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Abstract

There has been an enormous increase of 3D human
motion data in various fields, such as 3D gaming (such an
EA sports) and medical fields (physical medicine and
rehabilitations). We need an effective content-based 3D
human motion retrieval scheme supporting human-level
language queries. However, there is a big semantic gap
between these two media since the 3D Human motion data
and text are heterogeneous forms. In this paper, we
propose a cross-media retrieval framework that reduces
the semantic gap by semantic spatiotemporal dimensional
reduction and reformulates 3D human motion data to
HMDoc (Human Motion Document) representation, which
is quite applicable for a traditional information retrieval
technique such as Latent Semantic Indexing. After
mapping complex 3D human motion matrix data into
semantic space, we can achieve 88.72% precision, 86.98%
recall accuracy with 14 different motion categories that
consists of 370,294 frames. Our proposed approach
(HMDoc) extracts the semantic characteristics of human
motion capture data. This semantic feature compact
representation outperformed other works such as weighted
motion feature vector and LB KEOGH’s method,
Geometric feature representation.

1. Introduction

3D motion capture data is 'multi-dimensional’ time-
series data. Each row of 3D human motion capture data
matrix corresponds to a single frame that consists of
information for 29 segments (corresponding to different
parts of human body) and each element has the value of
the degree of freedom. Human body consists of unit body
part (UBP), which includes several segments. For
example, the torso consists of 7 segments (with degree of
freedom in parenthesis) namely root (6), lower back (3),
upper back (3), thorax (3), lower neck (3), upper neck (3),
and head (3) segments. The arms and legs consist of 7 and
4 pairs of segments respectively. In the 3D motion capture
data matrix, column is corresponding to each body
segment and each row is time-series. Because of motion-
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length variance and huge number of dimensions (62
dimensions), there is huge semantic gap between human
description and real 3D human motion matrix. Normally,
the level of details in the 3D human motion capture data is
designed for rendering purpose. 3D human motion
consists of a highly dense matrix, which is for rendering
vivid human motions effectively.

However, to efficiently process for 3D human motion
classification and retrieval purpose, we might not need to
keep original amount of high dimensional matrix data. In
our previous approach [8], we demonstrated that semantic
dimensional reduction of 3D Human motion capture data
can keep each motion class’ characteristics. Although
quantized symbolic sequences from 62 dimensional
original motion data look too simple, we showed that it is
quite enough and more useful representation for motion
classification and retrieval purposes. Our main
contribution is bridging the gap from high-dimensional
time-series data to the semantic representation in 3d
human motion domain. Especially, to recognize time-
series human motion, time-variance is huge barrier to find
similar motions accurately. In this paper, as discover
“repeated” patterns as ‘“rules”, we show that human
motion can be represented as time-invariant form- we can
call it as ‘Eigen-human-motion’ vector form.

From an observation that each symbolic value (Torso,
Arm, Legs and so on) has semantic meaning, we get an
idea of dealing these human motion sequences as textual
symbols. Through transformation from high-dimensional
multimedia data (human motion) to symbolic
representation, now we can apply some of very useful
textual information retrieval techniques. Here, we will
show how we can retrieve human motion data by using
LSI (Latent Semantic Indexing) technique.

Some of cross-media retrieval approaches [10, 19, 23,
24, 25] tried to apply the traditional information retrieval
technique, such as LSI (Latent Semantic Indexing) since
LSI technique is already known for its usefulness in terms
of retrieval speed and scalability. These approaches
transformed image [19, 23], video [24, 25] and music clips
[10] into text words. Then, these newly constructed
multimedia documents can use the semantic indexing
technique. Souvannanong et al. [23] tried to apply LSI
technique to video data for categorization, with some



difficulty in segmenting visual low-level features for
quantization. Our intention is to explore information
retrieval approaches for 3D human motions database.
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Figure 1. Overall Framework for Cross-media Retrieval with 3D
Human Motion Capture Data

In this paper, we contribute by proposing a new
framework using information retrieval technique for
content-based 3D human motion retrieval. Through our
proposed framework (Fig. 1), we claim and demonstrate
that 3D motion capture data can be transformed into
multimedia documents. Previously, Gutemberg et al.
[6][7] tried to construct “human action” language model
for human motion analysis. We show that 3D motion
capture can be effectively quantized while maintaining its
semantic characteristics through spatial-temporal semantic
quantization process [8]. This process transforms 3D
human motion data matrix into a 'human motion string’.
Next, we segment the human motion string into "rules" by
finding repeated string sequence as “rules”. As Zhai et al.
[28] explored structures in continuous video streams using
clustering technique and fuzzy analysis, we try to detect
“repeated” hierarchical pattern in continuous motion
streams. Now, a single motion clip consists of several
rules. So, we reformulate each 3D human motion clip to a
HMDoc (Human Motion Deocument) by considering
'rules' as ‘terms' in textual document and considering one
3D human motion clip as a document.

From HMDoc construction, we can apply LSI (Latent
Semantic Indexing) technique to HMDoc for content-
based 3D motion retrieval by mapping 3D human motion
data into semantic space. For some motion classes
overlapping in k-semantic space (k=2), we can see the
accuracy improvement with increasing the dimensions of
semantic space (k=6).

We can achieve 88.72% precision, 86.98% recall
accuracy. It implies that our proposed -cross-media
framework can keep the semantic characteristics while we
transform 3D complex motion data into low-dimensional
one and map that into semantic space with newly
constructed Human Motion Documents. It should be
observed that the proposed approach, perhaps with some
modifications, can be used for mapping normal (i.e., 2D)
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video of human motions for retrieval as well.

2. Related Works

Li et al. [14] extracted geometric structure as
exposed by SVD of matrices of human motion data and
index using interval-tree based index structure, similarity,
Li et al. [15] classified human motions apply SVM on
geometric extracted motion vectors and Guodong et el.
[17] selected small set of leading eigenvectors as principle
features and tried to represent motion frames as simplified
"cluster transition signature", which is conceptually
similar to 1-dimensional quantization representation in this
paper. Other approaches utilized hierarchical trees for
indexing 3D human motions. Gaurav et al. [4] used
hierarchical structure of the human body segments to
increase the searching speed and accuracy. Each level of
index tree is associated with the weighted feature vectors
of a body segment. Feng et al. [16] proposed content-
based motion retrieval (CBMR) by building motion-index
tree on hierarchical motion description, which serves as a
classifier to determine a sub-library that contains
promising similar motions to the query example. For
dealing with temporal invariance between similar motions,
[16] used "elastic match", a combination of DTW
(Dynamic Time Warping) and dynamic programming. To
overcome the limit of DTW technique ('local scaling') for
time-series data comparison, Keogh et al. [11] proposed a
uniform scaling , which can scale globally and showed
that it can speed up indexing using bounding envelopes.
Most recently, Muller et al. [20] contributed content-based
human motion retrieval through "qualitative" geometric
description for bridging the numerical and perception
human motion similarity gap. However, a user has to
select suitable features in order to obtain high-quality
retrieval results. Totally different from other approaches
for content-based 3D motion retrieval, this paper shows
the way of mapping each complex and time series human
motion data into semantic space through Latent Semantic
Indexing on semantically quantized representation of 3D
Human Motion.

3. Segmented Semantic Representation

Spatial Features: We consider one human motion as
characterized by different combinations of three main
body parts: torso, arms and legs. For extracting spatial
relationships and reducing dimensions (from 62 to 3
dimensions) among the 3 different body components, we

separate a motion data matrix (M, ) into three sub

matrices (M % = M MP =M, M" =M ,,,
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Figure 2. SVD Spatial Feature Dimension Reduction with 'Side-Twist' motion.
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where m=k+j+r) belonging to torso, arms and legs part

respectively. From three sub matrices, SVD decomposes
"singular" values [5].
M =UsvT My, =o'y, ie {a, B} )
a 5B 57
Now, three "singular" wvalues (9 97:9") which
represent torso, arms and legs parts are the coefficient of
each frame as the spatial feature, then we have a reduced

matrix ~ 7 for a single human motion clip. If we split
Arms columns into Left and Right Arms, then we can
have more detailed representation about Arms motion.
Likewise, we can separate leg columns into Right and Left
parts. Then, we can increase spatial dimensions up to 5
dimensions in this case.

Temporal features: We map spatially extracted 3-
dimensional singular values of each motion file into
Gaussian Mixture Semantic Space [1] (see Fig. 2), this
space is to find "latent" semantic quantization components
(A(rms), T(orso), and L(egs)) which is corresponding to
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component k , and P(k) be the mixing parameter

latent component & . PO;) is the "prior" probability that
we can get from the marginalization of joint probability.
Humans can express one action using more than one body
component at the same time, so we need to extend
Gaussian Mixture Semantic Space from three main body
parts (Triangle) to a combination of the three main parts
(Cube) (see Fig. 3). We add three combined "latent"
components corresponding to each edge of Triangle,
which is 'TL', 'AT" and 'AL' respectively. Thus, the overall
number of "latent" component in Cube space is 8

including null (¢) and all (TAL) components. Each
quantizing component has its semantic meaning: for
example, if one frame window has a mixture value close
to 'L', it means this frame window includes "legs
intensive" actions. And if one frame re value is close to
'TAL', then it means that this frame has action using "legs"
,"arms" and "torso" actively. We can extend GMM with
EM (Expectation Maximization) for finding local maximal
values based on the initial GMM values of human
motions. After iteratively running with GMM and EM
model (Fig. 3 (b)), we get the locally maximized mixture
value.
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Figure 4. Quantization Value Representation of Similar Motions.

Then, we assign each maximized value to the closest
quantization value (¢« 1,4 2,7 <3, AT <4 and so

on) in order to get the quantized representation of each
frame window from spatially extracted feature vectors. It
shows the effect of temporal segmentation as well as
semantic quantization (see 'walk' example's quantization
representation -'2-1-6-1-2-1-6-1-2-1-6 in Fig. 3 (c¢)). In
Fig. 4, we observe that quantization value representation
from semantic GMMEM has been segmented with
temporally similar frames. Thus, finally extracted
quantization value has spatial and temporal characteristics
of a specific motion.

4. Finding Repeated Patterns in Quantized
3D Human Motion Data

From previous section, we show that 3D human motion
capture data can be transformed into strings, where each
literal has semantic meanings such as T(orso), A(rms),
L(egs), TA, AL and so on. We can observe that
quantization values of each motion class express semantic
characteristics. For instance, semantically, 'golf swing'
consists of pause, shot and relax, 'basketball signal' usually
includes one specific signal after waving hands (see Fig.
4). Since human motions are repeated with some
periodicity, we would like to detect those repeated
semantic strings as rules.
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We employed 'SEQUITUR' algorithm [11] that has
been used to index large size of digital library by
generating hierarchical phrases, which is a novel method
for browsing. Through the Semantic Quantization process,
we have translated from high-dimensional 3D motion
capture data format into Human Motion Strings. Here, we
call one-dimensional semantic representation of 3D
human motion as Human Motion Strings. From the
observation that 'SEQUITUR' algorithm [11] can segment
real sequences with repetition units and deal with variant
nature of similar sequence data, we get to know that
'SEQUITUR' algorithm is also applicable to Human
Motion Strings. For similar motions, most of the
hierarchical rules are commonly shared (see Fig. 5), but
there is a variance problem to solve. For example, in the
first root node rules, R3770 and R3793, R3793 subsumes
R3770 as left child and has R3740 as right child.
(R3793>R3770 > R3740). Such differences between
similar motions are caused by length-variance; in this
case, "basketball signal (b)" has more motion sequences
than "basketball signal (a)" as amount of R3740 at the
initial part in time order. About these variance,
'SEQUITUR' can find common parts as rule in
hierarchical manner (in that, “basketball signal (a)" also
has R3740 as found rule), thus similar motions can keep
those maximal similarities as common rule even if there
are variances among them.
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Figure 5. Found Hierarchical Rules between two similar "basketball signal" motions.

We can see that 'SEQUITUR' algorithm with textual
sequences and music score shows (see [11]) same effects
when it is applied to Human Motion Strings; finding
repetition units and dealing with variance by detecting
the maximal common rules. Namely, even if there are
variations due to persons, we can extract the maximal
common expressions as the detected rules. Using the
detected rules as 'terms' in the document, finally we can
construct an HMDoc (Human Motion Document) from a
single 3D motion capture clip. Thus, every HMDoc have
the same length since each HMDoc consists of rule-
frequency values throughout all the rules.

5. Using Latent Semantic Indexing in HMDoc

Originally, LSI technique [2] was introduced for textual
document retrieval since "lexical matching" system shows
limited performance and it did not extract semantic
relations between query and words in document.
Furthermore, when people make a text document, they use
tremendously diverse words. In that, there are many ways
to express a same concept (topic) of a document
(synonymy) and most words have various meanings
(polysemy). To overcome these weaknesses of "lexical
matching" retrieval system, LSI uses conceptual indices
which are statistically derived and it tries to disclose latent
(hidden) structure in words usage that is obscured by
word. We expect same effect with LSI technique for
HMDocs in extracting conceptual indices and overcoming
diverse rule variances, and apply LSI to HMDoc matrix.
Currently, we transformed 3D complex human motion
matrix into rule-based human motion representation
forms. After matching rules to terms and a human motion
clip to a document, we can construct a matrix (M) of rules
by HMDoc Database.
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A matrix M consists of 7> where r is the number of
found rules by 'SEQUITUR' and m is the number of
HMDoc in the Database.

M=Ih .
U] 5

h; .
Here, "/ denotes that the frequency of rule ! occurring
- th
inthe / HMDoc. Basically, to give less weight to those
rules which frequently occur in many HMDocs, we apply
local and global weighting to each cell of frequency
values.

M'=[h; ;1=loc(i, j)x global(i)

4)
lOC(i,j) =7] i (5)
global(i)=1- ZM
~ log(| HMDocs )
: (©)
_Ti
v %)

Where, 7 is the rule frequency, which is the frequency
- th

of rule ‘in the / HMDoc and &fi is the global

frequency, which is the all the number of times that rule i
appears in the whole HMDoc database. For global
weighting, we used the entropy based global weighting,
which takes the distribution of rules over HMDocs into
account. Normally, HMDoc matrix is the sparse matrix
since the number of rules found across all HMDocs is
quite larger than the number of rules actually appearing at
a particular HMDoc. Actually, term-document matrix is
also sparse since every word does not occur in every
document. A HMDoc matrix can be decomposed by LSI

(M'=UXVT) for conceptual indexing and avoiding



lexical ('terms' <> 'rules') matching limit as Dumais et al.
[2] mapped textual documents with LSI mapping. After
decomposing into sub-matrices, we are interested only in
the HMDoc vectors since we would like to map each
HMDoc into the semantic space based on

VT (U, 7T matrix is corresponding to rule and HMDoc
vectors respectively). This mapping is done as follow; if
we choose the size of truncated matrix (k=2) in the k-
semantic space, the first, second column vectors of V' can
be used as the x, y coordinates values of each HMDoc by
multiplying rank-2 singular values (x-coordinate: o,v; y-
This
singular vectors and the corresponding singular value is
the approximating representation of the truncated original

coordinate: 0, v, ). multiplication between right

matrix M k [5]. For some motions, after mapping HMDocs

into k-semantic space, other—unrelated motions may still
be located closely. To overcome this limit, we try to
expand the semantic space dimension size k up to 6.
Previously, we only use the first two singular values and
the right column vectors and get the x, y coordinates by

multiplication (O-lv1 , 02", ). Here, we can add additional

coordinate values with 93”3, 94v4 96V Consequently,

we have 6 dimensional coordinate representation of each
motion clip. But, in this paper, we limit it to 2-dimensional
result for visualization purpose.
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Figure 6. Mapping HMDocs into 2 dimensional Semantic Space
(as ‘Eigen-Human-Motion’ Mapping).

6. Implementation & Performance
Evaluation

For experiments, we used the publicly used motion
capture data files (CMU Motion Capture Database)[3] and
chose 209 human motion clips (370294 frames) as
HMDocs in our experiment. Among 209 HMDocs, there
are 14 different semantic motion categories, such as
'dance', 'laugh', 'salsa dance', 'pantomime', 'siton &
standsup', 'jump', 'golf swing', 'run', 'boxing', 'basketball
signal', 'golf putting', ‘'walk, 'stretching', ‘climb'.
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Semantic classification of these subtle actions is a quite
challengeable problem. Some actions are semantically
similar (e.g, 'salsa dance' and 'dance’, 'golf swing' and 'golf
putt) and the motions are length-variant and there are
several different actors in the same motion class (e.g.,
'‘pantomime' actions are done by 4 different actors). After
translating quantization motion representation into rule-
based motion document (which is HMDocs), we can map
each HMDoc into semantic subspace using Latent
Semantic Indexing technique.

From these results, semantic subspace mapping can
recognize highly-semantic 3D human motion capture data
quite well in conditions where data is very high-
dimensional (62 dimensions) and length-variant data
(overall precision and recall values for all action
categories are 88.72% and 86.98% -see Table 1).

We compared our performance with Li et al. [15]‘s work,
which extracts vector feature values from each motion clip
(we call it wMSV (weighted Motion Singular Vectors)
measure). Although our approach make more compact
dimensional representation, our approach shows much
better accuracies than wMSV (see Tablel). Keogh et al.
[11] showed the way of indexing using linearly scaling the
time-series data; especially they demonstrated its
usefulness in terms of retrieval time efficiency with
human motion database. Here, we would like compare
with this work in terms of motion classification accuracy.
For computing the most similar motion clip in the motion
database, we scaled each candidate motion to the upper
and lower bound representation by following to Keogh et
al.’s method (LB _KEOGH) [11] and computed the
distance between the query motion and upper and lower
bounded values of each candidate motion data. Same as
we did with previous comparison, for classification
performance analysis, we used k-NN method (k=1).

This approach considers the time variant of each human
motion data. For reducing this effect, Keogh et al. tried to
scale two comparing time-series data. Different from our
semantic dimensional reduction technique, this approach
doesn’t use the semantic characteristic of 3D human
motion capture data and LB KEOGH doesn’t reduce the
dimensions. For computing aspect, our approach can
compute the similar motion faster than LB KEOGH since
we reduced the high-dimensional (62) human motion data
into 1-dimensional quantization values as the
preprocessing step. The classification accuracy of our
proposed approach shows much better results than other
two works (see Table 1). Muller et al.’s approach showed
quite good results since it also extracts each human
motion’s geometric relational features, which is close to
semantic characteristics of each human motion class. For
instance, when a human walking, normally hand and leg
geometric location has been switched periodically.
Whereas Muller et al still keeps 31 dimensional values of
a frame as feature vectors, our HMDoc approach can



reduce even to smaller representation (as small as X, y
coordinates) with showing almost similar precision and
recall values. This process makes retrieval speed faster
since we just have to compute each motion’s coordinate
values. Although we simplify human motion expressions,
we can achieve more accurate results in precision and
recall values (see Fig 7, 8).

7. Conclusion

We proposed a new cross-media retrieval framework for
3D human motion data in this paper. For the
dimensionality reduction issue, we can reduce complex
(62) dimensions to 1-dimensional quantization
representation through semantic quantization process. To
transform 1-dimensional human motion strings into latent
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Fig. 8 Recall Improvement by applying HMDoc retrieval technique on semantic GMMEM representation.

Categories HMDoc wMSV LB_KEOGH Geometric
Precision | Recall Precision | Recall Precision | Recall Precision | Recall
Dance 1.000 0.9743 0.1875 0.1578 0.0000 0.0000 1.000 0.7368
Laugh 0.7500 1.000 0.0000 0.0000 0.3333 0.1666 0.8571 1.000
Salsa 0.8750 0.9333 0.3333 0.3333 0.1956 0.6000 0.7894 1.000
Pantomime 0.8182 0.6923 0.0666 0.0769 0.0000 0.0000 0.8000 0.9230
Sit on 0.8000 1.000 0.1333 0.1666 0.6666 0.1666 0.9166 0.9166
Jump 0.8000 0.8888 0.1764 0.1666 0.4666 0.3888 0.9411 0.8888
Golf swing 0.9166 1.0000 0.2000 0.2727 0.7000 0.6363 1.000 1.000
Run 0.9411 0.9697 0.6666 0.7272 0.2075 0.6666 0.9705 1.000
Boxing 1.0000 0.7143 0.0000 0.0000 0.0000 0.0000 1.000 0.4285
Basketball 0.8571 0.8571 0.4615 0.4285 0.0000 0.0000 0.8461 0.7857
Golf Putt 1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 1.000 0.8000
Walk 0.9310 0.9000 0.5000 0.4666 0.3333 0.0666 0.8529 0.9666
Stretching 0.8571 0.6000 0.3636 0.4000 0.5714 0.4000 1.000 0.8000
Climb 0.8750 0.8750 0.2857 0.2500 0.6000 0.3750 0.8333 0.9375
Average 0.8872 0.8698 0.2461 0.2410 0.2910 0.2476 0.9148 0.8702

Table 1. Performance Comparison with proposed approach (HMDoc) and other works.
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semantic  indexing applicable format (HMDocs),
'SEQUITUR' has been used since it is quite useful for
finding hierarchically repeated rules from 3D human
motion data. We observed that newly constructed HMDoc
matrix sparse one like textual document data. From LSI,
we can overcome lexical matching limit and index
conceptually since human motion expressions have subtle
variance. This also happens when we try to retrieve with
textual document since human writes similar meaning
with different words. From these procedures, we
demonstrated that 3D human motion data gets benefit of
information retrieval techniques fully, such as
hierarchically repetition detection (‘SEQUITUR') and
conceptual indexing ('LSI'). When we increase the k-
semantic space dimensions, we can achieve 88.72%,
86.98% precision and recall accuracies.

More than this, we don’t need to train our dataset, but
reduce the dimensions and map into semantic space. It
promises the scalability effect for mapping newly taken
motion clips into the pre-existing mapping space
incrementally. Different from other multimedia format
(images, video and music), with 3D motion data, human
body parts are already mapped into columns of motion
matrix. Thus, we can get much better effect in bridging the
gap between human motion matrix values to higher level
semantics.
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