [19, 10, 12, 9]. In these approaches, the over-
all score is given by a weighted sum of the costs within each
support window. The key idea behind this strategy consists
of weighting each cost according to its relevance with re-
spect to the point under examination (i.e., the central points
of the supports).

Many methodologies to assign weights have been pro-
posed in the literature, although one common rationale is
that inspired by bilateral filtering [19]. That is, points with
similar intensity with respect to the central point should be
more influential in the weighted sum. Moreover, points
closer to the central point should also be more relevant.
This strategy is similar to the weight computation deployed
by bilateral filtering and weights are often computed within
the support window of reference and target images (this
strategy is often referred to as joint or symmetric). A first
optimization [9, 12] consists of asymmetrically computing
weights, examining only the image points belonging to the
reference image. Although this strategy significantly re-
duces weight computation by a factor of d,, .., the number
of operations required for cost aggregation is always pro-
portional to M X N X (d;,q, + 1) and may exceed the re-
sources available in the target FPGA. However, simplified
yet effective strategies based on the computation of weights
and/or costs and/or overall weighted costs only in sampled
points may help to further reduce the number of elemen-
tary operations per point, maintaining high accuracy. These
approaches also exploit massively incremental calculation
schemes for cost computation, similar to those outlined for
FW. An approach that efficiently computes weights, on a
sparse regular grid, and aggregated costs on a block basis,
by means of [11], is [10]. In [12], further optimizations have
been proposed, including the pre-selection of potential can-
didate disparities and asymmetric weight computations. It
is worth noting that local algorithms were recently proposed



[14, 3] that filter matching costs according to the guided fil-
tering technique [6], implicitly performing a weighted cost
aggregation in constant time. Such approaches massively
exploit incremental calculation techniques [11] potentially
suited to the constrained FPGA architecture thanks to the
reduced (and constant) number of operations required with
respect to explicit cost aggregation approaches inspired by
bilateral filtering. Despite these positive facts, the results
provided by these constant time algorithms are compara-
ble to those based on explicit cost aggregation and, hence,
these algorithms are potentially suited to implementation in
the outlined target platform.

4.3. Algorithms based on unconstrained supports

An interesting local approach was proposed in [1]. This
technique, by performing multiple 1D cost aggregations
constrained by an information permeability term (see [1]
for details), efficiently enables us to adaptively aggregate
costs within unconstrained 2D support windows. The infor-
mation permeability term weighs and aggregates the match-
ing cost according to the intensity differences between adja-
cent points. Initially this aggregation is independently per-
formed along horizontal scanlines (from left to right and
right to left). Then, a similar approach is applied along ver-
tical directions (from top to bottom and bottom to top) to
the summed aggregated matching cost computed along hor-
izontal paths. Although this strategy requires us to store
the entire image and matching costs, a simplification of the
original approach restricted to subset scanlines (e.g., left-
right, rightleft, and topbottom) could be feasible for the con-
strained target computing architecture.

Finally, a different and effective algorithm that, similarly
to the previous method, does not explicitly define a fixed
support window was proposed in [18]. In this approach, the
matching costs are aggregated using as weights the mini-
mum intensity distance between any two points in the ref-
erence image. These weights are stored in a tree structure
and, to this aim, a minimum spanning tree (MST) is created
containing a number of nodes equal to the number of image
points. This enables us to very efficiently and in constant
time obtain for each point the aggregated weighted cost
computed on the whole image. Nevertheless, in its orig-
inal formulation, this approach, due to the memory foot-
print required to store the MST, seems inappropriate to a
target computing architecture without being provided exter-
nal memory devices, such as DDR memory.

4.4. Semi global approaches

Although global algorithms [15] that enforce disparity
constraints on the whole image by determining the dispar-
ity assignment that minimizes global energy functions often
outperform other approaches, their iterative computational
structures have high memory footprint. Therefore, they do

640

not seem to be suited to the outlined constrained target ar-
chitecture.

Nevertheless, a subclass of these algorithms that enforce
disparity constraints on 1D domains by means of dynamic
programming or scanline optimization (SO) represents a vi-
able and effective alternative to local approaches for the tar-
get computing architecture. In particular, the semi-global
matching algorithm [7] computes multiple energy terms by
means of the SO technique, independently enforcing 1D
smoothness constraints along different paths (typically 8 or
16). These energy terms are then summed up and the best
disparity is determined by means of a WTA strategy. SGM
is very effective and is deployed in many practical applica-
tions. However, in its original formulation, due to its high
memory footprint, it is not suited to a computing architec-
ture without a large amount of external memory. Neverthe-
less, the SGM algorithm becomes suitable in deploying a
subset of the original paths (e.g., only four paths) with ac-
ceptable performance degradation for our target platform.

5. Experimental results

In this section, we report preliminary experimental re-
sults concerned with the implementation of three stereo vi-
sion algorithms - belonging to the three classes defined in
the previous section - in the outlined computing architecture
made of a single FPGA without additional external devices,
with the exception of the high-speed communications con-
troller as depicted in Figure 1. Each of these algorithms, as
well as all of the other blocks depicted in the figure, was
mapped on a Spartan 6 Model 45 FPGA and delivers depth
maps at more than 30 fps when processing stereo pairs at
WVGA resolution. Specifically, the algorithms currently
implemented in the target FPGA are: FW, a modification
of [1] using only two paths and a modification of [7] using
four paths. Each implementation also includes image rec-
tification, a pre-filtering step based on the Sobel filter, and
a post-processing step aimed at filtering outliers by detect-
ing uniform regions as well as by detecting violations of the
uniqueness constraint.

For evaluation purposes we provide in Figure 4 exper-
imental results concerned with the three implemented al-
gorithms processing frame 66 of the KITTI dataset [4].
Observing the figure, where in the disparity maps warmer
colours encode points close to the camera and colder
colours farther points, we can see that all three algorithms
enable us to obtain dense and fairly accurate disparity maps
of this challenging stereo pair. Observing the trees in the
right side of the reference frame, we can notice that the
SGM algorithms seems less noisy compared to the local al-
gorithms. In the same figure we can also notice occlusions
and uniform regions (e.g. shadows) detected by the post-
filtering modules.



Figure 4. Preliminary experimental results for three algorithms im-
plemented in the target computing architecture (Spartan 6 Model
45). Results are concerned with frame 66 of the KITTI dataset
[4], using a simple Sobel filter as a pre-filtering step. From top to
bottom: rectified reference image, disparity map computed by the
FW implementation, disparity map computed by a modified ver-
sion of the [1] algorithm using only two paths, and disparity maps
computed by a modified version of the SGM [7] algorithm using
four paths.

6. Conclusions

In this paper, we have reviewed stereo vision algorithms
suited to a simple computing architecture made of a single
low-cost FPGA without additional external devices. These
stereo vision algorithms provide accurate depth maps in real
time at a WVGA resolution enabling us to to obtain a low-
power, low-cost RGBD stereo vision sensor self-contained
in an FPGA. Future work is aimed at mapping algorithms
for feature detection and description as well as at processing
images at higher resolution deploying the same computing
platform outlined in this paper.

Acknowledgments

I’d like to thank Ilario Marchio, Marco Casadio, Stefano
Bruciati, Michael Cavina, Simone Calisesi and Marco De-
stro for the experimental results reported in this paper.

641

References

[1] C. Cigla and A. A. Alatan. Efficient edge-preserving stereo
matching. In ICCV 2001 Workshops, pages 696—-699, 2011.
C. Dal Mutto, P. Zanuttigh, S. Mattoccia, and G. Cortelazzo.
Locally consistent tof and stereo data fusion. In 2nd Work-
shop on Consumer Depth Cameras for Computer Vision,
ECCV’12, pages 598-607, 2012.

L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza.
Linear stereo matching. In ICCV 2011, pages 1708-1715,
2011.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In CVPR
2012, Providence, USA, June 2012.

S. Goldberg and L. Matthies. Stereo and imu assisted visual
odometry on an omap3530 for small robots. In ECVW 2011,
pages 169-176, 2011.

K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV
2010, pages 1-14, 2010.

H. Hirschmiiller. Stereo processing by semiglobal matching
and mutual information. [EEE Trans. Pattern Anal. Mach.
Intell., 30(2):328-341, 2008.

H. Hirschmiiller and D. Scharstein. Evaluation of stereo
matching costs on images with radiometric differences.
IEEE Trans. Pattern Anal. Mach. Intell., 31(9):1582-1599,
20009.

A. Hosni, M. Bleyer, and M. Gelautz. Secrets of adap-
tive support weight techniques for local stereo matching.
Computer Vision and Image Understanding, 117(6):620—
632, 2013.

S. Mattoccia, S. Giardino, and A. Gambini. Accurate and ef-
ficient cost aggregation strategy for stereo correspondence
based on approximated joint bilateral filtering. In ACCV
2009, pages 23-27, 2009.

M. Mc Donnel. Box-filtering techniques. Computer Graph-
ics and Image Processing, 17:65-70, 1981.

D. Min, J. Lu, and M. N. Do. A revisit to cost aggregation
in stereo matching: How far can we reduce its computational
redundancy? In ICCV 2011, pages 1567-1574, 2011.

C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo. Time-of-
Flight Cameras and Microsoft Kinect(TM). Springer Pub-
lishing Company, Incorporated, 2012.

C. Rhemann, A. Hosni, M. Bleyer, C., and M. Gelautz. Fast
cost-volume filtering for visual correspondence and beyond.
In CVPR 2011, pages 3017-3024, 2011.

R. Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag New York, Inc., New York, NY, USA, 2010.
B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald. Re-
view of stereo vision algorithms and their suitability for
resource-limited systems. Journal of Real-Time Image Pro-
cessing, 2013.

Xilinx. www.xilinx.com. www.xilinx.com.

Q. Yang. A non-local cost aggregation method for stereo
matching. In CVPR 2012, pages 1402-1409, 2012.

K. Yoon and 1. Kweon. Adaptive support-weight approach
for correspondence search. IEEE Trans. PAMI, 28(4):650—
656, 2006.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]



