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Abstract

X-ray imaging has been developed not only for its use in
medical imaging for human beings, but also for materials
or objects, where the aim is to analyze –nondestructively–
those inner parts that are undetectable to the naked eye.
Thus, X-ray testing is used to determine if a test object de-
viates from a given set of specifications. Typical applica-
tions are analysis of food products, screening of baggage,
inspection of automotive parts, and quality control of welds.
In order to achieve efficient and effective X-ray testing, au-
tomated and semi-automated systems are being developed
to execute this task. In this paper, we present a general
overview of computer vision methodologies that have been
used in X-ray testing. In addition, we review some tech-
niques that have been applied in certain relevant applica-
tions; and we introduce a public database of X-ray images
that can be used for testing and evaluation of image anal-
ysis and computer vision algorithms. Finally, we conclude
that the following: that there are some areas –like casting
inspection– where automated systems are very effective, and
other application areas –such as baggage screening– where
human inspection is still used; there are certain application
areas –like weld and cargo inspections– where the process
is semi-automatic; and there is some research in areas –
including food analysis– where processes are beginning to
be characterized by the use of X-ray imaging.

1. Introduction
Since Röntgen discovered in 1895 that X-rays can be

used to identify inner structures, X-rays have been devel-

oped not only for their use in medical imaging for human

beings, but also in nondestructive testing (NDT) for materi-

als or objects, where the aim is to analyze (nondestructively)

the inner parts that are undetectable to the naked eye. NDT

with X-rays, known as X-ray testing, is used in many ap-

plications such as: analysis of food products, screening of

baggage, inspection of automotive parts, quality control of

welds, among others. X-ray testing usually involves mea-

surement of specific part features such as integrity or geo-

metric dimensions in order to detect, recognize or evaluate

wanted (or unwanted) inner parts.

In order to achieve efficient and effective X-ray test-

ing, automated and semi-automated systems are being de-

veloped to execute this difficult, tedious and –sometimes–

dangerous task. Compared to manual X-ray testing, auto-

mated systems offer the advantages of objectivity and re-

producibility for every test. Fundamental disadvantages are,

however, the complexity of their configuration, the inflexi-

bility to any change in the evaluation process, and some-

times the inability to analyze intricate images, which is

something that people can generally do well. Research and

development is, however, ongoing into automated adaptive

processes to accommodate modifications.

In this paper, we present the state of the art in X-ray test-

ing using computer vision. We describe a general overview

of computer vision methodologies that have been used over

the last few years (Section 2). In addition, we review some

techniques that have been applied in certain relevant appli-

cations using X-ray testing (Section 3). Finally, we intro-

duce a public database of X-ray images that can be used for

testing and evaluation of image analysis and computer vi-

sion algorithms (Section 4). The paper ends with relevant

concluding remarks (Section 5).

2. Principles
In this Section, the principles that govern X-ray testing

by computer vision are presented as a general model accord-

ing to Fig. 1. Applications on X-ray testing –as will be seen

in the next Section– follow this general schema. Depend-

ing on the way the X-ray images are acquired and analyzed,

each block can be (or not be) used.

This Section covers i) X-ray image formation, ii) single

view analysis, iii) geometric model and iv) multiple view

analysis.

2.1. X-ray image formation

X-ray testing is a form of non-destructive testing (NDT)

defined as a task that uses X-ray imaging to determine if a
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Figure 1. General schema for X-ray testing using computer vision. X-ray images of a test object can be generated at different positions and

different energy levels. Depending on the application, each block of this diagram can be (or not be) used. For example, there are applications

such as weld inspection that use a segmentation of a single mono energetic X-ray image (black square), sometimes with pattern recognition

approaches (red squares); applications like casting inspection that use mono energetic multiple views where the decision is taken analyzing

individual views (green squares) or corresponding multiple views (blue squares); applications including baggage screening that use dual-

energy of single views (magenta squares) and multiple views (yellow squares); and finally, applications on cargo inspection that employ

active vision where a next best view is set according to the information of a single view (cyan squares). In each case, the blocks without

the corresponding color square are not used.

test object deviates from a given set of specifications, with-

out changing or altering that object in any way [18]. In X-

ray testing, X-ray radiation is passed through the test object,

and a detector captures an X-ray image corresponding to the

radiation intensity attenuated by the object1. According to

the principle of photoelectric absorption [2]:

I = I0 exp(−μz), (1)

the transmitted intensity I depends on the incident radiation

intensity I0, the thickness z of the test object, and the energy

1X-rays can be absorbed or scattered by the test object. In this paper

we will cover only the first interaction. For an interesting application based

on the X-ray scattering effect, the reader is referred to [53].

dependent linear attenuation coefficient μ associated with

the material, as illustrated in Fig. 1.

The most widely used X-ray imaging systems employed

in X-ray testing are digital radiography (DR) and computed

tomography (CT) imaging2. On the one hand, DR empha-

sizes high throughput. It uses electronic sensors (instead of

traditional radiographic film) to obtain a digital X-ray pro-

jection of the target object, for this reason it is simple and

quick. A flat amorphous silicon detector can be used as

an image sensor in X-ray testing systems. In such detec-

2Computed tomography is beyond the scope of this paper. For NDT

applications using CT, the reader is referred to [12].
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tors, and using a semi-conductor, energy from the X-ray

is converted directly into an electrical signal that can be

digitalized into an X-ray digital image [43]. On the other

hand, CT imaging provides a cross-section image of the tar-

get object so that each object is clearly separated from each

other, however, CT imaging requires a considerable num-

ber of projections to reconstruct an accurate cross-section

image, which is time consuming.

It is worth noting that if X-ray radiation passes through

n different materials, with attenuation coefficients μi and

thickness zi, for i = 1, . . . n, the transmitted intensity I can

be expressed as

I = I0 exp

(
−
∑

i

μizi

)
. (2)

This explains the image generation of regions, that are

present inside the test object, as shown in Fig. 1, where a

gas bubble is clearly detectable. Nevertheless, X-ray images

sometimes contain overlapped objects, making it extremely

difficult to distinguish them properly.

Coefficient μ in (1) can be modeled as μ = α(Z, E)ρ,

where ρ is the density of the material, and α(Z, E) is the

mass attenuation coefficient that depends on the atomic

number of the material Z, and the energy E of the X-ray

photons. Values for α(Z, E) are already measured and

available in several tables (see [19]). In order to identify

the material composition –typically for explosives or drug

detection– the atomic number Z cannot be estimated us-

ing only one image, as a thin material with a high atomic

number can have the same absorption as a thick material

with a low atomic number [53]. For this purpose, a dual-
energy system is used, where the object is irradiated with a

high energy level E1 and a low level energy E2. In the first

case, the absorbed energy depends mainly on the density of

the material. In the second case, however, the absorbed en-

ergy depends primarily on the effective atomic number and

the thickness of the material [49]. Using dual-energy, it is

possible to calculate the ratio R = ln(I2/I0)/ ln(I1/I0),
where I1 and I2 are the transmitted intensities I obtained

by (1) using energies E1 and E2 respectively. Thus, from

R = α(Z, E2)/α(Z, E1), the term −ρz is canceled out,

Z can be directly found using the known measurements

α(Z, E) [17]. From both images, a new image is generated

using a fusion model, usually a look-up-table that produces

pseudo color information [10, 3], as shown in Fig. 2.

2.2. Single view analysis

A computer vision system for single view analysis, as

shown in Fig. 1, consists typically of the following steps: an

X-ray image of the test object is taken and stored in a com-

puter. The digital image is improved in order to enhance

the details. The X-ray image of the parts of interest is found

Figure 2. Generation of a pseudo-color image using dual-energy.

In this example orange represents organic materials, and blue met-

als. The intensity of this image corresponds to the thickness of the

materials (courtesy by M. Baştan [3]).

and isolated from the background of the scene. Significant

features of the segmented parts are extracted. Selected fea-

tures are classified or analyzed in order to determine if the

test object deviates from a given set of specifications. Us-

ing a supervised pattern recognition methodology, the se-

lection of the features and the training of the classifier are

performed using representative images that are to be labeled

by experts [9].

For the segmentation task, two general approaches can

be used: a traditional image segmentation or a sliding–
window approach. In the first case, image processing al-

gorithms are used (e.g. histograms, edge detection, mor-

phological operations, filtering, etc. [13]). Nevertheless,

inherent limitations of traditional segmentation algorithms

for complex tasks and increasing computational power have

fostered the emergence of an alternative approach based on

the so-called sliding–window paradigm. Sliding–window

approaches have established themselves as state–of–art in

computer vision problems where a visually complex object

must be separated from the background (see, for example,

successful applications in face detection [51] and human de-

tection [6]). In the sliding–window approach, a detection

window is moved over an input image in both horizontal

and vertical directions, and for each localization of the de-

tection window, a classifier decides to which class the cor-

responding portion of the image belongs according to its

features. Here, a set of candidate image areas are selected

and all of them are fed to the subsequent parts of the image

analysis algorithm. This resembles a brute force approach

where the algorithm explores a large set of possible segmen-

tations, and at the end the most suitable is selected by the

classification steps. An example for weld inspection using

sliding-windows can be found in [32].
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2.3. Geometric model

The X-ray image of a test object corresponds to a pro-

jection in perspective, where a 3D point of the test object is

viewed as a pixel in the digital X-ray image, as illustrated

in Fig. 1. A geometric model that describes this projection

can be highly useful for 3D reconstruction and for data as-

sociation between different views of the same object. Thus,

3D features or multiple view 2D features can be used to im-

prove the diagnosis performed by using a single view.

For the geometric model, four coordinate systems are

used (see Fig. 1):

• OCS (X, Y, Z): Object Coordinate System, where a 3D

point is defined using coordinates attached to the test object.

• WCS (X̄, Ȳ , Z̄): World Coordinate System, where the

origin corresponds to the optical center (X-ray source) and

the Z̄ axis is perpendicular to the projection plane of the

detector.

• PCS (x, y): Projection Coordinate System, where the 3D

point is projected into the projection plane Z̄ = f , and the

origin is the intersection of this plane with Z̄ axis.

• ICS (u, v): Image Coordinate System, where a projected

point is viewed in the image. In this case, (x, y)–axes are

set to be parallel to (u, v)–axes.

The geometric model OCS → ICS, i.e. transformation

P : (X,Y, Z) → (u, v), can be expressed in homogeneous

coordinates as [28]:

λ

⎡
⎣ u

v
1

⎤
⎦ = P

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3)

where λ is a scale factor and P is a 3 × 4 matrix modeled

as three transformations:

i) OCS → WCS, i.e. transformation T1 : (X, Y, Z) →
(X̄, Ȳ , Z̄), using a 3D rotation matrix R, and 3D transla-

tion vector t;

ii) WCS → (PCS), i.e. transformation T2 : (X̄, Ȳ , Z̄) →
(x, y), using a perspective projection matrix that depends

on focal distance f ; and

iii) PCS → ICS, i.e. transformation T3 : (x, y) → (u, v),
using scales factor αx and αy , and 2D translation vector

(u0, v0).
The three transformations OCS→WCS→ PCS→ ICS are

expressed as:

P =

⎡
⎣ αx 0 u0

0 αx v0

0 0 1

⎤
⎦

︸ ︷︷ ︸
T3

⎡
⎣ f 0 0 0

0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
T2

[
R t
0T 1

]
︸ ︷︷ ︸

T1

(4)

The parameters included in matrix P can be estimated using

a calibration approach [16].

In order to obtain multiple views of the object, m dif-

ferent projections of the test object can be achieved by ro-

tating and translating it (for this task a manipulator can be

used). For the k-th projection, for k = 1 . . . m, the geomet-

ric model Pk used in (3) is computed from (4) including

3D rotation matrix Rk and 3D translation tk. Matrices Pk

can be estimated using a calibration object projected in the

m different positions [28] or using a bundle adjustment al-

gorithm where the geometric model is obtained from the m
X-ray images of the test object [31].

2.4. Multiple view analysis

It is well known that an image says more than thou-
sand words, however, this is not always true if we have

an intricate image. In certain X-ray applications, e.g. bag-

gage inspection, there are usually intricate X-ray images

due to overlapping parts inside the test object, where each

pixel corresponds to the attenuation of multiple parts, as ex-

pressed in (2).

In some cases, active vision can be used in order to ad-

equate the viewpoint of the test object to obtain more suit-

able X-ray images to analyze. Therefore, an algorithm is

designed for guiding the manipulator of the X-ray imaging

system to poses where the detection performance should be

higher [42] (see Fig. 1).

In other cases, multiple view analysis can be a power-

ful option for examining complex objects where uncertainty

can lead to misinterpretation. Multiple view analysis offers

advantages not only in 3D interpretation. Two or more im-

ages of the same object taken from different points of view

can be used to confirm and improve the diagnosis under-

taken by analyzing only one image.

Multiple view analysis in X-ray testing can be used to

achieve two main goals: i) analysis of 2D corresponding

features across the multiple views, and ii) analysis of 3D

features obtained from a 3D reconstruction approach. In

both cases, the attempt is made to gain relevant information

about the test object. For instance, in order to validate a

single view detection –filtering out false alarms– 2D corre-

sponding features can be analyzed [33]. On the other hand,

if the geometric dimension of a inner part must be measured

a 3D reconstruction needs to be performed [38].

As illustrated in Fig. 1, the input of the multiple view

analysis is the associated data, i.e. corresponding points (or

patches) across the multiple views. To this end, associated

2D cues are found using geometric constraints (e.g. epipolar

geometry and multifocal tensors [16, 29]), and local scale-

invariant descriptors across multiple views (e.g. like SIFT

[25]).

Finally, 2D or 3D features of the associated data can be

extracted and selected, and a classifier can be trained us-

ing the same pattern recognition methodology explained in

Section 2.2.
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Table 1. Applications on X-ray testing

Appli- First Refe- Energy Geometric Single Views(∗∗) Active Multiple Views(∗∗)

cation author Year rence Mono Dual Model(∗) 1 2 3 Vision 1 2 3

Casting
Carrasco 2011 [4] × N × × × × × ×
Li 2006 [22] × – × ×
Mery 2002 [33] × C × × × × × ×
Pieringer 2010 [40] × C × × × × × ×
Tang 2009 [50] × – ×

Weld
Liao 2008 [23] × – × × ×
Liao 2009 [24] × – × × ×
Mery 2011 [32] × – × × ×
Shi 2007 [45] × – ×

Baggage
Abusaeeda 2011 [1] × × C ×
Baştan 2012 [3] × × – × × ×
Chen 2005 [5] × × – ×
Ding 2006 [7] × × – ×
Franzel 2012 [10] × × C × × × × × ×
Heitz 2010 [17] × × – × × ×
Mansoor 2012 [27] × × – × × ×
Mery 2013 [35] × N × × × × × ×
Qiang 2006 [26] × × – × ×
Rahman 2010 [41] × × – ×
Riffo 2011 [42] × N × × ×
Schmidt 2012 [44] × × – × × ×
Singh 2005 [48] × × – ×

Food
Haff 2004 [14] × – × × ×
Jiang 2008 [20] × – × × ×
Ogawa 2003 [39] × – × × ×
Kwon 2008 [21] × – × × ×
Mery 2011 [34] × – × × ×

Cargo
Duan 2008 [8] × – × × ×
Frosio 2011 [11] × – × × × ×
Zhu 2008 [55] × – × × ×

(*) C: Calibrated, N: Not calibrated, –: not used. (**) See 1 , 2 , 3 in Fig. 1

Depending on the application, the output could be a mea-

surement (e.g. the volume of the inspected inner part is

3.4cm3), a class (e.g. the test object is defective) or an inter-

pretation (e.g. the baggage should be inspected by a human

operator given that uncertainty is high).

3. Applications

In this Section, the state-of-the-art of certain relevant ap-

plications on X-ray testing will be described. This section

covers X-ray testing in i) casting, ii) weld, iii) baggage, iv)
food, and v) cargo. In Table 1, approaches in each appli-

cation are summarized showing how they use the different

steps of general diagram according to Fig. 1.

3.1. Casting

Light-alloy castings produced for the automotive indus-

try, such as wheel rims, steering knuckles and steering

gear boxes are considered important components for overall

roadworthiness. Non-homogeneous regions can be formed

within the work piece in the production process. These are

manifested, for example, by bubble-shaped voids, fractures,

inclusions or slag formation. To ensure the safety of a con-

struction, it is necessary to check every part thoroughly us-

ing X-ray testing. In casting inspection, automated X-ray

systems have not only raised quality, through repeated ob-

jective inspections and improved processes, but have also

increased productivity and consistency by reducing labor
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costs. A survey can be found in [30]. Selected approaches

are summarized in Table 1. In this area, we conclude that

automated systems are very effective, as the inspection task

is fast and achieves a high performance.

3.2. Weld

In welding process, a mandatory inspection using X-ray

testing is required in order to detect defects such as poros-

ity, inclusion, lack of fusion, lack of penetration and cracks.

Industrial X-ray images of welds are commonly used to de-

tect defects in the petroleum, chemical, nuclear, naval, aero-

nautics and civil construction industries, among others. A

survey can be found in [46, 47]. Selected approaches are

summarized in Table 1. As we can see, there is much re-

search on weld inspection. However, achieved performance

of the developed algorithms is still not high enough, making

it unsuitable for fully automated inspection.

3.3. Baggage

Since 11/9, automated (or semi-automated) 3D recog-

nition using X-ray images has become a very important

issue in baggage screening [54, 37]. The inspection pro-

cess is highly complex as hazardous items are very diffi-

cult to detect when placed in close packed bags, superim-

posed by other objects, and/or rotated showing an unrecog-

nizable profile. During the last decade, however, relevant

research has been carried out in multiple view analysis and

dual-energy imaging. The use of multiple view information

yields a significant improvement in performance, as certain

items are difficult to recognize using only one viewpoint

[52]. On the other hand, when dual-energy is employed it

is possible to identify the material composition –typically

for explosives, drugs and organic materials– [49]. A survey

on explosive detection can be found in [49, 53]. Selected

approaches are summarized in Table 1. We conclude, that

in baggage screening, where human security plays an im-

portant role and inspection complexity is very high, human

inspectors are still used. For intricate conditions, multiple

view X-ray inspection using dual-energy is required.

3.4. Food

In order to ensure food safety inspection, several appli-

cations have been developed by the food industry. The dif-

ficulties inherent in the detection of defects and contami-

nants in food products have limited the use of X-ray in the

packaged foods sector. However, the need for NDT has

driven a considerable research effort in this field over var-

ious decades [15]. The most important advances are: de-

tection of foreign objects in packaged foods [21]; detection

of fish bones in processed fish [34]; identification of insect

infestation in citrus fruit [20]; detection of codling moth lar-

vae in apples [15]; fruit quality inspection such as split-pits,

water content distribution and internal structure [39]; and

detection of larval stages of the granary weevil in wheat

kernels [14]. In these applications, only single view anal-

ysis is required. A survey can be found in [15]. In Table 1,

the mentioned applications are summarized.

3.5. Cargo

With the ongoing development of international trade,

cargo inspection becomes more and more important. X-ray

testing has been used for the evaluation of the contents of

cargo, trucks, containers, and passenger vehicles to detect

the possible presence of many types of contraband. Some

approaches are presented in Table 1. However, limited re-

search has been undertaken on cargo inspection, and the

complexity of this inspection task is very high. For this

reason, we conclude that these X-ray systems continue to

be only semi-automatic, and require human supervision.

4. Data Bases
Public databases of X-ray images can be found for med-

ical imaging3, however, to the best knowledge of the author

of this article, up until now there have not been any public

databases of digital X-ray images for X-ray testing.

As a service to the X-ray testing community, we col-

lected more than 3000 X-ray images for the development,

testing and evaluation of image analysis and computer vi-

sion algorithms. The images are organized in a pub-

lic database referred to as GDXray: The GRIMA X-ray

database4. The database includes three groups of X-ray

images: metal objects (castings, welds, razor blades, ninja

stars (shuriken), guns, knives and sink strainers), baggage

(bags and pen cases); and natural objects (fruits, fish bones

and wood).

5. Conclusions
In this paper we presented a general overview of com-

puter vision methodologies that have been used in X-ray

testing, as illustrated in diagram of Fig. 1. The presented

applications on X-ray testing follow this general schema,

where depending on the way the X-ray images are acquired

and analyzed, each step can be (or not be) used.

In the presented applications, we observed that there are

some areas, such as casting inspections, where automated

systems are very effective; and other application areas, like

baggage screening, where human inspection is still used.

3See for example a good collection in http://www.via.
cornell.edu/databases/

4GRIMA is the name of our Machine Intelligence Group at the De-

partment of Computer Science of the Pontificia Universidad Católica de

Chile http://grima.ing.puc.cl. The X-ray images included in

GDXray can be used free of charge, but for research and educational pur-

poses only. Redistribution and commercial use is prohibited. Any re-

searcher reporting results which use this database should acknowledge the

GDXray database by citing [36].
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Additionally, there are certain application areas, including

weld and cargo inspection, where the inspection is semi-

automatic. Finally, some food analysis research is begin-

ning to be characterized by the use of X-ray imaging.

It is clear that many research directions have been ex-

ploited, some very different principles have been adopted

and a wide variety of algorithms have been developed for

very different applications. Nevertheless, automated X-ray

testing remains an open interrogation as it still suffers from:

i) loss of generality given that approaches developed for one

application may not be used in another; ii) deficient detec-
tion accuracy as commonly there is a fundamental trade–off

between false alarms and misdetections; iii) limited robust-
ness because prerequisites for the use of a method are often

fulfilled only in simple cases; and iv) low adaptability as it

may be very difficult to accommodate an automated system

to design modifications or different objects.

Compared to manual X-ray testing, automated systems

offer advantages of objectivity and reproducibility for ev-

ery test. Fundamental disadvantages are, however, the com-

plexity of their configuration, the inflexibility to any change

in the evaluation process, and sometimes the inability to an-

alyze intricate images, which is something that people can

generally do well. Research and development is, however,

ongoing into automated adaptive processes to accommodate

modifications.
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