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Abstract

In this paper we present an algorithm for estimating 3D

pose of human targets using multiple, synchronized video

streams obtained from a set of calibrated visual sensors.

Our method uses 3D visual hull, reconstructed from multi-

view image silhouettes, to estimate skeleton and 3D pose of

the human target. The key contribution of this work is to

extend predictive human pose estimation algorithms used

in the kinect gaming system to 3D visual hull data. In 3D

space, viewpoint invariance is achieved by transforming the

world reference frame to human centered reference frame.

To do so, we first estimate the rigid body orientation and

translation of the target from the shape of the visual hull. We

then apply discriminative classifiers in the human centered

reference frame to segment the 3D voxels of the visual hull

into semantic part segments. The part clusters are then used

to estimate a 3D pose that best aligns with the detected joint

centers while conforming to the part non self-intersection

constraints. Claims made in the work are supported by ex-

tensive experimental evaluation on both synthetic and real

dataset.

1. Introduction

Depth sensors are being widely applied for acquiring

range map of nearby human targets for 3D motion recov-

ery and activity analysis. However, their limited ranging

capability and use of infrared laser has restricted its appli-

cation to outdoor environments and in surveillance scenar-

ios. Tremendous progress has been made in sensor tech-

nology in recent years, enabling development of advanced

video sensors with gigapixel resolution, that are capable of

providing sufficient image resolution for detailed analysis

of human targets. In the near future, these sensors will be

capable of conducting wide area surveillance from a long

standoff distance, at the same time providing sufficient im-

age resolution for inferring subtle changes in target appear-

ances. In this work, we present a fully automated system for

estimating 3D skeleton and pose of the human targets from

multi-view imagery. Our algorithm extends the core dis-

Figure 1. Overview of the proposed system for 3D human pose es-

timation from multi-view imagery;(a) 3D Data is acquired as vol-

umetric reconstruction using space carving;(b) 3D shape descrip-

tors are extracted to encode voxel distribution in 3D space ; (c)

Predictive models are trained offline from the aligned visual hull

data extracted from synthetic the silhouettes. Ground truth, part-

segmented 3D mesh is aligned to the visual hull and the voxels

are assigned part-labels of the nearest mesh vertex; (d) Predictors

trained on the labeled data are used to estimate orientation of the

visual hull and part-labels of the 3D voxels ; (e) Joint locations are

estimated using mean-shift mode finding. 3D Pose is estimated by

fitting skeleton using Levenberg-Marquardt(LM) algorithm

criminative model learning method used in the kinect gam-

ing platform[19] to estimate 3D human pose from 3D visual

hull data. Specifically, we use intermediate body part repre-

sentation to first segment a 3D visual hull into meaningful

part clusters. We then use trained discriminative classifiers

to classify 3D voxel into body parts. Finally, the identified

part segments are used to fit the 3D skeleton using standard

optimization algorithms.

Contributions: We have developed a novel algorithm for

estimating 3D pose from visual hull reconstructed from

multi-view imagery. The main contribution of our algo-

rithm is the use of intermediate part-based representation

in our inference. We extend the shape context descriptor[5]

to 3D space and use it to train predictors for segmenting 3D
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visual hull into semantically meaningful body regions. We

develop a principled training scheme using motion capture

sequences and 3D human shape model to train the discrim-

inative classifiers and regression models for part segmen-

tation. As our algorithm employs only scale normalized

shape features, it is invariant to clothing, appearance and

anthropometric variations of the human targets. We further

extend the system to fit a skeleton to the joint locations esti-

mated as the body part centers inferred in the classification

step. In doing so, we incorporate additional constraints due

to non self-intersection of body parts, anthropometric pri-

ors on the skeleton shapes and angular limits on the skeletal

joints. We empirically show that this step indeed improves

the joint location accuracy. Finally, the method allows effi-

cient estimation of target specific skeleton.

Related work: A comprehensive survey of initial work

on marker-less motion-capture techniques from single and

multi-view imagery is provided in [15]. Compared to ear-

lier approaches[15] that modeled human shapes with cylin-

drical or superquadrics parts, current methods use more ac-

curate modeling of 3D human shapes using SCAPE body

models[3] or CAESAR dataset [2]. Multi-camera human

pose estimation systems developed by Balan and Sigal[3, 4,

20]employed SCAPE(Shape Completion and Animation of

People) data to model variability in 3D human shapes due

to anthropometry, pose and body type. Gall et al.[7],[22]

developed a combined skeleton and 3D shape based hu-

man models which they fit to multi-view imagery using a

combined local and global optimization scheme. Their al-

gorithm is a two-pass fitting approach. In the first pass,

a skeleton with approximate skin is fit to the observation

(silhouettes) from multiple sensors. They have proposed

a combined optimization scheme for estimating 3D pose

by first fitting the parts locally to the observed silhouettes

and then projecting the 3D pose to a lower dimensional

search space for global optimization. The 3D body shape

is obtained by non-rigidly deforming the 3D mesh under

the influence of the skeleton followed by the optimizing

the mesh shape to match the observed silhouettes. An ex-

tension of the above work [8] used action based priors to

improve pose tracking and 3D shape estimation from the

multi-view image data. Moll et al.[17] proposed a multi-

modal system to improve 3D human pose and shape estima-

tion from multi-view imagery by using both visual cues and

global orientation information from inertial sensors. In par-

allel to these approaches, Munderman et al.[16]developed

a SCAPE model with an underlying skeleton to track 3D

poses of a human target in multi-view image sequences us-

ing an extension of Iterative Closest Point (ICP) algorithm.

The method tracks by aligning the body parts of the hu-

man model to the visual hull reconstruction using an ex-

tension of Iterative Closest Point (ICP) algorithm. The sys-

tem however requires manual initialization and critically de-

pends on the quality of visual hull extraction. Hofmann

et al.[13] developed upper body 3D pose estimation sys-

tem from synchronized multi-view imagery using hierar-

chical shape matching and probabilistically voting based

method. A number of recent works employing range sen-

sor data for estimating 3D human pose have demonstrated

remarkable pose estimation results at real-time processing

rates. Notable among them are [10, 19, 11, 9]. Ganapathis

et al.[10, 9] developed a fast human 3D pose tracking algo-

rithm that runs faster than real-time using an extension of

Iterative Closest Point (ICP) approach that can efficiently

resolve part placement ambiguities by enforcing localiza-

tion constraints in 3D space. Our approach most closely

resembles the algorithms proposed in [19, 11] that form

the core components of kinect gaming system. The work

used single depth-image to accurately estimate 3D pose of

the human without the need for temporal cues to resolve

ambiguities. Most remarkably, the work also showed that

pixel-wise classification (no contextual modeling) is suffi-

cient for inferring 3D pose. Inspired by the success of this

approach, we have developed algorithms to employ conven-

tional multi-camera imagery to estimate 3D pose of human

targets in a scene. The proposed algorithm has obvious ad-

vantages of exhibiting greater invariance to changes in both

appearance and anthropometry of the targets as well as cam-

era configurations.

2. System Overview

Fig. 1 shows the key components of the system. We

obtain synchronized streams of multi-view imagery from

a set of calibrated cameras and use it to generate a 3D

volumetric reconstruction (visual hull) of the target using

space carving (see fig. 1(a)). We use visual hull to extract

a view-dependent and view-invariant 3D shape descriptor

(fig. 1(b)) of the visual hull. We have synthetically gener-

ated a database of labeled examples of 3D poses to train dis-

criminative classification and regression models using the

two descriptors (fig. 1(c)). The training examples are gen-

erated by using motion capture data to animate randomly

sampled, synthetic 3D mesh shapes (from a PCA based 3D

human shape model). The regression model is trained to

output 3D orientation of the target using view-dependent

descriptor, and classifiers are trained for recognizing part

segments of the visual hull. The pose estimation is done by

first employing the regression model to remove rigid body

motion (rotation, scaling and translation) in order to com-

pute view-invariant shape context features. The part classi-

fiers are then used to recognize 3D voxels of the visual hull

(fig. 1(d)). Finally, an anthropometric skeleton is fitted to

the joint centers obtained from the predicted part and joint

segments (see fig. 1(e)). We go over each of the compo-

nents in detail in the rest of the paper.
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Figure 2. (a) Visual hull extracted from real HumanEva dataset with reference axis transformed to remove translation, scaling and rotation

(root orientation) of the visual hull ; (b) Synthetic data images rendered using Autodesk Maya using the same camera configuration and

3D pose as the real data. Middle figure shows the aligned 3D mesh to the visual hull used for parts labeling of 3D voxels ; (c) Visual hull

orientation and voxel classification results for real data using the learned regression and classification models

3. Feature Extraction

3D Data Acquisition: Silhouettes extracted from the im-

age streams acquired from multiple calibrated sensors are

used to reconstruct a 3D volumetric representation(visual

hull) of the human target. We use an efficient background

subtraction based on non-parametric kernel density estimate

of stationary pixels [6] to extract silhouettes of moving tar-

gets. An octree-based fast iterative space carving algorithm

is used to extract volumetric reconstruction of the target.

The algorithm is initialized using single 3D cubic volume

that completely encloses the working space of the acqui-

sition system. The algorithm first determines whether a

voxel is the boundary voxels and then iteratively subdivides

it into eight parts (voxels) until the size of the voxels is

less than the threshold size. The boundary voxels are de-

termined based on whether its projection to the camera im-

age plane lies totally inside, outside or on the boundary of

the silhouette. This is efficiently done using the footprint

test where the projection of the cube is approximated as

a square and an integral image of the silhouette is used to

identify whether the square is completely or partially inside

the silhouette.

To classify a 3D voxel to a part, the 3D shape descrip-

tors are used to encode its spatial relation with respect to

other voxels of the visual hull. These shape descriptors vary

smoothly in the feature space such that visual observations

of a human in similar 3D poses and orientations have sim-

ilar descriptor values while distant poses and orientations

are mapped to distant points in the feature space. In order

to train robust discriminative models that can be general-

ized across subject variations and illumination changes, it

is important that these descriptors are distinctive and at the

same time invariant to slight changes in the viewing angle

and misalignment. Finally, a critical characteristic of the

descriptor we seek is invariance to the orientation of the hu-

man. This is achieved by extracting descriptors in a human

centered coordinate frame.

Shape Descriptor for Estimating Visual Hull Orienta-

tion: To estimate the human centered reference frame, we

train discriminative models to directly predict the orienta-

tion of the human using the view-dependent shape descrip-

tor of the 3D visual hull. We employ the efficient 3D vi-

sual hull shape descriptors proposed by Sangawa et. al [18]

to train non-linear sparse Bayesian regression model (Rel-

evance Vector Machine) for predicting orientation of the

human target(see 1 (b)). The voxels from the visual hull

are voted into radial, angular and axial bins of the cylin-

drical shaped descriptor. This encoding scheme has been

demonstrated to be flexible to complex motions, and robust

to noise due to shadows and inaccurate silhouette extrac-

tion. The reference axis is chosen as perpendicular to the

ground plane and passing through the centroid of the visual

hull. The height and radius of the cylinder is determined

from the visual hull.

Shape Descriptors for Visual Hull Segmentation: We

employ view invariant 3D Shape Context Histogram (SCH)

to compactly encode spatial distribution information of the

visual hull voxels. Shape context is extracted by uniformly

sampling N voxels from the visual hull and uniformly vot-

ing into bins along the radius r, the elevation angles θ and

the azimuth angles α (see fig. 1. The descriptors has been

known to be robust to noise in the visual hull or erroneous

estimates of the human orientation and are rendered view-

invariant by transforming the reference axis according to the

orientation of human.

4. Visual Hull Segmentation

3D Shape of a human target is a strong cue of its 3D

pose. In order to estimate the 3D pose of the target, we

adopt an intermediate step of first segmenting the voxels in

the visual hull to different body segments and then fitting a

3D skeleton to the localized joint centers. Shotton et. al[19]
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proposed a novel technique of part segmentation by treat-

ing the problem as a per-pixel classification in their seminal

work that forms the core algorithm in the Kinect gaming

system. We extend their method to a generic 3D visual hull

data wherein the objective is to recognize parts of voxels to

estimate skeleton and 3D pose of the human target.

4.1. Synthetic Training Data Generation

The bottom-up (discriminative) predictors trained on

synthetic data are used to predict orientation and classify a

voxel into part segments(see Fig. 1(c)). The human body is

divided into 31 segments that are chosen based on the body

part regions that move rigidly for articulated human body

movement. These regions correspond to either the joint cen-

ters or the part of the human body. We differentiate these

two segments as the segments corresponding to the body

parts are recognized with higher confidence (by classifiers)

compared to those corresponding to the joint centers. Fig.

2 illustrates the entire process of generating training data

from the motion capture data. The HumanEva motion cap-

ture data is imported to smoothly deform 3D mesh shapes

using autodesk Maya software[14](see Fig. 2(b)). This is

done by skinning a mean 3D mesh shape [12] to an average

skeleton (learned from a space of 70 skeletons from CMU

motion capture dataset[1]) in Maya. For every frame of the

motion capture sequence, a 3D human shape is generated

by randomly sampling coefficients of PCA based 3D human

shape model. The coefficients are sampled in the range from

−1.5σ to +1.5σ of top 10 bases vectors. The silhouettes are

rendered for the deformed 3D shape from 4 different view-

points, arranged in the same spatial configuration as the test

HumanEva data (see Fig. 2(b)). As the visual hull recon-

structed from the rendered silhouettes is already aligned to

the 3D mesh vertices, voxels are labeled based on their spa-

tial proximity to the vertices of the aligned 3D mesh. In an

ideal data generation scenario, each sampled shape should

be deformed using a skeleton specific to its shape. However

for training purposes, the current approach gives reasonably

good approximation of the 3D shape of the body of a human

target with sufficient variance in their anthropometry. Fig.

2(b) shows the 3D visual hull (shown in red) aligned with

the 3D mesh (shown in blue) sampled from the 3D human

shape based PCA model. Also shown are the labeled parts

of the visual hull using nearest neighbor. Fig. 2(c) shows

the visual hull reconstructed from the real silhouettes in the

reference frame with orientation estimated using regression

model and the estimated part segments classified by the dis-

criminative classifiers.

5. Training Discriminative Models for Part

Segmentation

The labeled visual hull data are used to train discrimi-

native models to predict part labels of the 3D voxels. We

Figure 3. Joint location estimation for the synthetic data. (First

row) Green markers are the part cluster means while the black

markers are the joint locations obtained from mean shift cluster-

ing; Second row shows the skeleton estimated using mean shift

(black) and the skeleton estimated using cluster centers as the joint

locations (green). Notice that mean shift clustering improves the

localization of the joint centers by using the part classification

probability as an additional cue for computing similarity (or prox-

imity) to the mean during clustering

train sparse Bayesian regression model(Relevance Vector

Machine) to predict the 3D orientation of the visual hull us-

ing the view-dependent shape descriptor(see fig. 1(b)). The

reference frame is first transformed to the centroid of the

visual hull and rotated to remove its orientation. We train

SVM classifiers for recognizing parts from the visual hull

in the transformed reference frame using the view-invariant

3D shape context descriptor.

Part Segmentation using Support Vector Machine: Sup-

port Vector Machine (SVM) is perhaps the most popular

machine learning method for classification. SVM finds

an optimal separating hyperplane by solving a quadratic

progamming problem using Langragian multipliers. For

all practical purposes linear SVM classifiers gives sufficient

accuracy compared to other state of the art methods (such

as Adaboost, Relevance Vector Machine, Gaussian Process

Regression and Random Forest). We trained one-against-

rest SVM classifiers for each part to classify a voxel into

body part segments. SVM classifier typically gives signed

distance from the separating hyperplane. We learn a lo-

gistic regression function using Iterative Reweighted Least

Square (IRLS) optimization to calibrate the output response

to a probability value

P (c|f(x)) =
1

1 + e−(Af(x)+B)
(1)

Where f(x) denotes the signed distance response obtained

from the SVM classifier for the input data x and c is the

part classifier. The probability value is used to assigned part

label to a voxel that has the highest probability. Since the

framework requires detection of at least one part voxel, if no
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voxel is detected for a body part, we approximate the part

center from top K = 5 voxels with highest confidence for

that part.

6. Joint Location Extraction and Skeleton Fit-

ting

The joint centers of a standard skeleton pose can be

obtained by first computing the center of clusters for the

body parts, and merging the centers to meaningful joint lo-

cations of the skeleton. However, doing so will not take

into account the confidence of voxel classifications (from

bottom-up models) in computing the joint centers. For ex-

ample, the voxel classified to a part segment with low con-

fidence should have lesser influence on the position of the

joint center compared to the voxels strongly classified as

a body part. Similar to [19], we use mean shift cluster-

ing that gives differential weights to voxels based on the

probability of the part classifiers. Mean shift clustering is

a non-parametric clustering algorithm that defines a density

over a window in data space using a non-parametric form

and iteratively computes a mean shift vector always point-

ing towards maximum increase in the density. The iteration

eventually achieves a stationary point at the modes of the

density. We define the kernel density as:

fi(x) =

M
∑

i=1

N
∑

j=1

wijexp{−‖
x− xj

hi

‖} (2)

here x denotes the location of voxels in 3D space, hi is the

bandwidth of the kernel for the ith part of the total of M

parts, xj is the j voxel in the visual hull containing N vox-

els. The wij are the probability weights of associating jth

voxel to ith part (mode) of the human body. Fig 3 shows

the joint center locations as the cluster mean of voxels cor-

responding to a body part. The green markers show the

cluster means and black markers show the joint locations

obtained from mean shift clustering.

Skeleton Estimation from Anthropometric Prior: In or-

der to fit a skeleton to the estimated joint locations, we first

estimate skeleton specific to the human target. We model

the parametric subspace of human skeletons using linear

Principal Component Analysis(PCA). For a set of K initial

frames, we project and back-project the joint center loca-

tions obtained for each frame to get a set of plausible skele-

ton shapes. The final skeleton is obtained as the mean of the

set of skeleton obtained by back-projection.

Non Self-Intersection Constraints: We learn the para-

metric models for the space of human skeletons L and a

coarse representation of the 3D human body C using cylin-

drical parts (see Fig4). The part dimensions of the coarse

human shape model is obtained as average length and ra-

dius of human body parts computed from 3D human shape

model acquired from MPI human shape dataset[12]. The

Figure 4. (a) Space of articulated human skeletons, (b) Coarse

human cylindrical model with average radii estimated from part

dimensions of MPI human shape dataset[12], (c) Coarse human

model rigidly deformed for a given pose and aligned with the 3D

visual hull ; (d) Parts self-intersection constraint used for fitting a

skeleton to joint centers.

shape parameters of the body parts L = [l r1 r2] include

the length and the two radii of the tapered cylindrical hu-

man body parts. The cylindrical human model is used for

computing self-intersection penalty during the skeleton fit-

ting to the joint centers detected by the predictive models.

The cost of parts self-intersection is computed as the differ-

ence between the shortest distance D between the two axes

of the cylindrical body parts of radii R1 and R2. For the

two intersecting parts, we add a penalty term proportional

to max(0, R1 + R2 − D12) (see fig. 4) in the overall cost

function (discussed next). The optimistic bound, although

overestimates the intersection scenarios, allows fast com-

putation of the penalty terms for the intersecting body parts

during the optimization.

Levenberg-Marquardt(LM) Optimization: LM is a ro-

bust unconstrained optimization algorithm used for search-

ing in parameter space of a non-linear function. The method

minimizes the least square error between the observed data

points and function values by iteratively improving the es-

timates of the function parameters. In our framework, we

search over joint angles of a skeleton to estimate the 3D

pose that best aligns the joint locations to the observed part

cluster centers. Of the 31 part segments that we use in our

framework, we associate part centers to the skeleton joints

by categorizing the part segment as joint P j or segments

P s. Based on our experimental evaluation, we have ob-

served that parts corresponding to the body segments are

detected with higher confidence compared to the parts cor-

responding to joint centers. We incorporate 4 types of cost
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terms in the error function to be minimized using the LM

method.

C(Θ) =
Mj

∑

i=1

α1

[

P
j
i − Ji(Θ)

]2

+

Ms

∑

k=1

α2

[

P s
k −

(Jk1(Θ) + Jk2(Θ))

2

]2

+ (3)

Ilm
∑

(l,m)ǫC

α3I(Dlm < (Rl +Rm))+

Nθ
∑

nǫNθ

α4

[

[max(θn, θ
max
n )− θmax

n ]
2
+
[

θmin
n − min(θn, θ

min
n )

]2
]

The first error term is for matching the skeletal joint loca-

tion Ji(Θ) to the cluster centers of parts P
j
i corresponding

to human body joint centers. The second error term is for

matching the midpoint of the segments to the cluster centers

of parts P s
k corresponding to the human body segments. We

always assign α2 = 2×α1 due to higher classification con-

fidence of the part clusters corresponding to skeletal seg-

ments. Third error term is a fixed penalty term if two body

parts intersect. We predefine the set C to contain possible

pair of body parts that can intersect. These pairs include

left-right lower and upper legs, left-right lower and upper

arms and can intersect with each other or with the torso.

The final cost term is due to constraints to enforce the joint

angle limits
[

θmin
n , θmax

n

]

for specific joints of the human

skeleton. The iterative cost optimization algorithm based on

LM incrementally improves initial parameters by solving a

regularized least-square regression at each step. The ini-

tial estimate is obtained by computing joint angles with all

degrees of freedom. The LM iteration then proceeds by re-

stricting specific degrees of freedom and adding constraints

shown in (3) in stages to allow gradual minimization of the

cost.

7. Experimental Evaluation

We evaluated our system on HumanEva dataset. For gen-

erating synthetic training data we used Autodesk Maya[14]

and PCA based human body shape model provided by

Hasler et. al[12]. Training sequences are generated for each

frame by randomly sampling 3D mesh shapes in the canon-

ical pose and deforming the pose using Maya animation li-

braries.

3D Human Pose Representation and Visual Hull De-

scriptors: Similar to the intermediate representation

adopted by kinect [19], we represent human body using 31

body parts. Skeleton is modeled using 30 joints of varying

degrees of freedom and a root joint for rigid translation and

orientation. However, we used only 17 significant joints for

Model Rot. error Rot. error Rot. error

/Axis along X-axis along Y-axis along Z-axis

Linear (S1 Jog) 15.52 11.64 26.72

Non-Linear (S1 Jog) 15.03 12.65 26.72

Linear (S2 Jog) 6.0 8.32 21.94

Non-Linear (S2 Jog) 5.34 6.34 19.04

Linear (S3 Jog) 8.95 14.64 22.74

Non-Linear (S3 Jog) 8.8 13.8 17.98

Linear (S2 Box) 10.67 17.75 14.90

Non-Linear (S2 Box) 6.28 7.55 13.59

Table 1. Visual hull orientation angle computation accuracy for the

linear and non-linear regression models (using Relevance Vector

Machine) trained on synthetic visual hull data and tested on real

visual hull data of 3 different subjects and 2 actions (jogging and

boxing)

fitting the skeleton to the part centers of the 3D visual hull.

For learning the 3D orientation of the visual hull, we extract

the cylindrical shape descriptor with 10 bins along the axis

of the cylinder, 5 radial bins and 8 angular bins, thus gener-

ating a 3D descriptor of size 400. For learning orientation,

we convert to angles to sinusoidal space and then reduce the

dimensions to 3 using PCA. 3D Shape context descriptor

has 10 radial bins, 10 bins along the elevation and 16 bins

along the azimuth, generating a 1600 dimensional vector

for the shape descriptor for a visual hull voxel. Both for ori-

entation estimation and part segmentation, we sample 2000

voxels from the visual hull ( 40K voxels) uniformly. Whole

visual hull shape is therefore represented by a 2000x1600

sized shape matrix.

Translation and Orientation Estimation: We always

compute the 3D shape context descriptor for the visual hull

in the reference frame centered at the root joint of the hu-

man. Translation is estimated as a fixed offset from the vi-

sual hull centroid. The 3 dimensional rotation is estimated

using the RVM based regression models. Table 1 shows the

orientation angle prediction accuracy of the RVM regres-

sion models trained on synthetic jogging and boxing motion

capture sequence for the subject S2.

Part Segmentation Accuracy: We compared part classifi-

cation accuracy using SVM based one-vs-rest classifier and

Random Forest (RF) classifier. For the RF, we trained 300

trees with 10 features randomly selected at each node and

maximum depth of each tree set to 20. Although the model

trained using Random Forest occupied significantly larger

disc space than the models trained using SVM, classifica-

tion time using random forest was much lesser compared

to SVM based classifiers. Fig. 5 compares the confusion

matrix for classify 31 parts. The naming of the parts are

as follows - u in prefix denote upper, l denotes left, r de-

notes right and w denotes lower. In our evaluation we did

not observe any significant difference in prediction accuracy

of random forest classifier compared to SVM classification.

Our SVM based one-vs-rest classifier gave an accuracy of

54.633% whereas RF gave an overall accuracy of 55.05%
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Figure 5. Confusion matrix for part classification (left) using Random Forest(RF) of depth 20 giving an overall recognition rate of 55.05%

on 200 frames walking sequence and (right) using Support Vector Machine(SVM) giving an overall accuracy of 54.633%

on a synthetic walking sequence of 200 frames.

Joint Localization Accuracy: We evaluated our algo-

rithms on real HumanEva I dataset[21] on jogging and

walking sequences for subjects S1, S2 and S3. In the ex-

periments we trained the classifiers on synthetic data ob-

tained by importing HumanEva motion capture sequences

to animate and deform 3D human mesh. We used only 100

frames (51 from S2 jog and 49 from S2 Box) to train the

classifiers. The models trained on synthetic data was used

to segment and estimate pose of visual hull computed from

the real data sequence ( 500 frames each). Table 2 com-

pares the average joint location error (in mm) for different

sequences. For each sequence we show the avg. joint es-

timation accuracy with using ground truth orientation and

with predicting the orientation using the learned RVM re-

gression. Notice as shown in Table 1 that although the aver-

age orientation error is 15o−30o for some sequences, there

is only a small degradation in the joint estimation accuracy.

The table also shows that skeleton fitting always improves

the joint estimation accuracy.

8. Conclusion

In this work we have developed and evaluated a part-

based algorithm for estimating 3D pose of human targets

by segmenting its 3D visual hull reconstructed from syn-

chronized video streams acquired from 4 calibrated visual

sensors. A significant advantage of our approach is that it

can be trained on only synthetically generated data. Our

pose estimation framework employs generic 3D visual hull

shape descriptors that are sufficiently discriminative, invari-

ant to target appearance, robust to perturbations in the input

Data Joint Loc. Error (mm) Joint Loc. Error (mm)

Seq. Before Skeleton Fit After Skeleton Fit

With GT Orient. (S2 Jog) 75.0301 71.261

With Pred. Orient. (S2 Jog) 77.1602 74.1372

With GT Orient. (S3 Jog) 83.745 79.57

With Pred. Orient. (S3 Jog) 84.25 81.04

With Pred. Orient. (S1 Jog) 90.952 85.5072

With GT Orient. (S2 Box) 75.062 81.205

With Pred. Orient. (S2 Box) 88.58 90.72

Table 2. Average joint estimation accuracy on jog and box se-

quences of subjects S1, S2 and S3 in HumanEva dataset. The

two columns compare the joint prediction accuracy before and af-

ter fitting the skeleton to the joint locations estimated as centers

of part clusters. The table also compares joint estimation accuracy

using ground truth(GT) orientation and using a learned regression

model to estimate orientation of the visual hull

data and can be applied to infer poses of humans of var-

ied anthropometry. Experimental evaluation gave promis-

ing results both in terms of joint prediction accuracy and

their ability to generalize to different human subjects.
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