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Abstract

One of the dominant approaches to gesture recognition,
especially when we have one or few samples per class, is
to compute the time-warped distance between the two se-
quences and perform nearest-neighbor classification. In
this work, we show that we get much better results if in-
stead we consider the similarity of the pattern of frame-wise
distances of these two sequences with a third (anchor) se-
quence from the modelbase. We refer to these distance pat-
tern vectors as the warp vectors. If these warp vectors are
similar, then so are the sequences; if not, they are dissimilar.
At the algorithmic core we have two dynamic time warping
processes, one to compute the warp vectors with the anchor
sequences and the other to compare these warp vectors. We
select the anchor sequence to be the one that minimizes the
overall distance, i.e. the sequence with respect to which
these two sequences are the most similar.

We present results on a large dataset of 1500 RGBD se-
quences spanning 150 gesture classes, such as traffic sig-
nals, sign language, and every day actions, extracted from
the ChaLearn Gesture Challenge dataset. We experimented
with three different feature types: difference of frames,
HOG and relational distributions. We found that there were
improvements of 5%, 15%, and 7%, respectively, at 20%
false alarm rate, over traditional two-sequence based time-
warped distance.

1. Introduction
Human gestures are fast becoming the natural form of

human computer interaction. This serves as a motivation to

modeling, analyzing, and recognition of gestures. The large

number of gesture categories such as sign language, traffic

signals, everyday actions and also subtle cultural variations

in gesture classes makes gesture recognition a challenging

problem. Any gesture recognition task involves comparing

an incoming or a query gesture against a training set of ges-

tures. We call a collection of all the instances of all the

classes available for training as a modelbase. These model-

Figure 1: Examples of common gestures include sign language

signals, traffic signals, hand signals and body language from

ChaLearn Gesture Challenge Dataset [1].

bases can have more than one instance per gesture class or

they might have just one instance per class. If there is more

than one instance then the recognition is based on learning

statistics of features from the instances of the modelbase

[7], [15], [5], [17], [19]. But this approach has its prob-

lems such as requiring large amounts of data to cover all

variations of gesture classes or less of such leading to over-

fitting. There has been increasing interest in computer vi-

sion to avoid problems such as collecting and labeling large

amounts of data, in a one-shot-learning approach for gesture

recognition [1], [14], [6], [12]. While the term ‘‘one-shot’’

learning has been loosely used in the literature as one or

few training instances, we consider it to refer to only one

instance per class. We consider recognition in such a con-

text. Methods given in [20], [2], [13], [8], all propose new
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one-shot similarity for images, but none of them use the

one-shot-learning for gesture sequences.

Nearest-neighbor approach for gesture classification

given a distance measure such as a time-warped distance

is one of the dominant approaches in a one-shot-learning

framework [11] [6]. In [6], performance on use of maxi-

mum correlation is experimentally shown. Based on [1],

more than 50% of the proposed approaches uses time

warped distance as a similarity measure in Chalearn ges-

ture challenge. Recently, there have been approaches like

[11] that uses Hidden Markov Models (HMM), where ev-

ery frame is used as a state. We believe that this is similar to

dynamic time warping in a probabilistic framework. Even

though features used in computing similarity measure are

important, we show that having a good similarity measure

helps in boosting the performance of the classification. All

of the measures proposed above consider the direct distance

between an incoming query sequence to a model sequence.

In this work, we show that we get better results if we in-

cluded all training gestures when computing the similarity

between a query and a model.

We introduce the notion of a third ‘anchor’ sequence to

which we compute patterns (warp vectors) of frame-wise

distances from the model and query sequences, respectively.

The ‘triplet’ distance between these distance patterns is then

obtained using a dynamic time warp process. We select the

anchor sequence to be the one that minimizes the triplet dis-

tance, i.e, the sequence with respect to which model and

query sequences are the most similar. In the process of se-

lecting an anchor sequence, warp vectors from a model se-

quence to every other model sequence are computed which

captures how varied a particular model is from every other

model in the modelbase.

The idea of using such modelbase variations has been

adopted as feedback on website text data [16]. This method

uses the distance relation ”A is closer to B than A is to C” to

model data. Likewise, there are other relational clustering

and boosting methods [10], [9], [21], [4]. None of the meth-

ods are used for one-shot-learning for gesture recognition.

The dataset used in our experiments are the gesture se-

quences extracted from the ChaLearn Gesture Challenge

dataset [1]. Our dataset consists of 1500 sequences (both

depth and RGB sequences) spanning 150 gesture classes. A

depth sequence is a gray scale representation of the depth

information. Each gesture in our dataset, has a depth se-

quence and a corresponding RGB sequence. Time-warping

distance is used for baseline performance. We use three

frame-based features in our experiments: difference of

frames, Histogram of Oriented Gradients (HOG) [3], and

Relational Distribution (RD) [18]. Each feature is applied

to every frame in a particular gesture. HOG and relational

distribution features are used on each frame of depth ges-

ture sequences. The difference of frames is performed on

Symbol Meaning

Xi Model sequence.

Q Query sequence.

fXi
(k)

Feature vector f corresponding to frame k in a par-

ticular sequence Xi.

s(Xi,Xk|Xj)

s is a function that takes three gesture sequences

as argument and returns a triplet distance between

the sequence Xi and Xk conditioned on the third

sequence Xj(Sec 2).

d(Xi,Q)
Our Goal: d is a function of s and returns the

distance between the query sequence Q and model

sequence Xi.

w(u,v)

w is a warp vector of distances between corre-

sponding frames (or volume of frames) in the se-

quence u and v, where u, v could be feature se-

quences or two different vector of distances w1

and w2. w is of recursive in nature.

D(k, l)

D is the distance matrix. Each entry is the Eu-

clidean distance between the feature vector, f of

frame k from sequence Xi to the feature vector, f
of frame l from sequence Xj.

Table 1: Summary of notations and terminologies used in

this paper.

the RGB sequence by subtracting the first frame with ev-

ery following frame. We use the vectorized representation

of these difference frames as our features. Figure 1 shows

examples of different categories of gestures in the dataset.

The notations used in this paper are summarized in Table 1.

The layout of this paper is as follows: Section 2 shows

how to calculate the triplet distance based on two warp vec-

tors. Section 3 explains the use of the triplet distance to

determine the anchor sequence and compute a new similar-

ity (Refer to Table 1). Section 4 gives details about the

experiments performed and the results achieved.

2. Triplet distance
Triplet distance is the concept of finding distance be-

tween two gesture sequences using a third (anchor) se-

quence. We consider the pattern (warp vectors) of frame-

wise distances of two sequences with an anchor sequence.

If these warp vectors are the similar, then so are the se-

quences; if not, they are dissimilar. Triplet distances are

the fundamental blocks of the similarity measure proposed

in the section 3. At the core of this distance, we have two

time-warp processes, once to capture warp vectors and the

other to compute the triplet distance between the warp vec-

tors.

For explanation purposes, we assume that there are only

two models sequences, Xi and Xj in the modelbase and a
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Figure 2: Conceptual illustration of triplet distance between three sequences: model sequence Xi, anchor sequence Xj and a query

sequence Q. Warp vectors (time-warp path w) between model sequence Xi and anchor sequenceXj, and between query sequence Q
and anchor sequenceXj are extracted. Dynamic time warp is applied between the two warp vectors w(Xi,Xj) and w(Q,Xj) to yield a

distance between query sequence Q and model sequence Xi. This triplet distance finds the minimized cumulative sum between the warp

vectors.

query Q. Our main goal here is to calculate how similar

a model Xi is to query Q conditioned on another model

Xj. Warp vector, w, captures the weights of the correspon-

dences between frames based on their distances given by the

non-symmetric matrix D. This matrix is non-symmetric be-

cause each entry in this matrix is a distance from a frame in

one sequence to a frame in another sequence and both se-

quences are allowed to have different number of frames. As

the number the frames of query and model sequences can

be of different lengths, we allow warp vectors to be also of

varying length.

A detailed illustration of the triplet distance function,

s(Xi,Q|Xj) is given in Figure 2. In this figure, we have a

gesture represented as set of images, warp vectors (w) are

represented as curves. In order to get the triplet distance,

dynamic time warp is applied one more time on the two

warp vectors to obtain w and a minimized distance.

In order to overcome varying length, a cost matrix be-

tween the two warp vectors is build that needs to be com-

pared. Equation 1, takes the cost between the warp vec-

tors as Euclidean and dynamic time warping process is per-

formed once more on this cost matrix between the two warp

vectors. Here also the time-warp path (w) is a vector of dis-

tances between the two warp vectors and the sum of these

distances gives us the triplet distance. This also is essen-

tially comparing two distance matrices of different sizes.

Dynamic time warp helps to maintain the time linear prop-

erty of the gesture sequences. The value of s(Xi,Q|Xj)is
greater than or equal to zero.

s(Xi,Q|Xj) = wT(w(Xi,Xj),w(Xj,Q))1 (1)

where (w(Xi,Xj),w(Xj,Q)) are the warped distance

vectors obtained by performing dynamic time warp. The

time-warp captures the distances which minimizes the dis-

tance between the pairs (Xi,Xj) and (Xj,Q). The vector

of ones (1) denote that all the values in w are summed to-

gether.

2.1. Warp Vector

Given a pair of gesture sequences, we want to capture

a pattern vector from the distance matrix (D) that has the

frame-wise distances. We use dynamic time warping pro-

cess and its resultant distances along the warp path to cap-

ture pattern vector and we call this as warp vector w be-

tween two gesture sequences. Before performing the time-

warp process, we propose some pre-processing steps on D,

in order to speed up warp vector computation and noise re-

duction in distances. These two pre-processing goals are

attained by averaging the distances in D over a temporal

window R. We take the average in order to capture only

those distances which capture the largest distance between

a pair of frames. Similarly, the small changes will have

smaller distance values. Hence, taking the average captures

the larger changes as larger distances weigh more in each

block. We call this process as noise reduction. We then nor-

malize the averaged values and this pre-processing process

is captured by the following equation:

D(k, l) = 1− e

(
−

k+R∑

k−R

l+R∑

l−R

||fXi
(k)−fXj

(l)||2
)

(2)
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Figure 3: Our Goal: Distance d(X1,Q) (directed edge) . Conceptual illustration of our proposed approach is shown here. There are 4
model sequences {X1, . . . ,X4} and a query sequence Q. The task is to compute a distance (d(X1,Q)) between model sequence X1 and

query sequence Q. The decision on d(X1,Q) is based on a set of triplet distance s (Refer to Table 1 for notations). Model sequences

(X2,X3,X4) are potential anchor sequences. Same color is used for the two undirected edges suggest that they both belong to the same

triplet distance and capture the frame-wise distance pattern between the two connected sequences.

Where l = {1, . . . , (K/R)}, k = {1, . . . , (L/R)}. The

first step towards building warp vectors, w(Xi.Xj) is to ex-

tract features from gesture sequences Xi and Xi. fXi
(k)

is the feature vector f corresponding to frame k in the se-

quence Xi. Any frame-wise feature can be applied, as long

as the features capture motion and/or shape of the gesture.

The Euclidean distance shown in Equation 2, gives the dis-

tance between a pair of frames. We have used three types of

frame-wise features: difference of frames, histogram of gra-

dient orientations (HOG) and relational distribution (RD).

Distances in D are divided into equal size blocks R × R.

In each block, distances are averaged and these averaged

distances are used to compute warp vectors.

3. Similarity using Triplet Distance

Let M: {X1,X2, . . . ,XN}, be the set of single instance

model sequences. Each element Xi in M is a sequence

that represents a particular gesture class. Our goal is to

compute a distance d(Xi,Q) between query sequence Q
and each model sequence Xi. To take into account how

a model sequence varies from other models in the model-

base, we use the notion of triplet distances, s(Xi,Q|Xj)
(see Table 1 for notation details) based on the following

idea. If query sequence Q matches model sequence Xi,
then its distance to another model sequence Xj, which
we call an anchor sequence, should be similar to the

variation between model sequences Xi and Xj. Triplet

distance function s(Xi,Q|Xj) is composed of two warp

vectors, w(Xi,Xj) and w(Q,Xj), that define the relation-

ship between sequences Xi and Xj, and sequences Q and

Xj, respectively. w, is defined as a vector of distances be-

tween each frame of one sequence aligned to every frame

in another sequence. The triplet distance is a scalar value

based on the comparison of the warp vectors w. Lower the

value, better the match between Q and Xi. The distance

d(Xi,Q) is then computed by taking the minimum of all

triplet distances s(Xi,Q|Xj) in the set M :

d(Xi,Q) = min
j �=i

s(Xi,Q|Xj) (3)

This process is illustrated in Figure 3 using 4 model se-

quences and a query sequence Q. In order to compute the

similarity between a model sequence X1 and a query se-

quence Q, we use triplet distances that are conditioned on

model sequences X2, X3 and X4. Triplet distances are de-

noted by similarly colored edges that connect every triplet

of videos in this figure. Each s is conditioned on a particular

model sequence, which is a potential anchor sequence. The

edges denote the pattern of frame-wise distances between

two sequences. The directed edge denotes the new distance

between X1 and Q. This distance will always have an an-

chor sequence associated with it.

In order to give some insight into triplet distances, con-
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sider this example, if Q = Xi, then s(Xi,Q|X1) =
0. This shows that the distances between the pair

(w(Q,X1),w(X1,Xi)), are exactly the same. This would

be the case for all the triplet distances in Equation 3. Hence,

choosing the minimum out of these gives us the minimum

distance between the query Q and model Xi. And as query

Q moves away from model Xi, the distance between them

increases. Moving away from another can be construed as

Q moving closer to another class away from Xi.

4. Discussion and Results
The dataset used in our experiments are the gesture se-

quences extracted from the ChaLearn Gesture Challenge

dataset [1]. Our dataset consists of 1500 sequences (both

depth and RGB sequences) spanning 150 gesture classes.

The depth sequence is a gray scale representation of the

depth information. The depth image has the advantage of

being invariant to the appearance of the subject perform-

ing the gesture. For each gesture in our dataset, we have a

depth sequence and a corresponding RGB sequence. The

RGB and corresponding gesture sequences are divided into

15 batches. Each batch is a gesture of different category

and every batch has 100 sequences out of which, 8 to 15

are model sequences and remaining are query sequences.

The model gesture involves body language gesture, gestures

which accompany speech, signs from sign language, traffic

signals, every day actions such as drinking or writing, ges-

tures made to mimic actions and dance postures. The query

sequences contain 1 to 5 sequences in a single test instance.

For the experiments in this paper, we use ground truth to

manually segment query instances into individual gestures.

We use three different feature types and show per-

formance over each of the feature type. We also show

performances for each batch for one feature type and

highlight the positive and negative gain in performance

over the baseline performance. We show all visual results

of gestures by representing them as motion history images.

These images are for showing the movement and shapes of

the gestures and were NOT used in our experiments.

Performance Measure: We evaluate the applicability

of the distance measure and its effectiveness by computing

performance as an ROC curve. This ROC curve represents

a binary match, non-match test of the query sequences. We

consider all the distances between the model and query

sequences and test it against the ground truth. ROC curves

are generated by varying a threshold variable. All the query

sequences that were correctly matched, above a given

threshold, are considered to be true positives. Similarly,

all the query sequences that were incorrectly matched are

considered to be false alarms. All the ROCs are shown up

to 20% false alarm rate. Each ROC is built by averaging

over all the batches in the dataset.

4.1. Anchor Sequence Analysis

Anchor sequence as explained earlier is the common

element between two gesture sequences in the triplet

distances. These anchor provide the relative information

between query Q and model Xi sequences. When selecting

the best similarity between two sequences, we look at the

anchor that provides the distance minimizes the distance

between the query and model sequence. In Figure 4, we

show two sets of model sequences corresponding to two

batches, each with 8 model sequences in its modelbase.

We show gesture sequences represented as motion history

images. This representation is for display purposes only,

as it shows the motion and shapes involved in a particular

gesture. The highlighted gesture is considered to be the

majority anchor for a particular batch. This anchor was

chosen 433 and 308 times in the modelbase of their respec-

tive batches. We cannot categorize a model as a majority

anchor just by anchor selection count, as it depends on the

number of times that particular model appears as a query

sequence. There might be a case where a single model class

could have the same number of anchor sequence selections.

Hence, we have to look at the query distribution also and

is important when labeling a model as the majority anchor.

In Figure 4a and 4b, we can see that the anchor sequence

that has the largest value does not equal the number of

comparison of the query sequence with the highest instance

count. The number of comparisons for this is 14 × 8 = 112,

which much less than 433 and 308 anchor selection count.

Although 1/3rd of the times the same anchor sequence is

selected, making it the dominant anchor sequence for that

modelbase, the determination of majority anchor is in this

paper purely experimental.

Min vs Mean: We compare the performance between two

variants of choosing the anchor given by Equation 3. As

similarity is a function of triplet distances, we consider min-

imization of all the triplet distances and the mean of the

triplet distance as the two variants. Here we changed the

minimization function into calculating the mean of all the

triplet distances. This means that there is no minimized an-

chor video, but a mean of collection of all the anchor videos.

The performance of these two variants are shown in Figure

6 for frame-wise HOG features. There is a dip in perfor-

mance when mean of anchors were used. In another vari-

ant, instead of picking the minimum anchor sequence, we

picked the maximum. This version performed poorly when

compared to the baseline and hence not shown in Figure 6.

4.2. Performance

Our proposed method is compared with the baseline dis-

tance based on dynamic time warping process and perfor-

mances are shown using ROC curves. Both the measures

have the same set of features. Figure 7 (Left), shows the
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(a)

(b)

Figure 4: Anchor sequence analysis for two batches. Model sequence ordered (left to right) based on the how many times (blue bar) a

video was chosen as anchor sequence. Here the majority anchor (highlighted in blue) was chosen 433 times for batch in Figure 4a and 308
times for batch in Figure 4b. Both the majority anchors were represented as test in only 10 instances leading to 10 × 8 = 80 comparisons.

The motion history images shown here are for representation purpose, NOT included in the calculation of anchor videos. Highlighted

videos were the majority anchor.

Figure 5: (a) Correctly matched sequence using proposed similarity measure, (b) Model sequence, (c) Mis-matched sequence using

time-warp distance and (d) Chosen anchor sequence.

performance curves for HOG features. The dotted line in

the plot below shows the method of using dynamic time

warp with just the features and the solid lines represents our

method. As shown in the performance of our method is

better than the method using the features directly, with an

improvement in detection rate of 5%. We have a constant

window size (2 frames) for speedup and noise reduction.

Match and non-match test based on proposed measure and

time-warp distance is shown in Figure 5. The anchor se-

quence that was chosen for similarity is also shown and the

same anchor is also a majority anchor.

We use two more feature types and generate ROC curves.

Here the window size (2 frames) is again constant (chosen

from a subset of classes) for the entire dataset and can be

different for each feature type. In Figure 7 (Middle), we see

the match, non-match results for the difference of frames
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Figure 6: Comparing two different variants of our approach. The

two variants are applied when minimum and mean of the anchor

videos are considered. The ROC is plotted up to a false alarm rate

of 20%.

(DOF) features and similarly Figure 7 (Right) shows the re-

sult for relational distribution features. The result does vary

based on the features used. The performance between using

dynamic time warp process based distance measure versus

using the triplet distance based distance shows an improve-

ment of around 15% and 7% for difference of frames and

relational distribution as features respectively at 20% false

alarm rate.

4.3. Batch Level Performance

We use 15 different batches and an example of each these

batches are shown in Figure 1. These batches represent dif-

ferent categories of gestures performed. The results (Table

2) of our proposed approach when compared to picking the

mean of the warp path from time-warp process vary in re-

sult depending on the category of gesture. All the perfor-

mances shown in Table 2 are percentage of positive detec-

tions. The performances on six of the 15 batches have more

than 90% accuracy in both the techniques, suggesting that

the gesture category might not be challenging. Even if any

increase in performance was possible, the increase as a per-

centage of positive detection would not be significant. The

batches where there is performance degradation when using

a particular feature type, our approach has shown to provide

significant improvements. The improvement marks sugges-

tions that features have successfully captured how varied

modelbase is, and is used by our approach to decide on

the similarity. The two batches that needs to be noted are

Batch 14 and Batch 15 in Table 2. These two batches are of

category – Surgeon Signals and Gang Hand Signals1. The

positive detection rate depends on the number of query se-

quences in a particular batch. Each batch has a range of

85 to 92 query sequences. We use this fact as our measure

to test whether the gain is significant or not. We take the

error of removing one query from the each batch. As the

batch have different number of query, we consider the num-

ber of query to be 100 and say that the error of removing

one query is 1/100. If a gain is outside this error, then we

say that the gain was significant. We do not consider gain

for positive detection of more than 90% as significant. We

have 7 batches out of 15 that has a gain percentage outside

the error window, which makes them significant. The gain

percentages are color coded in Table 2 – significant (green),

non-significant (red).

5. Conclusion
In this paper, we have introduced the concept of triplet

distances and warp vectors. We have shown the advantages

of using warp vectors in conjunction with triplet distances

in terms of improvement in performance one-shot learn-

ing framework. As we are choosing the anchor sequence

from a set of model sequences that are not currently being

compared, we can say that the similarity measure takes into

account how varied a particular model is from every other

model in the modelbase. This improvement in the result

shows that the vector of distances should not be ignored.

As the proposed approach captures how similar a particular

gesture is from another gesture, this measure can be used in

tasks such as clustering of gesture sequences. Even though

the triplet distance was developed for frame-wise represen-

tation, we used the triplet distances for image representation

and found that using the triplet distance approach did not

give any improvement and more important is the fact that

our approach did not hurt the performance over the direct

distance between the query and model sequences. Similarly

we can replace warp vectors computed from time-warp with

other distance vectors that captures the frame-wise distance

patterns. Our future work involves a theoretical analysis of

this triplet distances and exploring the use of this similarity

measure in other classification and clustering tasks.

References
[1] Chalearn gesture dataset (cgd2011-

http://gesture.chalearn.org/2011-one-shot-learning.

ChaLearn, California, 2011. 1, 2, 5

[2] One shot similarity metric learning for action recognition. In

Similarity-Based Pattern Recognition, volume 7005, pages

31–45, 2011. 1

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In International Conference on Computer
Vision and Pattern Recognition, pages 886–893, 2005. 2

[4] O. Danielsson, B. Rasolzadeh, and S. Carlsson. Gated classi-

fiers: Boosting under high intra-class variation. pages 2673–

2680, 2011. 2

[5] J. Davis and M. Shah. Recognizing hand gestures. In In
Proc. of European Conference on Computer Vision, 1994. 1

[6] L. S. Di Wu, Fan Zhu. One shot learning gesture recognition

from rgbd images. In International Conference on Computer

512512512512



Figure 7: ROC curves for two matching methods our method (solid) and dynamic time warp (dotted). The three plots show the per-

formances on different features - Histogram of Oriented Gradients (HOG) (Left), Difference of Frames (DOF) (Middle) and Relational

Distribution (RD) (Right). The ROCs are plotted up to a false alarm rate of 20%.

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DTW (%) 93.2±1 79.5±1 53.2±1 92.2±1 92.9±1 74.4±1 92.3±1 89.6±1 56±1 53.6±1 64.6±1 90.2±1 90.5±1 61±1 55.8±1

Triplet Approach (%) 92.8 85.2 64.3 91.2 96.7 86.6 96.6 93.4 70.3 74.6 80.3 90.4 87.3 91.1 84.3

Gain/Significance (%) -0.4 5.6 11.1 -1.0 3.8 12.2 4.2 3.8 14.3 20.9 15.7 0.4 -3.2 30.0 28.5

Table 2: Table showing detection rates for each individual batch (consisting of 100 sequences) at fixed false alarm rate of 20%. The

two gains from batches 14 and 15 are of gesture category surgeon signs and Gang Hand signals respectively, which yielded the top two

improvements over baseline. The gain row also shows the significance test. The significant (green) results all show improvements over the

baseline. The non-significant ones are marked in red.

Vision & Pattern Recognition, Workshop on Gesture Recog-
nition, 2012. 1, 2

[7] A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis. Learn-

ing dynamics for exemplar-based gesture recognition. pages

571–578, 2003. 1

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of

object categories. IEEE Trans. Pattern Anal. Mach. Intell.,
28(4):594–611, 2006. 1

[9] R. J. Hathaway and J. C. Bezdek. Nerf c-means: Non-

euclidean relational fuzzy clustering. Pattern Recognition,

27:429–437, 1994. 2

[10] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek. Rela-

tional duals of the c-means clustering algorithms. Pattern
Recognition, 22:205–212, 1989. 2

[11] E. Jackson. An hmm-based approach for gesture recognition

using edge features. In International Conference on Com-
puter Vision & Pattern Recognition, Workshop on Gesture
Recognition, 2012. 2

[12] T. Kadir, R. Bowden, E. J. Ong, and A. Zisserman. Minimal

training, large lexicon, unconstrained sign language recogni-

tion. In British Machine Vision Conference, 2004. 1

[13] O. Kliper-Gross, T. Hassner, and L. Wolf. In SIMBAD, Lec-
ture Notes in Computer Science, pages 31–45. Springer. 1

[14] Y. M. Lui. A least squares regression framework on mani-

folds and its application to gesture recognition. In Interna-
tional Conference on Computer Vision & Pattern Recogni-
tion, Workshop on Gesture Recognition, 2012. 1

[15] S. Rajko, G. Qian, T. Ingalls, and J. James. Real-time gesture

recognition with minimal training requirements and on-line

learning. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1 –8, 2007. 1

[16] M. Schultz and T. Joachims. Learning a distance metric from

relative comparisons. In NIPS, 2003. 2

[17] H.-I. Suk, B.-K. Sin, and S.-W. Lee. Hand gesture recogni-

tion based on dynamic bayesian network framework. Pattern
Recognition, 43(9):3059–3072, 2010. 1

[18] I. R. Vega and S. Sarkar. Statistical motion model based

on the change of feature relationships: human gait-based

recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
25(10):1323–1328, 2003. 2

[19] D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-

based methods for action representation, segmentation and

recognition. Comput. Vis. Image Underst., 115(2):224–241,

2011. 1

[20] L. Wolf, T. Hassner, and Y. Taigman. The one-shot similar-

ity kernel. In IEEE International Conference on Computer
Vision, 2009. 1

[21] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Dis-

tance metric learning with application to clustering with

side-information. In NIPS, pages 505–512, 2002. 2

513513513513


