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Abstract

In order to reduce the security risk of a commercial air-
craft, passengers are not allowed to take certain items in
their carry-on baggage. For this reason, human operators
are trained to detect prohibited items using a manually con-
trolled baggage screening process. In this paper, we pro-
pose the use of an automated method based on multiple X-
ray views to recognize certain regular objects with highly
defined shapes and sizes. The method consists of two steps:
‘monocular analysis’, to obtain possible detections in each
view of a sequence, and ‘multiple view analysis’, to rec-
ognize the objects of interest using matchings in all views.
The search for matching candidates is efficiently performed
using a lookup table that is computed off-line. In order to
illustrate the effectiveness of the proposed method, experi-
mental results on recognizing regular objects –clips, springs
and razor blades– in pen cases are shown achieving around
93% accuracy for 120 objects. We believe that it would be
possible to design an automated aid in a target detection
task using the proposed algorithm.

1. Introduction

The ability to automatically and robustly recognize ob-

jects can be critical for many applications such as surveil-

lance, video forensics, X-ray testing and medical image

analysis for computer-aided diagnosis, to mention just a

few. Our paper is dedicated to X-ray object recognition. As

X-ray images are taken under controlled conditions, X-ray

object recognition may be considered as an “easy to solve”

problem in comparison with other computer vision prob-

lems related to the real world under uncontrolled conditions

(e.g. people detection [7] or scene recognition [26]), how-

ever, this is not the case of some applications such as bag-

gage screening, for example, where computer vision tech-

niques are still not effective enough to be used without hu-

man interaction [29].

Even though several scientific communities are explor-

ing a range of research directions, adopting very different

principles, and developing a wide variety of algorithms for

very different applications, automated X-ray object recog-

nition remains an open question due to: i) the large vari-

ability of the appearance and shape of the test objects –both

between and within categories–; ii) the large variability in

terms of object sample depending on its points of view (e.g.

top view and frontal view of a razor blade are very different

as shown in Fig. 1); and iii) the appearance of a test object

can vary due to the conditions of (self–)occlusion, noise and

acquisition.

In our paper, we would like to make a contribution to

the last two mentioned problems, in which object recogni-

tion plays a crucial role. We have based our proposal on

three potent ideas: i) detection windows, as they obtain a

high performance in recognition and detection problems in

computer vision; ii) multiple views, as they can be an ef-

fective option for examining complex objects where uncer-

tainty by analyzing only one angle of perspective can lead

to misinterpretation; and iii) efficient visual search, given

the speeds involved when searching for objects. We believe

that our framework is a useful alternative for recognizing

objects because it is based on an efficient search in multiple
views using corresponding multiple view windows.

In this paper, we propose a framework based on com-

puter vision and machine learning techniques in order to

Figure 1. Large variability within a razor blade: some X-ray im-

ages of the same blade in different poses.
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deal with the problem of 3D recognition. We believe that

this solution also allows us to propose a general and adap-

tive methodology for X-ray testing that can be tested in sev-

eral detection problems, such as the characterization of ma-

terials, and airport security. Additionally, we think that it

would be possible to design an automated aid in a target

detection task using the proposed algorithm.

The rest of the paper is organized as follows: the state

of the art (Section 2), the proposed approach (Section 3),

the results obtained in several experiments (Section 4), and

some concluding remarks and suggestions for future re-

search (Section 5).

2. State of the Art
Three-dimensional (3D) recognition from two-dimen-

sional (2D) images is a very complex task due to the infi-

nite number of points of views and different image acqui-

sition conditions [22]. Nevertheless, automated recognition

has been possible –in certain cases– through seminal works

dedicated to obtaining highly discriminative and local in-

variant features related to illumination factors and local ge-

ometric constraints (see for example [17] for a good review

and evaluation). In such cases, recognition of a test object

can be performed by matching its invariant features with the

features of a model.

Since the September 11 attacks, automated (or semi-

automated) 3D recognition using X-ray images has become

a very important element in baggage screening. The in-

spection process, however, is complex, basically because

threatening items are very difficult to detect when placed in

close-packed bags, superimposed by other objects, and/or

rotated showing an unrecognizable view [30]. In baggage

screening, where human security plays an important role

and inspection complexity is very high, human inspectors

are still used. Nevertheless, during peak hours in airports,

human screeners have only a few seconds to decide whether

a bag contains or not a prohibited item, and detection per-

formance is only about 80-90% [16]. Before 9/11, the X-

ray analysis of luggage mainly focused on capturing the

images of their content: the reader can find in [18] an in-

teresting analysis carried out in 1989 of several aircraft at-

tacks around the world, and the existing technologies to

detect terrorist threats based on Thermal-Neutron Activa-

tion (TNA), Fast-Neutron Activation (FNA) and dual en-

ergy X-rays (used in medicine since the early 70s). In the

90s, Explosive Detection Systems (EDS) were developed

based on X-ray imaging [19], and computed tomography

through elastic scatter X-ray (comparing the structure of ir-

radiated material, against stored reference spectra for explo-

sives and drugs) [25]. All these works were concentrated on

image acquisition and simple image processing; however,

they lacked advanced image analysis to improve detection

performance. Nevertheless, the 9/11 attacks increased the

security measures taken at airports, which in turn stimu-

lated the interest of the scientific community in the research

of areas related to security using advanced computational

techniques. Over the last decade, the main contributions

were: analysis of human inspection [29], pseudo-coloring

of X-ray images [1, 4], enhancement and segmentation of

X-ray images [24] and detection of threatening items in X-

ray images, based on texture features (detecting a 9mm Colt

Beretta automatic (machine) pistol) [21], neural networks

and fuzzy rules (yielding about 80% of performance) [10],

and SVM classifier (detecting guns in real time) [20].

In baggage screening, the use of multiple view informa-

tion yields a significant improvement in performance as cer-

tain items are difficult to recognize using only one view-

point. As reported in a study that measures the human per-

formance in baggage screening [28], (human) multiple view

X-ray inspection leads to a higher detection performance of

prohibited items under difficult conditions, however, there

are no significant differences between the detection perfor-

mance (single vs. multiple view) for difficult-easy multiple

view conditions, i.e. two difficult or two easy views are re-

dundant. We observed that for intricate conditions, multiple

view X-ray inspection is required.

Recently, some algorithms based on multiple X-ray

views were reported in the literature. For example: syn-

thesis of new X-ray images obtained from Kinetic Depth

Effect X-ray (KDEX) images based on SIFT features in

order to increase detection performance [2]; an approach

for object detection in multi-view dual-energy X-ray with

promising preliminary results [8]; X-ray active vision that

is able to adequate the viewpoint of the target object in order

to obtain better X-ray images to analyze [23]; and tracking

across multiple X-ray views in order to verify the diagnoses

performed using a single view [13, 14].

In the literature review, we observed that there are few

papers on 3D recognition with multiple X-ray views. This

paper wishes to contribute to this field.

3. Proposed Method
In this section, we explain in further detail the proposed

method. The strategy consists of two main stages: off-line
and on-line.

3.1. Off-line stage

The first stage, performed off-line, consists of two main

steps: i) learning a model that is used for the recognition

and ii) estimation of a multiple view geometric model that

is used for data association.

3.1.1 Learning

In this step, we learn a classifier h to recognize parts of

the objects that we are attempting to detect. It is assumed
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that there are C + 1 classes (labeled as ‘0’ for non-object

class, and ‘1’, ‘2’, . . . ‘C’ for C different objects). Im-

ages are taken of representative objects of each class from

different points of view. In order to model the details of

the objects from different poses, several keypoints per im-

age are detected, and for each keypoint a descriptor d is

extracted using, for example, LBP, SIFT, HOG, and SURF,

among others [17]. In this supervised approach, each de-

scriptor d is manually labeled according to its correspond-

ing class c ∈ {0, 1, . . . C}. Given the training data (dt, ct),
for t = 1, . . . , N , where N is the total number of descrip-

tors extracted in all training images, a classifier h is de-

signed which maps dt to their classification label ct, thus,

h(dt) should be ct. This classifier will be used in the on-

line stage by monocular and multiple-view analysis.

3.1.2 Geometry

Our strategy deals with multiple monocular detections in

multiple views. In this problem of data association, the

aim is to find the correct correspondence among different

views. For this reason, we use multiple view geometric

constraints to reduce the number of matching candidates

between monocular detections. For an image sequence

with n views I1 . . . In, the fundamental matrices {Fij} be-

tween consecutive frames Ii and Ij=i+1 are computed for

i = 1, . . . n − 1. In our approach, the fundamental matrix

Fij is calculated from projection matrices Pi and Pj that

can be estimated using calibration or bundle adjustment al-

gorithms [9].

The geometric constraints are expressed in homogeneous

coordinates. Therefore, given a point mi = [xi yi 1]T in

image Ii, a corresponding point mj = [xj yj 1]T in image

Ij must fulfill: i) epipolar constraint: mj must lie near the

epipolar line � = Fijmi, and ii) location constraint: for

small variations of the point of views between Ii and Ij ,

mj must lie near mi. Thus, a candidate mj must fulfill:

|mT
j Fijmi|√
�21+�22

< e and ||mi −mj || < r. (1)

In order to accelerate the search of candidates, we pro-

pose the use of a lookup table as follows: Points in im-

ages Ii and Ij are arranged in a grid format with rows

and columns. For each grid point (x, y) of image Ii, we

look for the grid points of image Ij that fulfill (1), as il-

lustrated in Fig. 2. Therefore, the possible corresponding

points of (x, y) will be the set Sxy = {(xp, yp)}q
p=1, where

xp = X(x, y, p), yp = Y (x, y, p) and q = Q(x, y) are

stored (off-line) in a lookup table. In the on-line stage, given

a point mi (in image Ii), the matching candidates in image

Ij are those that lie near to Sxy , where (x, y) is the nearest

grid point to mi. This search can be efficiently implemented

using k-d tree structures [3].

Figure 2. Given the grid point illustrated as the red point at (x, y),

in image Ii, the set of possible corresponding points in image Ij

can be those grid points (yellow points) represented by the inter-

section of the epipolar region (blue rectangle) and neighborhood

around (x, y) (orange circle with radius r centered at red point).

The use of grid points allows us to use a lookup table in order to

search the matching candidates in Ij efficiently.

In a controlled and calibrated environment, we can as-

sume that the fundamental matrices are stable and we do not

need to estimate them in each new image sequence, i.e. the

lookup tables are constant. Additionally, when the relative

motion of the point of view between consecutive frames is

the same, the computed fundamental matrices are constant,

i.e. Fij = F, and we need to store only one lookup table.

3.2. On-line stage

The on-line stage is performed in order to recognize the

objects of interest in a test image sequence of n images {Ii},
for i = 1, . . . n. The images are acquired by rotation of

the object being tested at β degrees (in our experiments we

used n = 4, and β = 100). This stage consisted of two

main steps: monocular and multiple view analysis that will

be described in further detail as follows.

3.2.1 Monocular Analysis

This step is performed in each image Ii of the test im-

age sequence, as illustrated in Fig. 3 in a real case. The

whole object contained in image Ii is segmented from the

background using threshold and morphological operations.

SIFT–keypoints –or other descriptors–, are only extracted in

the segmented portion. The descriptor d of each keypoint is

classified using classifier h(d) trained in the off-line stage,

and explained in Section 3.1.1. All keypoints classified as

class c, where c is the class of interest, with c ∈ {1 . . . C}
are selected. As we can see in Fig. 3 for the classifica-

tion of ‘razor blade’, there are many keypoints misclassi-

fied. For this reason, neighbor keypoints are clustered in

the 2D space using Mean Shift algorithm [5]. Only those

clusters that have a large enough number of keypoints are

selected. They will be called detected monocular keypoints.
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.
Figure 3. Monocular analysis for each image of the sequence, i.e. for i = 1, . . . n. In this example, the class of interest is ‘razor blade’.

.

Figure 4. Multiple view analysis. An explanation of last step (final analysis) is illustrated in Fig. 5.

3.2.2 Multiple View Analysis

Multiple view analysis performs the recognition of objects

of interest in three steps (see Fig. 4): i) data association, ii)
3D analysis, and iii) final analysis. The input is the detected

monocular keypoints obtained by the mentioned monocular

analysis of Section 3.2.1. The output is c′, the assigned class

for each detected object.

• Data Association: In this step, we find matchings for all

detected monocular keypoints in all consecutive images Ii

and Ij=i+1, for i = 1, . . . n− 1, as follows:

+ For each detected monocular keypoint in image Ii (lo-

cated at position (xi, yi) with descriptor di), we seek

in a dense grid of points, the nearest point (x, y) (see

red point in Fig. 2-left) using a k-d tree structure.

+ We determine Sxy , the set of matching candidates in

image Ij=i+1 arranged in a grid manner by reading

the lookup table explained in Section 3.1.2 (see yellow

points in Fig. 2-right).

+ We look for the detected monocular keypoints in image

Ij that are located in the neighborhood of Sxy , again

using a k-d tree structure. They will be called neighbor
keypoints. When no neighbor keypoint is found, no

match is established for (xi, yi).

+ From neighbor keypoints, we select that one (located

at position (xj , yj) with descriptor dj) with minimum

distance ||di − dj ||. In order to ensure the similarity

between matching points, the distance should be less

than a threshold ε. If this constraint is not satisfied,

again no match is established for (xi, yi).

• 3D analysis: From each pair of matched keypoints

(xi, yi) in image Ii and (xj , yj) in image Ij=i+1 established

in the previous step, a 3D point is reconstructed using the

projection matrices Pi and Pj of our geometric model men-

tioned in Section 3.1.2 (see triangulation algorithm in [9]).

Similarly to the monocular detection approach, neighbor 3D

points are clustered in the 3D space using Mean Shift algo-

rithm [5], and only those clusters that have a large enough

number of 3D points are selected.
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Figure 5. Final analysis: using the geometric model, the recon-

structed 3D points in each cluster are reprojected in each view

(blue points). The keypoints that are near to the reprojected points

are identified (red points). The descriptors of these keypoints (or-

ange histograms) are classified using trained classifier h. The class

c′ of this cluster is determined by majority vote. In this example

of n = 4 views, only the green cluster is represented.

• Final analysis: For each selected 3D cluster, all 3D re-

constructed points belonging to the cluster are re-projected

onto all images of the sequence using the projection matri-

ces of geometric model (see Fig. 5). The extracted descrip-

tors of the keypoints located near these re-projected points

are classified individually using classifier h (defined in Sec-

tion 3.1.1). The cluster will be classified as class c′ if there

is a large number of keypoints individually classified as c′,
and this number represents a majority in the cluster.

This majority vote strategy can overcome the problem

of false monocular detections when the classification of the

minority fails. A cluster can be misclassified if the part that

we are trying to recognize is occluded by a part of another

class. In this case, there will be keypoints in the cluster as-

signed to both classes; however, we expect that the majority

of keypoints will be assigned to the true class if there are a

small number of keypoints misclassified.

4. Experiments and Results
In our experiments, the task was to recognize three dif-

ferent classes of objects that are present in a pencil case

(see for example a sequence in Fig. 6a). These classes are:

‘clips’, ‘springs’ and ‘razor blades’. We followed the recog-

nition approach explained in Section 3.

In the off-line stage we used a structure from a motion al-

gorithm in order to estimate the projection matrices of each

view1. Additionally, in the learning phase, we used only 16

training images of each class. Due to the small intra-class

variation of our classes, this number of training images was

deemed sufficient. The training objects were posed at dif-

ferent angles. SIFT descriptors were extracted as explained

in [11], and a k-Nearest Neighbor (KNN) classifier with

k = 3 neighbors was ascertained using the SIFT descriptors

of the four classes2. Other descriptors (like LBP and HOG)

and other classifiers (like SVM or KNN with other values

of k) were also tested, although the best performance was

achieved with the aforementioned configuration.

In order to illustrate step by step the on-line stage, the

recognition of a razor blade is illustrated in Fig. 6a–d for

monocular analysis and in Fig. 6e–g for multiple view anal-

ysis3. It is worth mentioning that in monocular detection

there are false alarms, however, they can be filtered out after

multiple view analysis. The reason is because false alarms

cannot be tracked in the sequence or because the tracked

points, when validating the corresponding points in other

views of the sequence, do not belong to the class of interest.

Other results with some degree of overlap, where the task

was the recognition of springs and clips, are illustrated in

Fig 7.

Testing experiments were carried out by recognizing

the three mentioned classes (‘clips’, ‘springs’ and ‘razor

blades’) in 45 different sequences of 4 views (15 sequences

for each class)4. The size of an individual image was 1430

×900 pixels. In these experiments there were 30 clips, 75

springs and 15 razor blades to be recognized. A summary of

the results using the proposed algorithm is presented in Ta-

ble 1, in which the performance in the recognition of each

class is presented in two different parts of our algorithm:

after monocular analysis (Mono) and after multiple view

analysis (Multi). These parts are illustrated in Fig. 6d and

6g respectively for a razor blade. In this table, ground truth

(GT) is the number of existing objects to be recognized.

The number of detected objects by our algorithm is D = TP

+ FP, including false positives (FP) and true positives (TP).

Ideally, FP = 0 and TP = GT. In our experiments, precision

(PR), computed as PR=TP/D, is 71.4% and 95.7% in each

part; and recall (RE), computed as RE=TP/GT, is 90.8% and

92.5% in each step. If we compare single versus multiple

view detection, both precision and recall are incremented.

Precision, however, is drastically incremented because our

approach achieves good discrimination from false alarms.

The amount of time required in our experiments was

1We use in our experiments a fast implementation of multiple view

geometry algorithms from BALU Toolbox [12]
2We use in our experiments fast implementations of SIFT and KNN

(based on k-d tree) from VLFeat Toolbox [27].
3We use in our experiments a fast implementation of Mean Shift from

PMT Toolbox [6].
4The images tested in our experiments come from public GDXray

database [15].
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a

b

c

d

e

f

g

Figure 6. Recognition of a razor blade using our approach. a)

original sequence, b) keypoints, c) classified keypoints, d) de-

tected monocular keypoints, e) matched keypoints, f) reprojected

3D points (blue) and neighbor keypoins (red), g) final detection.

a b c d
Figure 7. Recognition using our approach in cases with some de-

gree of overlap: a) one spring, b) two springs, c) one clip, d) one

clip. Each figure shows a part of one image of the whole sequence.

Table 1. Recognition performance.

Mono Multi

Class TP FP GT TP FP GT

Clip 114 127 120 26 2 30

Spring 263 30 300 71 3 75

Blade 59 18 60 14 0 15

Total 436 175 480 111 5 120

PR[%] 71.4 95.7

RE[%] 90.8 92.5

about 15 minutes for the off-line stage and about 16s for

testing each sequence on a iMac OS X 10.7.3, processor

3.06GHz Intel Core 2 Duo, 4GB 1067 MHz DDR3 mem-

ory. The code of the program –implemented in Matlab– is

available on our web site.

5. Conclusions
In this paper, we presented a new method that can be

used to recognize certain parts of interest in complex ob-

jects using multiple X-ray views. The proposed method fil-

ters out false positives resulting from monocular detection

performed on single views by matching information across

multiple views. This step is performed efficiently using a

lookup table that is computed off-line. In order to illustrate

the effectiveness of the proposed method, experimental re-

sults on recognizing regular objects –clips, springs and ra-

zor blades– in pen cases are shown achieving around 93%

accuracy in the recognition of 120 objects. We believe that

it would be possible to design an automated aid in a target

detection task using the proposed algorithm. In our future

work, the approach will be tested in more complex scenar-

ios recognizing objects with a larger intra-class variation.
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