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Abstract

We present a novel approach to 3D human action recog-
nition based on a feature-level fusion of spatiotemporal fea-
tures and skeleton joints. First, 3D interest points detection
and local feature description are performed to extract spa-
tiotemporal motion information. Then the frame difference
and pairwise distances of skeleton joint positions are com-
puted to characterize the spatial information of the joints in
3D space. These two features are complementary to each
other. A fusion scheme is then proposed to combine them
effectively based on the random forests method. The pro-
posed approach is validated on three challenging 3D ac-
tion datasets for human action recognition. Experimental
results show that the proposed approach outperforms the
state-of-the-art methods on all three datasets.

1. Introduction

Human action recognition is to automatically recognize
ongoing actions performed by humans. Human action
recognition has a variety of applications in real world, such
as Human Computer Interaction (HCI), video surveillance,
video retrieval and video games. In the past decades, many
approaches have been proposed to solve the action recogni-
tion problem on the visible light or RGB video sequences
[19, 1, 24]. Recently, with the launch of the Kinect sen-
sor [16], human action recognition in 3D data has become
a very active research topic in computer vision. Besides,
in Shotton et al. [16]’s work, a quick estimation is feasible
to obtain 3D human skeleton joint positions from the depth
maps. Thus, using the Kinect sensor, three channels (RGB,
depth and skeleton joint positions) of information can be
provided, which can benefit robotics and human centered
computing problems, and bring a broader scope for action
recognition research [4].

There are several representative works for 3D action
recognition. Li et al. [10] proposed an action graph for
depth action recognition. A bag of 3D points sampled on
depth data is used to encode the action posture, and ac-
tion graph is used to model the dynamics of the actions.

Wang et al. [23] proposed to combine the skeleton fea-
ture and local occupation feature, then learned an action-
lets ensemble model to represent actions. A multiple ker-
nel learning method is used to combine the actionlets. In
[22], Wang et al. proposed a semi-local feature called Ran-
dom Occupancy Patterns (ROP), which is extracted from
4D volumes. Sparse coding is utilized to encode the fea-
tures and the SVM is used for classification. Vieira et al.
[20] proposed a space-time occupancy patterns to represent
depth sequences. Both space and time axes are divided into
multiple segments. Occupancy feature is computed in each
cell, and a nearest neighbor classifier is applied for action
recognition. Different approaches based on Motion History
Images (MHI) are proposed by Yang et al. [28, 27, 29].
The main idea is to use accumulated depth maps and com-
pute histogram of gradients (HOG) features, to represent
human actions. Xia et al. [26] proposed an alternative fea-
ture called HOJ3D based on the skeleton joints. A coordi-
nate based on skeleton joints is constructed, and multiple
3D bins are used to extract histogram features, by count-
ing the number of joints in each bin. A Hidden Markov
Model is used for action classification. Similarly, Miranda
et al. [11] used the pose descriptor in a torso-based co-
ordinate system and the SVM classifier to learn key poses
and a decision forest is used to recognize the action classes.
More recently, Oreifej et al. [14] described the depth se-
quence as a histogram (HON4D) captured in the 4D space
of time, depth and spatial coordinates. A 600-cell poly-
chorons is used to quantize and represent the features. SVM
classifier is used and showed a good performance for ac-
tion recognition. Sung et al. [17] combined both the RGB
and depth channels for action recognition. Hand positions,
body pose and motion features are extracted from skele-
ton joints. HOG is used as the descriptor for both RGB
and depth images. A two-layer maximum-entropy Markov
model is trained for classification. There are some other
works on human motion analysis using depth imagery, see
[4] for details.

On the other hand, the spatiotemporal interest points
(STIPs) features have shown promising results in regular
visible light action datasets. Several local space-time fea-
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tures for visible light action recognition have been pro-
posed. Laptev et al. [8] extends Harris corner detection[6]
to space and time, and proposed some effective methods
to make spatiotemporal interest points (STIPs) velocity-
adaptive. Dollar et al.[5] proposed an alternative interest
point detector which applied Gabor filter on the spatial and
temporal dimensions. In Willems et al.’s work [25], a 3D
Hessian matrix is used to determine the interest points by
its matrix determinant. They also extends SURF descrip-
tor to space-time as the feature descriptor. Recently, Wang
et al. [21] made a comprehensive evaluation with various
detectors and descriptors on different RGB action datasets.
However, only a few work has utilized the STIPs features
for depth action recognition. Zhang et al. [30] in their ap-
proach extends the STIPs approach by Dollar el al. [5] to
the fourth dimension. Ni et al. [12] extends the Harris3D
detector and HOG/HOF descriptor [9], by adding depth in-
formation to 2D features. This feature has also been eval-
uated by Ofli et al. [13] on depth data in introducing their
multimodal action dataset. Zhao et al. [31] proposed to
adapt the STIPs detected on RGB data to the depth data and
combine the two channels for action recognition.

The local features extracted by spatiotemporal interest
points methods can capture complex motions in the video,
however, some interest points may be detected on the un-
related areas such as the background, because of the noise
in depth imagery. The STIPs methods usually work on ac-
tions with large motions. While the skeleton joints features
represent human postures, which can capture the spatial in-
formation well in human actions. Nevertheless, incorrect
detection of the joint positions or the loss of human body
detection will dramatically effect the action analysis based
on skeleton joints. To overcome the drawbacks in either
approach, we propose to combine them based on a feature-
level fusion scheme. The fusion is accomplished by the ran-
dom forests method. The objective of combining features
from two distinct channels (depth maps & skeleton joints)
is to obtain a new representation that can characterize 3D
actions better. The random forests method [3] is applied
to perform feature fusion, selection, and action classifica-
tion altogether. It is based on randomly selecting features
from either set (STIPs or joints) in each node and construct
multiple decision trees to solve the 3D action classification
problem. As a result, our approach can combine different,
complementary features effectively, to form a new represen-
tation of 3D actions and improve the recognition accuracy.

The rest of this paper is organized as follows. In Section
2, our proposed approach is presented. Then the experimen-
tal details and experimental results are shown in Section 3.
Finally, we draw conclusions.

2. Our Approach

The proposed method has four major steps. First, spa-
tiotemporal features are extracted on depth sequences. Then
skeleton joints features are computed from the skeleton
joint positions. Thirdly a quantization is performed for the
two features respectively, to encode the action sequences
with histograms. Finally, a feature-level fusion and action
recognition is executed using the random forests method.

2.1. Spatiotemporal Features

Spatiotemporal features are used to capture the complex
motion of human actions on depth data. Among the var-
ious spatiotemporal interest point detectors and local fea-
ture descriptors[15], we have attempted several combina-
tions and select the ones that have a better performance for
3D actions. Because of the space limit, only the best ones
in each dataset are presented. The Harris3D detector [8]
computes the locations of the interest points according to
the response function: H = det(μ)− k · trace3(μ), where
μ = g(·) × M , g(·) is a Gaussian weight function, and
M is the second-moment matrix of which the convolution
of spatiotemporal gaussian kernel with the video sequence.
Similar to the Harris3D detector, [25] proposed the Hes-
sian detector, to use a Hessian Matrix H , and the response
function S = |det(H)| to measure the strength of each in-
terest point. HOG/HOF descriptor was proposed in [9], to
describe local human motion in RGB videos. It computes
the histogram of gradient(HOG) and histogram of optical
Flow(HOF) in each local volume. Klaser et al.[7] extends
the HOG to HOG3D descriptor, which computes the 3D
gradient and bins a histogram as the feature vector. ESURF
descriptor [25] is an extension of the SURF[2] descriptor
that computes the response of Haar-wavelets along three
direction and stores the sum as the feature vector. In this
work, these spatiotemporal features are used on 3D depth
actions other than RGB actions. We found that these fea-
tures perform differently in different 3D action datasets (see
experiments).

2.2. Skeleton Joints Features

The spatiotemporal features are local descriptions of hu-
man motions, without considering the spatial information
of human body parts which might be important for action
encoding. Provided that the human skeleton joints can be
estimated fast on 3D data [16], and inspired by Yang et al.’s
work [28], we use the histogram of the skeleton joints fea-
tures to complement the spatiotemporal features. Different
from [28] where the Naive Bayes classifier is used, we com-
pute the histogram of the joints to combine with the STIP
features.

The features from joint locations consist of three parts:
(1) current posture: pair-wise joint distances in current pos-
ture; (2) motion: joints difference between current posture
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and the original (in the first frame); and (3) offset: joints
differences between current posture and the previous one.
A concatenation of the three feature vectors is used to rep-
resent the feature for a specific action. The PCA technique
is applied for dimensionality reduction.

Specifically, denote p the 3D skeleton joints, for each
joint, pi = (xi(t), yi(t), zi(t)) at frame t. The number of
skeleton joints in each frame is denoted asN . So the feature
vector can be denoted as:

f = [fcurrent fmotion foffset], (1)

fcurrent = {pi − pj | i �= j i, j = 1..N}, (2)

fmotion = {pi(t)− pi(t− 1) | i = 1..N}, (3)

foffset = {pi(t)− pi(0) | i = 1..N}, (4)

where p(0) denotes the original posture in each action se-
quence. The first frame in each sequence (the neutral pos-
ture) is used as p(0) in our experiment. A linear normaliza-
tion is applied to normalize the feature values to the range
of [−1, 1].

2.3. Feature Quantization

Now we have two features: the spatiotemporal features
representing local motions at different 3D interest points,
and the skeleton joints features representing spatial loca-
tions of body parts. To represent each action sequence, we
quantize the STIPs features and the skeleton joints feature,
respectively, based on K-means clustering. The cluster cen-
ters are used as the keywords to construct the histogram
bins. Then histogram features are extracted by counting the
occurrences of keywords in each depth action sequence. Af-
ter this step, each action sequence can be represented as two
histograms of features: the histogram of STIPs features, and
the histogram of skeleton joints features. Then these fea-
tures are used in the next step for feature-level fusion and
action classification.

2.4. Fusion and Classification using the Random
Forests

In order to perform the fusion and feature selection of
spatiotemporal features and the skeleton joints features, we
propose to use the random forests (RFs) method [3]. RFs
are usually considered as a classifier using tree predictors
in which each tree splits the data depends on the randomly
selected features. There are many nice properties to use
the random forests: (1) robustness to noise, (2) efficiency
for classification, and (3) the improvement of accuracy by
growing multiple trees and vote for the most popular class.
Here we use the RFs for fusion of distinct features and ac-
tion classification together.

Let the feature vector be v ∈ R
N , where the number of

the features for each sample isN . A numbern < N is spec-
ified at each node of the tree, where n features are randomly

selected to determine the split of that node. The randomly
selected n features contain spatiotemporal features partially
and the skeleton joints partially. In this way, the feature fu-
sion is executed randomly and naturally in the tree building
process.

At each node, the split function, fn(v) : Rn → R, is
based on comparing to a threshold tn ∈ R; the left split is
then,

Ileft = {i ∈ In|f(vi) < t}, (5)

where I are the training examples falling into that node.
The feature vector, vi, is of length n, and randomly selected
from the N features. The best split is determined by the
information gain using these features:

ΔGain =
2∑

i=1

⎛
⎝ |Ii|

I

C∑
j=1

qi,j · log2(qi,j)

⎞
⎠ , (6)

where | · | is the size of the set. Ii are the two splits, Ileft

and Iright, qi,j is the proportion of samples in Ii belonging
to class j, and C is the number of classes. Several deci-
sion trees are growing to generate a forest in this way, and
each tree grows until it reaches the maximum tree depth
maxdep, or the tree node receives the given number of min-
imum samples minnode. In the leaf nodes, the probabilistic
distribution for each class is computed.

In testing, each test sample x goes down to one of the leaf
nodes in each tree, denoted as l(t, x), which contains the
distribution Pn of all the classes. Random forests classifier
chooses the most popular class label which gets the most
vote over all the trees. The class label is determined by:

ĉ = arg max
j

1
T

T∑
t=1

pj
l(t,x), (7)

where ĉ is the predicted class label, T is the total number of
trees, l(t, x) is the leaf node of tree twhere the test sample x
falling into. pj

l(t,x) is the posterior probabilities for class j at

leaf node l(t, x), pj
n = |Sj |

|S| , where |S| is the total number of
samples in this leaf node and |Sj | is the number of samples
of class j in S.

3. Experiments

Our action recognition experiments are conducted on
three challenging 3D action databases. We introduce the
three databases and the experimental settings, and then
present and analyze the experimental results.

3.1. Databases and Experimental Settings

Three different 3D action databases are used in our ex-
periments to test the performance of the proposed approach.
The first is the MSRAction3D action dataset [10], captur-
ing human subjects standing at the same place with most of
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the actions related to upper body movement, e.g. high arm
wave, draw circle and boxing. The second is the UTKinect-
Action dataset [26] which collects common human actions
using the Kinect. The actions are very different from the
MSRAction3D dataset, including walk, pickup, and throw.
The third is the CAD-60 dataset [17], where 12 human ac-
tivities are collected in five different locations, using the
Kinect installed on a robot. The activities in this dataset are
more complex than the other two datasets, such as opening
pill container, cooking, and brushing teeth.

MSRAction3D dataset [10] captures 20 human actions
using a depth camera similar to the Kinect sensor. Totally
10 subjects were asked to perform the 20 action classes 3
times. Each video clip is of resolution 640 × 480 at 15fps.
We used all of the 557 video clips, along with the skeleton
joint locations provided by [10]. In our experiment, we fol-
low the same settings of “cross-subjects” as in [10]. The
whole dataset was divided into 3 subsets, half of the sub-
jects are used for training while the other half of subjects
are used for testing. The final accuracy on this dataset is the
average of the accuracies on the three subsets.

UTKinect-Action dataset [26] contains 10 different ac-
tion classes performed by 10 subjects, collected by a sta-
tionary Kinect sensor. The 10 action classes are: walk,
sit down, stand up, pick up, carry, throw, push, pull, wave
hands, clap hands. Depth sequences are provided with res-
olution 320 × 240, and skeleton joint locations are also
provided in this dataset. In our experiment, we used the
cross-subjects scheme where half of the subjects are used
for training while the remaining for testing, which is dif-
ferent from the leave-one-out scheme in [26] where more
subjects were used for training in each round.

Cornell Activity Dataset-60 (CAD-60) [17] has 60 RGB-
D sequences collected by Kinect sensor , each video is of
length about 45s. In this dataset, four different subjects per-
formed 10 different activities in five locations. The five lo-
cations are: office, kitchen, bedroom, bathroom and living
room. To reduce the computational complexity, we first sub-
sampled each video to the length about 500 frames. Then
we follow the same procedure of “new person” as in [17]
for training and testing.

We attempted different combinations of the STIPs detec-
tors and descriptors, and they perform differently on differ-
ent datasets, because of the different action categories and
application scenarios. We selected the best spatiotemporal
feature corresponding to each dataset in order to combine
with the skeleton joints features. Specifically, the Harris3D
detector and HOG/HOF descriptor are used to represent the
local features on MSRAction3D dataset. On the UTKinect-
Action dataset, the Harris3D detector and HOG3D descrip-
tor perform the best to extract spatiotemporal features. On
CAD-60 dataset, the Hessian detector and ESURF descrip-
tor are adopted. The SVM classifier is applied to find the

Table 1. Accuracies on three datasets. RFs denotes the random
forests method.

MSRAction3D Acc.
STIPs (Harris3D+HOG/HOF) 77.5%
Skeleton Joint Features 90.9%
Combined features with RFs 94.3%

UTKinect-Action Acc.
STIPs (Harris3D+HOG3D) 80.8%
Skeleton Joint Features 87.9%
Combined features with RFs 91.9%

CAD-60 Acc.
STIPs (Hessian+ESURF) 75.0%
Skeleton Joint Features 81.3%
Combined features with RFs 87.5%

best spatiotemporal feature for each dataset. After feature
extraction, the K-means clustering is applied to quantize the
features. Empirically we set K = 100 to get the clusters or
keywords. For the skeleton joints feature, we perform clus-
tering similarly to obtain the histogram features. Then the
random forests method is applied for data fusion, selection
and action classification. The number of trees in the random
forests is set in the range of [1, 300] to explore the perfor-
mance, and the number of features to select at each tree
node is set in the range of [5, 60] to observe the differences.

3.2. Experimental Results

We first evaluate the performance of the proposed ap-
proach on the three challenging 3D action datasets. Then
we compare our results to the state-of-the-art methods to
demonstrate the superiority of the proposed approach.

The experiment results on the MSRAction3D dataset are
shown in Table 1. From the results one can see that, the
accuracy is 77.5% using only the STIPs features and 90.9%
using the skeleton joints features. The skeleton feature has
a higher accuracy than the STIPs. It is probably because
that the skeleton joint positions are relatively accurate in
this dataset and the action classes are more separable based
on measuring the body part positions. Using our fusion ap-
proach, the recognition rate is improved to 94.3%, higher
than either of the two features. This result validates our pro-
posed approach, i.e., combining the distinct, complemen-
tary features can improve the 3D action recognition perfor-
mance. Figure 1 shows the confusion matrices on the three
subsets, AS1, AS2, and AS3, respectively.

The experimental results on UTKinect-Action dataset
can be found in Table 1. The STIPs features and the skele-
ton joints features can obtain recognition rates of 80.8%
and 87.9%, respectively. A much better performance is ob-
tained by the fusion with an accuracy of 91.9%. In the con-
fusion matrix (see Figure 2), one can see only two action
classes with the recognition rate below 0.9. These are dif-
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Figure 1. Confusion Matrix of the proposed approach on MSRAction3D dataset. AS1-3 means the action subsets, we follow the same
settings as in [10].

Figure 2. Confusion Matrix of the proposed approach on
UTKinect-Action dataset.

ficult cases, such as distinguishing between carry and walk,
push and throw, which have similar motions. Even with this,
the proposed fusion scheme can still improve the recogni-
tion accuracy significantly.

The results on CAD-60 dataset are in Table 1. When
only the STIPs feature is used, the recognition rate is 75.0%.
When the skeleton joint feature is adopted only, the accu-
racy is 81.3%. By combining the two features, the accuracy
can be increased to 87.5%, which is significantly higher
than either feature.

In our experiments, we also tried different number of
trees in the random forest. And we observe that the RFs
are pretty robust with respect to the tree numbers on all of
the three datasets, when the number of trees is 50 or above.
The best results shown in the Table 1 are using 225, 150 and
50 trees respectively for MSRAction3D, UTKinect-Action,
and CAD-60 datasets.

3.3. Comparison to the State-of-the-Art Results

We further compare our approach to the state-of-the-art
approaches for 3D action recognition on the three datasets.
In all our experiments, the cross-subjects action recognition
is conducted, which is more difficult than using the same
subjects for both training and testing [10, 27]. Note that on
MSRAction3D dataset, the same settings are used for cross-
subjects testing, where half of the subjects for training while
the other half for testing. Table 2 shows all reported results
that we can find on the MSRAction3D dataset. We can see
that our result of 94.3% accuracy is better than all previous
results using the same settings. On the UTKinect-Action
dataset, our approach has an accuracy of 91.9% which out-
performs the HOJ3D feature in [26] (90.9%). Note that in
[26], a leave-one-out setting is applied, where more train-
ing samples while less test samples are used in their exper-
iment. The cross-subject setting is applied in our experi-
ment, and we still get a better accuracy. Finally, we com-
pare our result with all others on the CAD-60 dataset. Note
that the same “new person” setting as [17] is used in our
experiment. Since the previous methods are measured with
the presicion/recall, we also compute the presicion/recall on
this dataset for a direct comparison. The results are shown
in Table 3. Our approach obtained a much better accu-
racy compared to the state-of-the-art works on this dataset.
Through the comparison, we can see that our approach out-
performs all previous methods on the three challenging ac-
tion datasets.

4. Conclusions

We have presented a new approach to 3D action recogni-
tion. It combines the spatiotemporal features and the skele-
ton joint features effectively based on the random forests
learning method. The spatiotemporal features characterize
the local motions while the skeleton joint distance measures
depict the spatial distributions of the joints during an action
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Table 2. Performance on MSRAction3D dataset using different
methods.

Method Accuracy
High Dimensional Convolutional Network [22] 72.5%
Action Graph on Bag of 3D Points [10] 74.7%
HOJ3D feature [26] 79.0%
Key Pose Learning [11] 80.3%
Eigenjoints [28] 82.3%
STOP feature [20] 84.8%
Random Occupancy Patterns [22] 86.2%
Actionlet [23] 88.2%
HON4D [14] 88.9%
Depth Motion Maps [27] 91.6%
Our approach 94.3%

Table 3. Performance on CAD-60 dataset using different methods.
Method Precision/Recall
J. Sung et al. [17] 67.9%/55.5%
X. Yang et al. [28] 71.9%/66.6%
Koppula et al. [18] 80.8%/71.4%
Our approach 93.2%/84.6%

process. These two features can be complementary to each
other, and an efficient combination of them can improve the
3D action recognition accuracies. We have conducted ex-
periments on three challenging datasets, and shown that our
proposed method can outperform all of the state-of-the-art
methods on all three datasets. This demonstrates the good
performance of our proposed approach. In future work, we
will combine more cues to further improve the accuracy un-
der our proposed feature-level fusion framework.
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