
 

 

Abstract 

This work deals with non-invasive and non-intrusive 
measurements of the human facial vasculature from 
thermal IR to measure cardiovascular vital signs. A 
robust, fully automatic measurement system is developed 
to study infrared videos of 32 under three imaging 
scenarios. Vascular mapping, blood perfusion modeling, 
and wavelet analysis are used to calculate heart rate from 
512 video frames in near real time. Multiple measurement 
locations are considered to analyze accuracy and 
sensitivity in a novel approach, revealing that the 60% of 
vessel segments in the forehead region are capable of 
producing 85% accuracy of measurement or better. 

1. Introduction 
In this paper, we combine, build upon and improve the 

works of [4,5,7,8,13,14], to develop an accurate, sensitive and 
fully automatic method (see Fig. 1) to extract heart rate and the 
arterial pulse waveforms from thermal video at a distance of 3-
5 ft from subjects under three physiological states: normal, 
mild pain, and after mild exercise. This requires elements of 
thermal computer vision, fingerprint analysis, tracking, and 
scale-space filtering to render the final outputs. Applications of 
a fully automatic vital signs extraction method can be 
implemented in hospitals, for use in human interface devices, 
monitoring uncooperative subjects, intent detection, etc. 

 
Fig. 1: Overall automatic vital signs extraction process. 

Chekmenev, Farag and Essock [5,6] use wavelet-based 

techniques for extracting the pulse waveform, yielding average 
accuracies of 86.3% for heart rate calculation. That 
implementation requires subjects to be attached to a chin rest 
and the user must identify the region of interest.  The dataset is 
also small, using only 8-10 subjects.  The filtering technique, 
which isolates and returns results with a fixed set of scales 
only, in essence creates a complicated band-pass filter.  Gault 
et al. [7] in 2010 expand on that work by adding semi-
automatic manual vessel selection and a more accurate filtering 
technique, using wavelets and FFT analysis. They use more 
subjects than in [5,6], but only examine one arterial selection 
per subject.  They report 93% accuracy. 

The works of Sun et al. [13,14] in 2005-06 use an adaptive 
Fourier-based signal filtering method with motion tracking 
which achieved an average accuracy of 88.5% across 34 trials. 
However, their work uses 2000-3000 video frames at 30 fps, 
whereas our proposed approach can extract the heart rate with 
512 frames, and the pulse reconstruction in as few as 256. 

Recent work from MIT [16] proposes the concept of color 
magnification to determine the heart rate from color video by 
magnifying the color contributions from the red regions of the 
color spectrum, which reveal the pulsating (red) blood 
perfusion in the skin.  The waveform output of this technology 
is able to determine the pulse rate from a strong amplitude 
signal in the time domain. Imaging in the visible spectrum is 
limited by the reflectance of skin in the visible spectrum and 
can suffer from changes in illumination conditions, giving 
thermal infrared an advantage in varying or absent lighting. 

This work fully automates the cardiovascular vital signs 
extraction process.  The primary element missing from related 
work to accomplish this goal lies in automatic region of 
measurement (ROM) identification, which should be located 
on a blood vessel.  The closest attempt is by Zhu et al. [18], 
whom have developed a method to automatically identify the 
supra orbital arteries on the forehead using template matching 
with training data. The forehead segmentation method used for 
this document comes from [8] and accurately segments the 
forehead region with a sensitivity of 96% without training. 

1.1. Contributions and document organization 
This work improves on previous attempts by other authors 

mentioned previously in this section in these ways: 
1. Manual or semi-automatic regional analysis is replaced 
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with full automation; 
2. Combined wavelet/FFT filtering is replaced solely with 

wavelet-based filtering and analysis; 
3. Generic blood-perfusion modeling is incorporated to 

improve accuracy and sensitivity; 
4. Subjects are tested under normal conditions, while 

eliciting pain, and during mild exercise; and 
5. All vessel segments in the forehead region are 

systematically analyzed via full automation. 
This document is divided as follows: Section 2 covers the 

relevant steps needed to automate work by previous authors; 
Section 3 expands on blood-perfusion and the wavelet-based 
filtering to calculate the heart rate; Section 4 presents 
experimental results; and Section 5 concludes this paper. 

2. Regions and Vessels of Interest 
Full automation requires isolating an overall region of 

interest on the face, further isolating arterial locations likely to 
produce a strong signal, tracking, converting the data to a 1D 
temporal signal and filtering the signal.  Automation is 
achieved in this work by splitting vascular maps into vessel 
segments, which focuses the measurements on anatomical 
features easily revealed from thermal IR.  These steps are 
facilitated and aided by incorporating blood-perfusion 
enhancements. 

Incorporating a blood-perfusion model such as from [15] 
(see their Eq. 2) helps to identify the heat contributions to the 
thermal video from blood—the primary means for heat transfer 
to the capillary bed from the body’s core. The model defines a 
pixel-wise transform from the thermal to the blood perfusion 
domain. Wu [15], Buddharaju [4], and others use blood 
perfusion data or approximations to improve facial recognition 
rates.  Wu reports increases in facial recognition rates between 
40-75% for time-lapsed sessions.  Blood perfusion is applied to 
increase accuracy here in three areas: creating vascular maps, 
segmenting the forehead, and enhancing the raw thermal data.  
The latter increases in accuracy and sensitivity when compared 
to using unenhanced thermal data, which is discussed in 
Section 4. In this model, temperatures are set: Ta = Tb = 102F 
for the arteries/blood, Te = 70F for the environment, and Ts for 
the skin is from IR.   

Vascular maps are created using the techniques from [4] and 
[15], resulting in binary lines one pixel wide over the 
approximate area of the underlying vasculature.  The vessels on 
the forehead serve as the primary regions of interest.  The 
vessels are anatomically interconnected and need to be divided 
into segments, achieved by splitting the vasculature at its 
branches. However, one challenge in analysis is that subjects 
have unique arrangements and numbers of vessel segments of 
varying size in each forehead region, such that they can be used 
in facial recognition applications as in [4].  

To help classify the results, the output vessels are grouped 
by region per the following scheme, illustrated in Fig. 2. Let 
ΩF denote the facial region, centered about the nose, with six 

exclusive radial partitions, where ΩF = {ΩF1, Ω F2, … , ΩF6}. 
Dividing in this manner also creates regions that alternate 
between feature and feature-less, such that even-numbered 
partitions are relatively void of physical facial features, 
whereas odd partitions contain the eyes, eyebrows, or mouth. 
These regions are placed manually only for grouping results 
during post-analysis and as a visual aid—they are not used in 
any way for the calculations. 

 
Fig. 2:  (a) Example thermal facial region divided into six 
sections centered about the nose to develop the dimensions of the 
hexagon; (b) shifting the centerline to overlap the eyeline; and 
(c) overlaying the partitions on vascular maps.   
 

The domain of interest (Ω) is the forehead region with  
Ω ={Ω1, Ω2, Ω3} where Ω ⊂ (ΩF1 ∪ ΩF2 ∪ ΩF3), as illustrated 
in Fig. 2.  The facial region (ΩF) in essence contains a vascular 
graph network with vertices P = {termination points, 
bifurcation points} and edges E = {vessel segments} and the 
vessel segments of interest are VS = E ∩ Ω.  Generally 
speaking, forehead regions Ω1 and Ω3 envelop the superficial 
temporal arteries (STA) with supraorbital (SO) arteries in Ω2. 

  Bifurcation and termination points along the binary 
vascular maps—the green dots in Fig. 2c—are identified using 
any of the known fingerprint-encoding algorithms such as the 
one in [17], which output coordinates and orientations for these 
thermal minutia points (TMPs).  The spatial coordinates are 
needed to split the vasculature into the smaller segments; 
orientations are irrelevant and not computed, saving time.  

 
Fig. 3:  (a) Spurious TMPs in black showing the effect of 
“bubbles” with the correct TMP overlaid in red dots. (b) 
Highlighted spurious TMPs after applying the dilation/erosion. 
 

Vascular mapping sometimes creates spurious TMPs, which 
appear as a result of “bubbles” appearing in the vascular 
network prior to thinning as illustrated in Fig. 3. Spurious 
TMPs are removed from the vascular structures by dilating 
vessels using a 3x3 disc structuring element before thinning to 
a skeleton; larger structuring elements result in spurious con-
nected vessel lines. This technique is similar to the morpho-
logical scale-space technique described in [9] and removes 
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most of these spurious TMPs as seen in Fig. 3. The advantage 
to this method is the shape of the vascular structures removes 
the TMPs instead of just Euclidean distance as in [17]. 

2.1. Automatic vessel segment selection  
Vessels are split into segments and labeled by removing the 

bifurcation points from the vascular maps. Splitting the vessels 
into smaller segments makes the segments selectable via their 
physical and/or thermal characteristics, or directly selected by 
label number; classification criteria are application-specific. 
Segments are analyzed with the classification criteria that some 
part of the vessel segment must exist inside the forehead region 
and have minimum length of 5 pixels. Candidates not meeting 
these criteria are discarded until all vessel segments are consi-
dered. Successful automatic vessel selection depends on the 
quality of the vascular maps, how well the TMPs are identified, 
and the selection criteria.  Errors in these steps result in useful 
segments being discarded.  Fig. 5 illustrates two cases. 
 

 
Fig. 4: Proposed algorithm for automatic vessel selection. 

 
Fig. 5: Green vessel segments meeting classification criteria; 
adjacent white label numbers. Left: Good selection of forehead 
vessel candidates. Right: Candidates with un-identified segments 
in Ω1 and Ω2 and two non-segments, i.e.15 & 16. 

2.2. Tracking 
Tracking the vessel segments creates the 1D time-domain 

signals.  Since subject movements are small, a simple tracking 
method can be used to save execution time—using the coord-
inates of the binary vessel segments in the forehead region. The 
iterative closest point (ICP) tracking method [3] is used for this 
work. ICP is much faster than the tracking approach in [7], 
requiring only 1-2 seconds to track across 512 frames of 
vascular maps derived from thermal video. ICP also produces 
heart rate results that are more accurate than the error-
minimization approach in [7]. For the experimental portion of 
this work, ICP is used exclusively to facilitate comparing 

different filtering approaches independent of tracking methods.  

3. Wavelet-based Heart Rate Analysis 
The arterial pulse signals are created from sampling the 

thermal values along the tracked vessel segments. Arterial 
pulse signals have high-energy components that contain high- 
and low-frequency elements, where higher frequency 
components coincide to peaks of the signal in time domain. 
These elements manifest in coarse (low freq.) and fine scales 
(high freq.) and must be considered in tandem [10]. Noise from 
the 1D signal is high frequency, low power.  The continuous 
wavelet transform (CWT) and its inverse (ICWT) are used to 
filter unwanted signal elements using a Mexican hat mother 
wavelet [5,6,7,10]. In practice, the mother wavelet is 
discretized to facilitate this analysis, but is done differently than 
with the traditional discrete wavelet transform. In the wavelet 
coefficients, higher frequencies appear in the finer scales, 
whereas lower frequencies appear in coarser scales [10,11]. 
These low-energy components are reliably discarded by 
thresholding the enhanced coefficients (Fig. 6c). 

The first step before filtering is to enhance the wavelet 
coefficients (Wf) using histogram equalization, so that scale-
space structures are more apparent.  These enhanced 
coefficients (WfH) are used to generate a binary mask via 
thresholding to reveal the scale-space structures, some of which 
will be discarded.  The mask can be applied to either the 
original or enhanced set of the wavelet coefficients, depending 
on the needs of the application. Remaining non-zero enhanced 
coefficients (greater than zero) create a binary mask revealing 
the remaining scale-space structures, which are then labeled 
numerically. The characteristics of these structures are 
analyzed such that those represented in the coarse and fine 
scales (i.e. the pulse waveforms) are retained and those that 
only manifest themselves in the finer scales (i.e. noise) are 
discarded for a given position in time as in Fig. 6c.  This result 
is illustrated in Fig. 6f.   
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The heart rate for the temporal window is calculated 
from the filtered wavelet coefficients as in Fig. 6fg by 
forming the ratio in (1) of the number of remaining labeled 
heartbeat structures (numLabels) in the window to its size 
(windowSize) in terms of number of frames, where  
fsampling = 30fps = 1800 frames/min.  By omitting FFTs in 
[7], equation (1) saves a computational complexity of 
size(vessel segment) * O(N log N), where N = 512 frames.  

4. Experiment and Analysis 
This experiment compares the heart rate from every vessel 

segment in the forehead (Sec. 2) to the ECG ground truth for 
that subject. Three filtering methods are explored: the 
CWT/FFT-based approach from [7], the wavelet-based 
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approach described in Sec. 3, and the same wavelet-based 
approach with blood-perfusion enhancements from Sec. 2 
applied to the raw thermal images. There are 32 subjects 
(19M/13F), with three sessions (normal, mild pain, mild 
exercise) for each subject.  Subjects’ sessions are recorded in 
the following order: under normal conditions first; while 
subjects submerge their right hands in an ice bath to induce 
pain; and while subjects suspend 20-40 lbs of weight in the air 
to increase heart rate and produce sweat. 

Subjects have unique vascular arrangements with between 
10-40 segments typically on the forehead.  Accuracy and 
sensitivity are measured using (2) and (3). The accuracy of 
measurement is determined by comparing calculated heart 
rates from IR to the ECG ground truth (2); discarded vessel 
segments are omitted from the analysis.  The sensitivity (3) is 
the percentage of vessel segments on the forehead that achieve 
an accuracy of measurement. Table 1 summarizes the 
sensitivity.  The sensitivity for each method corresponds to a 
range of accuracy measurements expressed with interval 
notation in the column headings.  The cumulative summations 
(blue) of sensitivities start from the right and are read as “blue-
percent” of the vessels in the forehead achieve at least the 
minimum accuracy in the column heading.  From the bottom 
row: 45.2% of vessels meeting the selection criteria in the 
forehead achieve an accuracy of measurement of 90% or 
better, and 60.4% achieve 85% accuracy or better. 

 

 
Accuracy =100%×

ECG − IR

ECG  (2)

Sensitivity =100%×
# of vessels meeting accuracy criteria

# of identified forehead vessels
 (3) 

 

Histograms and corresponding boxplots in Figs. 8-10 show 
the distribution of the accuracy for all vessel segments.  The 
horizontal axes show the measurement accuracy and the 
vertical axes count the corresponding number of vessel 
segments in the forehead. Please note that the blood perfusion 
transformation is applied to segment the vasculature and 
forehead for all three methods, but is only applied to the 
thermal data in 0. From these figures and the sensitivity 
analysis in Table I, it is clear that the wavelet-based approaches 
in this work perform better than the FFT-based approach in [7]. 
When the blood perfusion transformation is applied to the 
thermal data in proposed wavelet-approach accuracy improves 
by 7-10%, i.e. 11-15% better overall than the FFT-based 
approach of [7]. 

TABLE 1: SENSITIVITY ANALYSIS 

 
 

The uniqueness of the vasculature arrangements prohibits 
direct vessel segment comparison. Instead, forehead regional 
analysis (within-subject effect) is performed using two 

 

 
Fig. 6:  (a) Raw thermal signal with (b) histogram-equalized wavelet coefficients.  Filtered coefficients in (c) are used to reconstruct the
time-domain signal in (d), and find the heart rate in (e) using the FFT-based approach. The label-based approach removes noisy
structures, resulting in (f), and the heart rate is calculated directly in (g) and the time domain reconstruction in (h). Amplitudes are 
normalized to [0, 1] and finer scales (higher frequency) are located toward the bottom.  
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partitioning schemes.  The accuracy of vessel segments is 
analyzed for each of the three regions (Ω1, Ω 2, Ω 3) 
independently, and a p-value of 0.719 indicates there is no 
difference between the regions.  A second analysis couples 
regions Ω 1 and Ω 3, which contain the superficial temporal 
arteries, and Ω2 alone, which contains the supraorbital arteries; 
a p-value of 0.955 for this analysis indicates no statistical 
difference between the STA and SO. 

5. Conclusions and Future Work 
Forehead identification and successful automatic vessel 

segment identification methods have been developed and 
demonstrated to be accurate and repeatable, leading to the 
implementation of a fully automatic system.  The vascular 
segmentation technique is invariant to rotation, scaling and 
translation and need not be confined only to the forehead 
region as it is in this work.  The full automation now also 
provides for means to conduct many extensive future 
experiments analyzing multiple independent or combined 
vascular locations on the face, allowing conclusions to be 
drawn about the success of different locations of measurement.  

The wavelet- and physiology-based approaches presented in 
this work are three times more sensitive than previous attempts 
(i.e. returns three times as many accurate results), as in [6] and 
[7], using only a small number of imaging frames. 
Furthermore, of the individual vessel segments, those having 
accuracy of 90% or better are often connected about the 
STA/SO as in Fig. 7, even if considered independently.  Using 
blood-perfusion dramatically increases accuracy and sensitivity 
and should be considered in future implementations.  This 
work is the first attempt at automatic systematic analysis of 
multiple measuring locations on the facial vasculature and has 
revealed that there is no difference in accuracy or sensitivity 
between forehead regions or session type. 

 
Fig. 7: Vessel segments in green from eight subjects that return 
90% accuracy or better. 

The combined system takes between 50-90 seconds to 
analyze 512 frames (~17sec) from start to finish, depending on 
vessel segment length.  This represents a significant perfor-
mance gain over previous works.  The  number of  pixels in the  

Fig. 8: Heart rate accuracy histograms and box-plots for the 
CWT/FFT-based approach from [7], with ICP tracking. The 
exercise data set generates slightly more accurate results. 
 

vessel can be reduced to improve performance without 
sacrificing results and will be considered in future work. The 
slowest stage in the overall process is the creating the vascular 
maps.  These are calculated in parallel, but other code 
enhancements in future work may prove to alleviate this 
constraint.  This same system also reconstructs the arterial 
pulse waveforms as part of the wavelet analysis, which will be 
discussed in great detail in an upcoming publication. 
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