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Abstract

We present a variational framework for naturally incor-
porating prior shape knowledge in guidance of active con-
tours for boundary extraction in images. This framework is
especially suitable for images collected outside the visible
spectrum, where boundary estimation is difficult due to low
contrast, low resolution, and presence of noise and clutter.
Accordingly, we illustrate this approach using the segmen-
tation of synthetic aperture sonar (SAS) and synthetic aper-
ture radar (SAR) images. The shadows produced from these
imaging modalities often times offer more consistent pixel
values with clearer contrast to the background than the tar-
gets pixels themselves, and thus we focus on the extrac-
tion of shadow boundaries rather than target boundaries.
Since shadow shapes can vary under approximately affine
transformation with different target range and aspect an-
gle, we incorporate an affine-invariant, elastic shape prior
based on the shape analysis techniques developed in [2] to
the active contour model. We show experimental results on
both a simulated SAS and a simulated SAR image database
in three segmentation scenarios: without shape prior, with
similarity-invariant shape prior, and with affine-invariant
shape prior.

1. Introduction
An object of interest in an image can be characterized

to some extent by the shape of its external boundary. It

is therefore important to develop procedures for boundary

extraction in problems of detection, tracking, and classifi-

cation of objects in images. Active contour algorithms have

become an important tool in image segmentation for ob-

ject detection [5, 7]. As segmentation algorithms become

more sophisticated, they are tested in more difficult imag-

ing environments of real-world scenarios where images ei-

ther do not have enough contrast to provide sharp bound-

aries, some occlusion of the target occurs, or there exists

target-like clutter or noise. One example of this scenario is

when images are collected in a spectrum outside the visible

domain. Thus, it is of increasing importance that boundary

extraction algorithms make use of prior knowledge about

the expected target class in order to help compensate for

the lack of clear data. This is accomplished by influencing

the contour evolution in part with a shape prior, a statisti-

cal model derived from a set of known training shapes, in a

Bayesian active contour approach [4, 9, 7].

1.1. Past Work on Prior-Driven Active Contours

There are two broad categories of active contour meth-

ods: parametric methods that evolve an explicitly defined

parameterized curve, and geometric methods that evolve

implicitly defined zero-level sets of higher-dimensional

functions. Therefore, in a parametric model the shape prior

is a statistical model on closed or open contours in R
2;

whereas, in a geometric model the shape prior is a statis-

tical model on signed-distance functions in R
3 or higher.

Past Bayesian active contour methods, i.e. those that incor-

porate shape prior, have been applied almost exclusively to

geometric models where most efforts follow the ideas pre-

sented in Leventon et al. [7] and improvements thereafter

[9, 6]. The major limitation to these geometric Bayesian ap-

proaches is that they cannot apply state-of-the-art statistical

shape models to form a shape prior. In order to apply more

sophisticated and computationally efficient shape analysis

techniques to our Bayesian active contour model, we select

a parametric approach.

There have been a few Bayesian active contour models in

the past that take a parametric approach. Early approaches

make use of “landmark-based” shape analysis [3] to impose

a shape prior. While this method involves formal shape

spaces and their geometries, it is not ideally suited to active

contours since it was developed primarily for landmarks de-

noting salient points on a shape. Joshi et al. [4] use ideas

from elastic shape analysis of planar curves to create a shape

prior from an intrinsic density on shape space to help evolve

a curve in a parametric active contour model. Although the

method presented in [4] incorporates intrinsic shape statis-

tics, it uses an older shape representation, and is only lim-

ited to similarity-invariant shape analysis. We are unaware
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of the existence of any Bayesian active contour model that
incorporates affine-invariant shape statistics of parametric
curves.

1.2. Our Approach

Our goal is to use techniques from elastic shape analysis

to develop a method to incorporate prior shape information

into an active contour model especially suited for segmen-

tation of images beyond the visible spectrum. Using the

theory and statistical tools developed in [11] for similarity-

invariant shapes and in [2] for affine-invariant shapes, we

formulate a prior shape model on both shape spaces, de-

noted Ssim and Saff respectfully. The variational frame-

work for contour evolution remains the same as that of ear-

lier methods, except that the shape prior term now comes

from either of the two elastic shape models. The main

contributions of this paper are: (1) develop a similarity-

invariant and an affine-invariant prior shape model for pla-

nar curves, (2) incorporate these statistical shape models

in driving Bayesian active contours, and (3) demonstrate

this framework using segmentation of shadow boundaries

in SAS and SAR images.

The organization of the rest of the paper is as follows.

Section 2 provides an overview of the synthetic aperture

imaging technique, Section 3 outlines our Bayesian active

contour model, Section 4 shows experimental results on

SAS/SAR datasets, and Section 5 is the conclusion.

2. Difficulties of Boundary Extraction in Syn-
thetic Aperture Imaging

The particular application of interest to us here is bound-

ary extraction in the synthetic aperture imaging modalities

such as SAS and SAR, although our procedure can be ap-

plied to a wide variety of beyond visible spectrum applica-

tions such as medical diagnosis and infrared surveillance.

Synthetic aperture imagery is created in the following man-

ner. An autonomous vehicle travels in a straight line and

emits a sound chirp (in the case of sonar) or an electro-

magnetic chirp (in the case of radar) at regular time inter-

vals. The emitted chirp is designed to cover a predetermined

range of frequencies suitable for the imaging environment.

Each chirp in the series reflects off the sea floor (in the case

of sonar) or the ground (in the case of radar), and the sys-

tem detects and stores these return signals that contain in-

formation describing the environment. A single aperture

sonar or radar would form one image from one return signal,

but a synthetic aperture imaging system uses sophisticated

post-processing algorithms to combine the raw data from

many return signals into one single image. Although this

technique allows for a much larger imaging footprint with

greater contrast and a finer resolution than a standard sonar

or radar, synthetic aperture images are still notoriously dif-

ficult for standard boundary detection algorithms to achieve

high performance.

The task of automatically extracting target boundaries

in synthetic aperture imagery is challenging due to the fol-

lowing reasons. (1) Even though a synthetic aperture sys-

tem improves on standard aperture systems, the images can

still exhibit low contrast. That is, some target pixels can be

quite similar in intensity level to some background pixels,

and thus boundaries are not clear. (2) Since the SAS and

SAR imagery used here comes from a side scan system,

one target side faces away from the sonar or radar. The tar-

get is therefore partially occluded in shadow, and its shape

can vary widely with its aspect angle. (3) The resolution of

these images is often much lower than those obtained in the

visible spectrum, resulting in relatively fewer pixels on tar-

gets. (4) The imaging environments normally contain high

speckle clutter due to rough backgrounds.

By focusing instead on segmenting the boundaries of the

target shadows rather than the targets themselves, many of

the above difficulties, although not completely eliminated,

are alleviated to some extent. In regards to difficulty (1),

shadow signatures are always consistently dark, and there

is often clearer contrast between shadow and background

than between target and background. The severity of dif-

ficulty (2) is diminished since there is no partial occlusion

of the shadow like there is with the target. Difficulty (3) is

reduced because shadows are typically larger and contain

more pixels than the targets themselves. Lastly, difficulty

(4) is not reduced, as background speckle noise remains the

major difficulty in segmenting target shadows. Fig. 2 shows

a few examples of SAS (top row) and SAR (bottom row)

imagery. The SAS imagery is of an underwater cylinder

target at varying aspect angles and ranges, and the SAR im-

agery is of a ground-based armored vehicle at varying as-

pect angles.

Figure 1. Synthetic aperture images of a target at different aspect

angles and ranges. Top row: SAS images of a cylinder. Bottom

row: SAR images of an armored vehicle.

376376376376



3. Active Contour Model
We pose the problem of boundary extraction as a

MAP estimation [4]. In this formulation we seek

the closed, parameterized curve β̂(t) that minimizes

an energy functional in the following manner: β̂ =
argminβ∈L2(S1,R2) Etotal(β), where Etotal is defined as

Etotal(β) = λ1Eimage(β)+λ2Esmooth(β)+λ3Eprior(β).
(1)

This total energy functional is the summation of three sepa-

rate energy functionals weighted by the coefficients λi. The

image energy Eimage is defined solely from the pixel data

in the image, the smoothing energy Esmooth is a penalty

that maintains a certain amount of smoothness in the active

contour, and Eprior is the prior shape energy defined from

a probability density on shape space. In order to minimize

this expression, we introduce a time variable s and seek a

solution of the differential equation

∂

∂s
β(t, s) = −λ1∇Eimage(β)(t, s) (2)

− λ2∇Esmooth(β)(t, s)− λ3∇Eprior(β)(t, s).

That is, we search for a local minimization of Eqn. 1 via

gradient descent. The weights λi greatly affect the perfor-

mance of the contour evolution, and appropriate values can

vary widely from application to application. For this reason

we leave their selection up to the discretion of the user. In

the paragraphs that follow, we summarize our formulation

of each of the three energy terms.

Image Energy: Our image energy term is based on the

work presented in [12, 9]. In these papers, the authors pro-

pose an image energy that is not based on the gradient of

a Gaussian smoothed edge map, as in for example EPGVF

in [8], but rather instead a region-based energy term that is

more robust to noise and diffuse object boundaries. Here,

one obtains a priori two estimated probability densities, f
and g, of pixel values in a region containing only shadow

pixels and a region containing only background pixels, re-

spectively. These two prior densities will be used to cal-

culate Eimage during an active contour evolution on a test

image.

Let I(x) be the pixel intensity value of the test image

I at location x. It can be shown that for a closed curve β
defining two regions Ωin and Ωout, the minimization of the

energy functional Eimage(β) = − ∫
Ωin

log(f(I(x)))dx −∫
Ωout

log(g(I(x)))dx is equivalent to the maximization

of the image-based a posteriori segmentation probability.

Using functional differentiation and Green’s Theorem, as

shown in [12], the gradient of the image energy is calcu-

lated as ∇Eimage(β) = − log
(

f(I(β))
g(I(β))

)
n, where n is the

outward unit normal vector field to the curve β. Define

�β ≡ log
(

f(I(β))
g(I(β))

)
. Notice that contour evolution accord-

ing to the negative gradient will be along the outward nor-

mal direction if �β > 0 and along the inward normal direc-

tion if �β < 0. This evolution will therefore push any part

of the contour more likely lying in the target out towards its

most likely boundary, and it will pull any part lying outside

of the target in towards its most likely boundary.

In the SAS and SAR imaging environments, the pro-

posed region-based image energy gradient has many advan-

tages over other commonly used edge detection methods

such as EPGVF [8]. First, evolution along the normal direc-

tion provides a simpler flow compared to that which is given

by a gradient vector field on the image directly. Such edge

detection techniques can produce erratic, swirling flows be-

cause it will find edges throughout the entirety of a noisy

SAS/SAR background. Also, capture range is only lim-

ited to the size of the image; wherease, the capture range

given by [8] is extremely limited, especially in noisy SAS

and SAR images. Finally, computing a gradient vector field

on a single closed curve is computationally more efficient

than computing a vector field across an entire image do-

main. Furthermore, the smoothing gradient described next

is also formulated as a scalar times the unit normal, so these

two energy terms can be combined easily.

Smoothing Energy: For regulating contour smoothness

we follow a common approach from geometric active con-

tours based on the idea of Euclidean heat flow. Define the

smoothing energy functional as Esmooth(β) =
∫ 1

0
|β̇(t)|dt,

which is equal to the length of the curve and is natu-

rally invariant to any re-parameterization. The gradient

of Esmooth is given by the Euclidean heat flow equation

∇Esmooth(β) = κβn, where κβ is the curvature at each

point of β. It is well known that this particular penalty

on a curve’s length automatically leads to smoothing of a

curve by forcing the curve to become convex over time, and,

eventually as the evolution time goes to infinity, the curve

evolves to a circle and shrinks to a point.

Shape Prior Energy: The shape prior energy term Eprior

is based on a Gaussian-type probability model that is de-

fined on a shape space of elastic curves. This probability

model is estimated a priori from given training shapes, and

we can choose to define it either on similarity-invariant elas-

tic shape space Ssim [11] or on affine-invariant elastic shape

space Saff [2]. As mentioned in Section 2, with SAS and

SAR shadows there is certain amount of shape variability

that can be attributed to an approximately affine transfor-

mation, so a prior shape model on Saff is desirable.

Let q(t) = β̇(t)/
√
|β̇(t)| be the square-root velocity

function of a parameterized curve β ∈ L
2(S1,R2). Recall

from [11, 2] that the elastic shape spaces Ssim and Saff are
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comprised of SRVF’s of appropriate sets of curves rather

than the curves themselves. Notice that Eprior in our active

contour model is a function of β, but the statistical models

built on Ssim and Saff depend on q. Therefore, we first

must calculate the prior energy as a function of q and then

perform a numerical approximation of the change of vari-

able to obtain Eprior(β) and the subsequent gradient vector

field on β. Here, we describe how to form Eprior on Saff ,

though the procedure is the same for Ssim.

Given a set of prior training shapes {[qi], i = 1, ...n} in

Saff , let us assume that we have computed their Karcher

mean [μ] and covariance K. We define the the prior shape

density as a truncated wrapped-normal density, which is

estimated from the data as follows. First, obtain the singular

value decomposition of K as [U, S, V ] = svd(K), and let

Um be the m-dimensional principal subspace of T[μ](Saff )
defined as the first m columns of U . The prior density is

given as the exponential mapping of fm(v), the multivariate

Gaussian density on Um, where

fm(v) =
1

Z
e−

1
2 (v

T
‖ S−1

m v‖+‖v⊥‖2/δ2)1‖v‖<π, (3)

v = exp−1
μ (q), v‖ = UT

mv is the projection of v into Um,

v⊥ = v − Umv‖, Sm is the diagonal matrix containing the

first m singular values, and Z is the normalizing constant.

The scalar value δ is chosen to be less than the smallest

singular value in Sm.

Suppose now that we have a test shape q that represents

the SRVF of the active contour at a particular evolution

time. Let v = exp−1
μ (q), the shooting vector from μ to

q. Now define Eprior(q) to be the negative of the expo-

nent in fm(v) given by Eqn. 3. That is, define Eprior(q) =
1
2v

T (UmS−1
m UT

m)v+ 1
2δ2 ‖v−UmUT

mv‖2. Minimizing this

functional is therefore equivalent to maximizing the likeli-

hood of q. The gradient vector is equal to w = Av, where

A is the matrix A = UmS−1
m UT

m+(I−UmUT
m)/δ2. Notice

that w is defined on the tangent space at μ rather than at q,

so the final step is to parallel translate w from μ to q. Denote

this parallel translation as w̄ = ∇Eprior(q). An evolution

of q along the negative gradient direction will result in an

energy minimization precisely at the mean μ. The shooting

vector w̄ is converted through numerical approximation to

a gradient vector field on β that represents ∇Eprior(β).

4. Experimental Results

We test the performance of our Bayesian active contour

model on two datasets of imagery collected beyond the vis-

ible spectrum. First, we segment the shadows of a cylin-

der target in underwater SAS imagery, and second, we seg-

ment the shadows of an armored ground-based vehicle in

SAR imagery. The SAS images were created from the Shal-

low Water Acoustics Toolkit (SWAT), a program developed

by the Naval Surface Warfare Center Panama City Divi-

sion (NSWC PCD) that synthesizes SAS imagery of vari-

ous targets in seabed environments [10]. The SWAT simu-

lator is considered accurate to reality and is widely used to

test automatic target detection and recognition algorithms

in place of real SAS data. The SAR images are a part of the

Moving and Stationary Target Acquisition and Recognition

(MSTAR) public dataset [1], which consists of X-band SAR

images with 1×1 foot resolution. The dataset was collected

in September of 1995 at the Redstone Arsenal, Huntsville,

AL by the Sandia National Laboratory (SNL) SAR sensor

platform and was jointly sponsored by DARPA and the Air

Force Research Laboratory. For our purposes here, we test

our method on a 100 image subset of each dataset. Each

subset consists of imagery of the same target at different

aspect angles and, in the case of the SAS imagery, also at

different ranges. This yields in each case a shadow signa-

ture that exhibits a within-class shape variability that can be

modeled to some extent by an affine transformation. Again,

Fig. 2 shows a few examples taken from these SAS and SAR

datasets.

In order to evaluate the accuracy of any segmentation

result on these datasets, we compare the estimated bound-

ary to its respective ground truth curve via two metrics:

dgeod(·, ·) the geodesic shape distance on Ssim (see [11]

for more details), and dbin(·, ·) a binary image metric that

measures the area of non-overlapping regions. The distance

dbin is defined in the following manner. If B̂ is the binary

image obtained by the segmentation and B is the ground

truth binary image, the binary image distance is defined as

dbin(B̂, B) = area(B̂ ∪ B − B̂ ∩ B)/area(B̂ ∪ B). The

values of these two metrics together show how accurately

our segmentation result matches the correct shape as well

as the correct location, orientation, and scale in the image.

Assuming that the ground truth shadow boundary curves

are available (e.g. using hand segmentation), we perform

the following experiment on each dataset. First, we se-

lect an appropriate set of parameter values (λ1, λ2, λ3). If

λ3 = 0, it represent no prior. If λ3 > 0, then we select

either our similarity-invariant prior or our affine-invariant

prior for the segmentation. We then proceed to run 3 cross-

validation iterations where in each iteration we select 10

images at random for training, form the shape prior den-

sity on either Ssim or Saff from the corresponding ground

truth curves, and segment the remaining 90 test images with

the influence of that shape prior. After each segmentation,

we calculate the values of dgeod and dbin to ground truth.

Tables 1 and 2 tabulate the averages of these two distance

values (shown as the pair dgeod, dbin in each case) after per-

forming the above procedure with three sets of parameter

values. Table 1 shows results from the SAS dataset, and

Table 2 shows results from the SAR dataset.

Figs. 2 and 3 give both similarity and affine shape mod-
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(λ1, λ2, λ3) No Prior Similarity Affine

(0.1, 0.5, 0.005) 0.46, 0.21 0.25, 0.25 0.22, 0.18
(0.1, 1, 0.005) 0.28, 0.14 0.24, 0.31 0.20, 0.16
(0.1, 1, 0.001) 0.28, 0.14 0.21, 0.12 0.18, 0.11

Table 1. Evaluation of SAS image segmentation: Average val-

ues of (dgeod, dbin) relative to ground truth curve under different

shape priors.

(λ1, λ2, λ3) No Prior Similarity Affine

(0.01, 0.075, 0.005) 0.57, 0.27 0.50, 0.24 0.48, 0.20
(0.01, 0.15, 0.005) 0.36, 0.22 0.32, 0.17 0.31, 0.16
(0.01, 0.2, 0.008) 0.32, 0.23 0.30, 0.20 0.28, 0.18

Table 2. Evaluation of SAR image segmentation: Average val-

ues of (dgeod, dbin) relative to ground truth curve under different

shape priors.

els for a random selection of 10 ground truth curves in the

SAS and SAR databases, respectively. Notice that in the

SAS case in Fig. 2, most of the shape variability is removed

when affine-invariance is introduced. This is because the

3D cylinder target shape is very simple and without any ir-

regular features that may be hidden or diminished under cer-

tain aspect angles. The models on Ssim and Saff exhibit

quite different shape samples because the model on Ssim
must still account for affine transformation in its variabil-

ity. Some of the remaining shape variability in the model

on Saff is due to the fact that the shadow shapes are more

closely related by projective transformation, but in this case,

an affine approximation is valid. On the other hand, the

shape model for the SAR vehicle shadow in Fig. 3 exhibits

a great deal more shape variability beyond that of an affine

transformation. This is because an armored vehicle is not a

simple shape and consists of many features that may only

show up in the shadow under certain aspect angles. Also,

contrary to the SAS data, the SAR imagery is from a con-

stant range, which produces shadow lengths that are consis-

tent. The affine shape model visually may not show such

a stark contrast to the similarity model, but its benefits are

still apparent from the results presented here.

Training shapes Mean Random samples

Figure 2. SAS cylinder shadow shape models. Top row: Similarity

invariant shape prior. Bottom row: Affine-invariant shape prior.

Training shapes Mean Random samples

Figure 3. SAR vehicle shadow shape models. Top row: Similarity

invariant shape prior. Bottom row: Affine-invariant shape prior.

From Table 1 we see that with respect to all 6 distance

values, segmentation of the cylinder shadow with our affine

prior beats the similarity prior, and furthermore, in 5 out

of the 6 distance values, segmentation with the affine prior

beats segmentation with no prior. From Table 2 we see that

segmentation of the vehicle shadow with our affine prior

beats the similarity prior with respect to all 6 distance val-

ues, and furthermore, in all 6 cases, segmentation with the

similarity prior beats segmentation with no prior. Figs. 4

and 5 show a few selections from the cross-validation seg-

mentation experiments that contributed to the results in the

tables above. The columns from left to right represent the

test image, segmentation without shape prior, segmenta-

tion with similarity prior, segmentation with affine prior,

and the ground truth segmentation. We remind the reader

that although the distance values in the above tables seem

small and relatively similar, since dgeod ∈ [0, π/2] and

dbin ∈ [0, 1], small differences in distance values can trans-

late to impactful visual differences as seen in these figures.

The benefits of using the affine prior over the similarity

prior are much more pronounced in the cylinder segmen-

tation results of Fig. 4 than the vehicle segmentation results

of Fig. 5 because the cylinder shadow exhibits much more

affine variability than the vehicle shadow. In summary, al-

though a similarity-invariant, elastic shape prior is still use-

ful in some cases, using our affine-invariant, elastic shape

prior will more consistently yield improved segmentation

results over that without shape prior in shadow boundary

extraction in synthetic aperture imaging modalities such as

SAS and SAR.

5. Conclusion
Bayesian active contour models have become an increas-

ingly popular technique for segmenting objects in images

and are especially suited for segmentation of images taken

in a spectrum beyond that of visible light. Typically, such

images present difficulties for segmentation algorithms due

to low resolution, high background noise, and excess clutter.

In order to combat these difficulties, we have developed a
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Image No prior Ssim Saff Truth

Figure 4. Shadow segmentations of various SAS cylinder test im-

ages under different shape priors.

Image No prior Ssim Saff Truth

Figure 5. Shadow segmentations of various SAR armored vehicle

test images under different shape priors.

parametric active contour model that employs a prior shape

model based on state-of-the-art elastic shape statistics. Our

framework allows for the use of either a similarity or affine-

invariant shape prior. The affine-invariant shape prior is es-

pecially useful for segmenting shadow boundaries, and we

test our segmentation model with both priors on SAS and

SAR shadow imagery. We show an increase in shadow seg-

mentation accuracy when using the affine shape prior com-

pared to the similarity prior and without shape prior, and, in

most cases, we show increase in accuracy with the similar-

ity prior over segmentation without shape prior.
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