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Abstract

Lane feature extraction is one of the key computational
steps in lane analysis systems. In this paper, we propose
a lane feature extraction method, which enables different
configurations of embedded solutions that address both ac-
curacy and embedded systems’ constraints. The proposed
lane feature extraction process is evaluated in detail using
real world lane data, to explore its effectiveness for embed-
ded realization and adaptability to varying contextual in-
formation like lane types and environmental conditions.

1. Role of Lane Analysis in IDAS

Intelligent driver assistance systems (IDAS) are increas-

ingly becoming a part of modern automobiles. Reliable and

trustworthy driver assistance systems require accurate and

efficient means for capturing states of vehicle surroundings,

vehicle dynamics as well as state of the driver in a holistic

manner [12].

Among the different modules for active driver safety

framework, lane analysis using monocular cameras con-

tributes to its efficiency in multiple ways. Firstly, lane anal-

ysis, i.e. lane estimation and tracking, aids in localizing

the ego-vehicle motion, which is the one of the very first

and primary steps in most IDAS like lane departure warn-

ing (LDW), lane change assistance etc. [12, 7]. Next, lane

analysis is also shown to aid other vehicle surround analysis

modules. For example in [10] lanes are used to detect vehi-

cles more robustly because vehicles are assumed to be local-

ized to their ego lanes. Similarly lane detection is shown to

play a significant role in predicting driver intentions before

lane changes occur [12, 7] etc.

There are a number of computer-vision-based lane anal-

ysis methods reported in literature as shown in recent works

[6, 2, 4, 3, 1]. Most of these works address the robustness of

the vision algorithms in different road scenarios. However,

as pointed by Stein in [11] titled, “The challenge of putting

vision algorithms into a car”, there is a need to explore lane

analysis approaches for embedded realization. Attempts

have been made to realize embedded solutions for lane esti-

mation and tracking [9, 5] etc. but as indicated in [5], most

of them have been architectural translations of some parts
of existing lane detection algorithms. In this paper, we pro-

pose a lane feature extraction method that addresses some

of these issues related to embedded realization.

2. Lane Analysis & Embedded Vision

Different variants of lane analysis techniques have been

proposed in literature such as [6, 2, 3] etc. A detailed survey

of lane analysis methods is presented in [6] and [1]. An ef-

fective lane analysis method [6, 1] comprises of three main

steps: (1) lane feature extraction, (2) outlier removal or post

processing, and (3) lane tracking. Pixel level filtering op-

erations like steerable filters etc. are applied on the entire

image or regions of interest (usually the lower half of the

input image) to extract lane features. A further post pro-

cessing and outlier removal is performed using techniques

like RANSAC [2], Hough transform [8] etc. in order to im-

prove the robustness. Inverse perspective mapping (IPM)

of the input image is also performed to transform the input

image into world coordinate system (WCS) [6]. In addition,

lane models and vehicle dynamics from CAN data are used

to track lanes across time using Kalman filtering etc.

Considering that IDAS are implemented on battery pow-

ered embedded platforms inside a car, attempts have been

made to implement lane detection systems on embedded

platforms in [9, 5] etc. However, as indicated previously,

most of these are partial systems with the exception of the

full system implemented in [5]. For example, in [9] lane de-

tection is implemented using steerable filters on an FPGA

platform. However, this is only the lane feature extrac-

tion module of a comprehensive and robust lane analysis

method called VioLET in [6]. One of the very few com-

plete lane analysis systems is reported in [5], which in-

cludes a pipelined architecture for lane feature extraction,
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lane model fitting and tracking, and implemented on an

FPGA platform using DSP48 cores of Spartan FPGAs.

In [11], different kinds of embedded constraints are elab-

orated that decide the feasibility of employing a computer

vision task in a car, which is an excellent example of a com-

plex embedded system. These constraints bring together

the requirements from two different disciplines - computer

vision and embedded engineering. In other words, robust-

ness is the key performance index for a computer vision al-

gorithm but real-time operation, limited hardware resource

utilization, energy efficiency are the key metrics for embed-

ded realization. With the two together in active driver safety

framework, the reliability and dependability of computer vi-

sion algorithms that run on resource constrained computing

platforms is another challenge that needs to be satisfied.

3. Feature Extraction Method for Context-
aware Lane Analysis

Lane feature extraction is one of the key steps in real-

time lane analysis, which includes both lane estimation and

tracking. The robustness of the entire lane analysis system

depends directly on reliable lane features that need to be ex-

tracted from the road scene. This also implies that there is

a direct relationship between the efficiency of lane feature

extraction process and the robustness of the system. Adding

more computer vision algorithms for lane feature extraction

in order to improve robustness can directly impact the effi-

ciency of the system. Also, the robustness, and hence the

efficiency, of this feature extraction step is dependent on

vehicle surround conditions like road types, weather condi-

tions like fog, wet roads etc., environmental changes in road

scene like shadows, road surface etc., and the availability of

other data sources like road maps etc. These factors - ap-

plication requirements (eg. safety critical systems demand

higher robustness), environmental and weather conditions,

road information, lane types etc. constitute the context in

which lane analysis is to be performed. Therefore, this con-

text plays an important role in the robustness and efficiency

of the lane feature extraction step. A detailed exploration of

the lane feature extraction step that can cater to such con-

textual information is worthy of further study.

We will now elaborate the proposed lane feature extrac-

tion method that enables such a study and exploration. The

proposed method will then be studied in detail to examine

its robustness and its relationship with the different embed-

ded systems’ constraints. In the proposed method, an in-

put image I is first transformed into WCS image IW using

IPM. In the IPM image, we select nB scan bands that are

sampled at predetermined coordinates in IW in the direc-

tion of the road. The lane features are extracted from these

scan bands instead of scanning the entire image. In order

to find the lane features, each scan band Bi is filtered using

a 5 × 5 steerable filter kernel Hπ corresponding to 180◦,

which highlights the intensity variations in the horizontal x
direction of the image, i.e. FBi

= Bi ⊗ Hπ . Referring to

Fig. 1, we have nB = 2 and after applying the steerable

filter on the top band, we get the FBi
as the filtered output.

The lane edges form pairs of negative and positive filtering

outputs, i.e. the the dark to light transition edge will give

negative convolution outputs and vice versa for the light to

dark transition edge. Two thresholds, a postive T+ and a

negative T− threshold, are applied on the filtered output as

shown Fig. 1 resulting in the binary maps E+ and E− re-

spectively.

Figure 1. Generating steerable filter output from bands.

It can be seen that E+ and E− have non-lane features

also. We now propose shift and match technique to extract

lane features and eliminate non-lane features from each

band. In order to do this, we compute the horizontal pro-

jection vectors p+ and p− for E+ and E− as shown in Fig.

2. Peaks are formed in these projection vectors where there

are clusters of pixels in E+ and E−. Since the dark→light

and light→dark transitions in a lane marking are separated

by δ pixels in the IPM image IW , the peaks corresponding

to the lane edges in p+ and p− are also separated by a small

δ. In order to capture these pairs of transitions of lanes,

p+ is shifted by δ places to the left and multiplied with p−
resulting in the vector KBi

for scan band Bi, i.e.,

K = (p+ << δ)� p− (1)

where � represents point-wise multiplication. Fig. 2 shows

the result of the shift and match operation performed on p+

and p− for the upper band selected in Fig. 1. It can be seen

that we get peaks in KBi in Fig. 2 at the same locations as

the left edge of each lane marking in the upper band in Fig.

1. The locations of the peaks in KBi
for each scan band

Bi are then used along with the road model to eliminate

outliers.

In this paper, for the sake of illustration and simplicity,

we limit the discussion to a simple straight road model in the

IPM domain, i.e. we assume the road is straight (deviated

only by a few pixels). Considering that input images are cal-

ibrated with WCS in IPM image, the lane marking positions
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Figure 2. Illustrating shift and match operation for band Bi

can be predicted in a deterministic manner. Let us take the

case of ego-lane. After calibration, if xL and xR correspond

to the lane positions of the left and right lane markings of

the ego-lane, the lane markings are expected to be in the

vicinity of these lane positions. The peaks positions in KBi

from each scan band are mapped to the predicted lane mark-

ings xL and xR. This mapping will eliminate any outliers

that may be picked during the shift and match operation.

The lane estimation output is shown in Fig. 2.

In order to cater for higher curvatures of the lanes, lane

models like clothoid model can be also be used on the peak

positions obtained in KBi to estimate curved lanes and also

eliminate the outliers. Furthermore, lane tracking using

Kalman filters using vehicle dynamics like yaw rate and

steering angle information [6] increases the robustness of

outlier removal tremendously.

Fig. 3(a) shows the overall lane analysis method using

the proposed lane feature extraction method. Fig. 3(b) & (c)

show two possible design options enabled by the proposed

scan band based lane feature extraction. The filtering opera-

tion and shift-match operation that are applied on each scan

band can be ported as a processing element (PE). A parallel

architecture with each scan band being processed by one PE

gives a parallel design option as shown in Fig. 3(b).

The second option shown in Fig. 3(c) is a pipelined op-

tion, which can offer a wide variety of design implemen-

tations. If one PE is used, we get a serial implementa-

tion, where each band is processed serially. The number of

pipeline stages can be increased depending on the number

of PEs that are used. This pipelined design option can also

be used to control/predict the lane feature positions in each

subsequent PE. In other words, if PE0 detects lane features

at specific positions, this information can be relayed to the

PE1 as positions around which lane features are expected.

Vehicle dynamics and road model information can further

aid in the overall robustness and efficiency of this imple-

mentation.

Figure 3. Design options possible for the lane analysis method:

(a) Lane analysis using the proposed scan-band based lane feature

extraction method, (b) Parallel architecture with each PE catering

to each scan band and extracting from all scan bands in parallel,

(c) Pipelined architecture with each PE also acting as a controller

to predict positions in the next PE.

4. Experimental Studies
In this section, we present a detailed study of the pro-

posed lane feature extraction method to address robustness

and the constraints posed by embedded platforms [11]. We

present the possible scenarios and tradeoffs between robust-

ness and metrics for embedded realization, that are possible

using the proposed technique. We also present the different

configurations that can be explored for different conditions

and user requirements. As indicated previously, lane track-

ing is not considered in the scope of evaluations and is con-

sidered for future work. Therefore, for the study presented

in this paper, lanes are assumed to be detected if the lanes

are present in the ground truth and the proposed technique

is able to determine the lane features in “correct” positions

in the frame. The proposed technique is evaluated using the

test video datasets obtained by LISA-Q testbed [6]. The re-

sults are presented for five different test image sequences

that are listed in Table 1, each dataset having a minimum

of 250 image frames that are captured at 10-15 frames a

second.

Firstly, Fig. 4 shows some sample images with lanes
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Table 1. Dataset description

Set 1 Freeway Set 2 Freeway
lanes with

vehicles

Set 3 Freeway Set 4 Freeway
concrete circular
surface reflectors

Set 5 Urban
road
with

shadows

that are extracted from complex road scenes by applying the

proposed lane feature extraction method on input images

from the datasets listed in Table 1. It can be seen that the

proposed algorithm is able to extract lanes in varying lane

conditions like cracks (Fig. 4(a)-(d)), presence of vehicles

(Fig. 4(e)), presence of strong shadows (Fig. 4(e)-(h)). The

proposed method is also able to extract lanes with circular

reflectors as shown in Fig. 4(f)&(g).

Figure 4. Sample results of the proposed lane analysis method

showing lane detection is the complex road scenes.

Fig. 5 shows detection accuracy results of the lanes in

datasets 1, 2 and 3, in which we are evaluating the detec-

tion of dashed lane markings (i.e. no circular reflectors or

Figure 5. Detection rate versus number of scan bands for scan band

width = 10 and 5.

solid lane boundaries). The effect of changing the num-

ber of scan bands and the scan band width on detection ac-

curacy is shown in Fig. 5. It is evident that reducing the

number of scan bands will reduce the detection accuracy of

the lane features because depending on the position of the

lane marker and the speed of the vehicle, the scan band at

a particular coordinate may fail to detect the lane marking

(which we consider as failed detection). Therefore, having

more scan bands increases the detection rate as seen in Fig.

5 for both cases of the scan band width, i.e. 10 and 5 pixels.

The detection accuracy with 8 scan bands is over 90% in

all test datasets. This is an important observation because

this implies that for the IPM images of size 360× 500, pro-

cessing just 8 scan lines with 10 pixels each is sufficient to

get a detection rate of 95%, instead of processing the entire

360 × 500 sized image (which is usually the case in most

conventional methods). This figure also plots the detection

accuracy for varying scan band width, i.e. wB = 10 and

5 in Fig. 5. A higher scan width captures more informa-

tion, implying better detection rate. Therefore, it is expected

that bands with width of 5 pixels have lesser detection rate.

However, it is noteworthy that as the scan lines increase to

8, the detection rate is nearing 90-95% in both the cases of

scan band width. The implication of this on computation

cost will be discussed later.

It can also be seen that for a band width of 10 pixels, the

difference in accuracy between nB = 8 and 4 is less than

20% in each dataset. Therefore, one can decide to go for

4 scan bands instead of 8, trading off accuracy by less than

20% for half the number of processors.

Let us now consider the main operations involved in

the proposed method. Each k × k filtering operation in-

volves k2 multiplications, k2 − 1 additions and 1 compari-

son. Assuming all operations are of equal complexity (sim-

plified model), the total number operations in filtering nB

scan bands of width wB each and length Nw is equal to

2nBwBNwk
2. The next step involves horizontal projec-

tions in each band, which is wBNwnB addition operations.

The shift and add operation involves Nw multiplications
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and comparisons per band resulting in a total of 2NwnB

operations. Therefore, the total number of operations for

lane feature extraction in the proposed method is given by

Nprop = 2nBwBNw(k
2 + 1) (2)

This is a simplified model but it is sufficient to evaluate

qualitatively the effect of scan bands on the overall com-

putation cost efficiency. Fig. 6 shows a scatter plot between

number of operations Nprop and the detection rate for dif-

ferent possible number of scan bands and scan band widths.

The top left corner in the graph, i.e. high accuracy but less

number of operations, is the ideal place to be in and we can

see in Fig. 6 that using 8 scan bands of width wB = 5
gives similar detection rate as 8 bands of wB = 10 but at

50% lesser number of operations. Also, when compared

to conventional methods wherein the entire image is pro-

cessed for filtering alone, the proposed method gives orders

of magnitude savings in the number of operations. Other

constraints for embedded realization like total computation

cycles, latency, energy cost, total memory accesses etc. are

also directly related to the number of operations by different

factors.

Figure 6. Number of operations versus detection rate for different

scan band widths in Set 1 and Set 2.

The effectiveness of the proposed technique to detect cir-

cular reflectors using the proposed scan band based lane fea-

ture extraction is illustrated in Fig. 7. It can be seen that a

detection accuracy of 85% is obtained using 8 scan bands

with each band of 10 pixels. A comparison on the effect

of reducing the scan bands and their width is also shown

in Fig. 7. It can be seen that reducing the scan band width

also reduces the detection rate. For the same number of scan

bands but scan band width reduced to 5 pixels, the detection

rate has been reduced to about 40%. This is because thinner

scan bands fail to completely and conclusively capture the

circular reflectors. Therefore, having wider scan bands and

more number of scan bands to sample as many reflectors as

possible is desirable to get higher accuracy.

An experiment was also conducted to see the affect of

changing the scan band sizes across different scan bands in a

single frame. The scan bands nearer to the ego-vehicle were

given higher weight by having thicker bands (wB = 10) as

Figure 7. Detection rate versus number of scan bands for Set 4

with circular reflectors.

compared to farther scan bands with wB = 5. Different per-

mutations were used to find if such hybrids can give better

detection accuracy for lesser number of operations. Fig. 8

shows the scatter plot with some of these varying options.

The option VARY 5 5 5 10 10 10 is one particularly inter-

esting design option. It gives a detection accuracy of nearly

90%, which is the same as design options with nB = 8 pro-

cessors for scan band widths wB = 5 and 10 both. However,

it uses only 6 processors instead of 8. In terms of number

of operations, the design option with wB = 5 is better but

this varying scan band width design option is better choice

if we want to reduce the number of processors.

Figure 8. Detection rate versus number of operations with varying

band sizes of different scan bands in the same frame.

Figure 9. Detection rate for urban lane scenario with solid lane in

Set 5.

Fig. 9 shows the detection rates for varying scan bands

to detect solid right lane in urban road context (Set 5). It

can be seen that detection rates of over 90% are achieved

for all band widths and any number of scan bands. Also,
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Table 2. Design configurations by varying nB and wB

nB ↓ nB ↓ nB ↑ nB ↑
wB ↓ wB ↑ wB ↓ wB ↑

Lane Types
• Solid

√ √
• Dashed

√ ↔ √
• Circular Reflectors

√
bot dots

Environmental
• Sunny day Depends on lane types above
• Night scene

√∗
• Foggy conditions

√∗
• Rainy conditions

√∗
Embedded Constraints
• Parallel processing

√ √
• Low area constraint

√ √
• Pipelining

√ √
• Low Memory Resources

√ √
• Timing Depends on hardware

configuration

* This also depends on placement of scan bands.

the dataset was chosen such that there are heavy shadows

of trees in the images (which usually is the case in most

urban road scenarios). These detection rates imply that it is

an overkill if more than 2 processors are running when the

system is detecting solid lanes.

In Table 2, we present possible recommendations of the

different configurations that are possible based on the user

requirements, road and environmental conditions. Firstly,

we consider the types of lane markings and what combi-

nation of scan band size wB and number nB could give

acceptable detection rates. For example, solid lanes re-

quire minimal number of scan bands and can also work with

smaller band sizes. However, circular reflectors need higher

number and wider band sizes also. Similarly, certain combi-

nations of nB and wB are suited for specific environmental

conditions. For example, in foggy and rainy conditions, it

is desirable to extract lanes from the road surface closest to

ego vehicle. Therefore, lesser number of bands but wider

bands closer to the vehicle are sufficient for robust extrac-

tion.

In the next part of Table 2, we consider the different con-

figurations for nB and wB that comply with certain embed-

ded constraints/requirements. A combination of the selec-

tions between the different categories can be used to give a

user-constrained embedded realization of an accurate lane

feature extraction system.

5. Conclusions

In this paper, we proposed a lane extraction method that

is shown to provide a way to explore the different config-

urations for embedded realization, based on the user re-

quirements and the context in which the lane analysis is

to be done. It is shown that the two design parameters,

i.e. number of scan bands and width of scan bands, can be

used to get an embedded vision system that caters to robust-

ness as well as computation cost efficiency. The proposed

technique enables to further study a possible adaptable lane

analysis solution that takes into account the road and envi-

ronmental conditions.
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