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Abstract

The Linear Discriminant Analysis (LDA) algorithm
plays an important role in pattern recognition. A com-
mon practice is that LDA and many of its variants generally
learn dense bases, which are not robust to local image dis-
tortions and partial occlusions. Recently, the LASSO penal-
ty has been incorporated into LDA to learn sparse bases.
However, since the learned sparse coefficients are globally
distributed all over the basis image, the solution is still not
robust to partial occlusions. In this paper, we propose a Lo-
cal Sparse Discriminant Analysis (LoSDA) method, which
aims at learning discriminant bases that consist of local
object parts. In this way, it is more robust than dense or
global basis based LDA algorithms for visual classification.
The proposed model is formulated as a constrained least
square regression problem with a group sparse regulariza-
tion. Furthermore, we derive a weighted LoSDA (WLoS-
DA) approach to learn localized basis images, which also
enables multi subspace learning and fusion. Finally, we
develop an algorithm based on the Accelerated Proximal
Gradient (APG) technique to solve the resulting weighted
group sparse optimization problem. Experimental results
on the FRGC v2.0 and the AR face databases show that the
proposed LoSDA and WLoSDA algorithms both outperfor-
m the other state-of-the-art discriminant subspace learning
algorithms under illumination variations and occlusions.

1. Introduction
Computer vision applications often deal with high di-

mensional data, which contains redundant information and

requires a heavy computational cost to process. Therefore,

feature extraction and dimensionality reduction techniques

are widely applied in practice. Among them, the Principle

Component Analysis (PCA) [8] and the Linear Discrimi-

nant Analysis (LDA) [8, 9, 10] are the most popular ap-

proaches. PCA aims at finding a subspace that contains the

most information from the data, while LDA seeks a sub-

space that best separates multi classes. LDA has been wide-

ly applied for image classification problems including im-
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Figure 1. Illustration of the local group sparse regularization for

the proposed LoSDA algorithm, which aims at learning local basis.

age retrieval [26] and face recognition [4], and demonstrates

impressive performances.

The purpose of LDA is to learn a projection matrix, by

which the original data can be transformed to a low dimen-

sional subspace, where the mapped data achieves maximum

between-class distance and minimum within-class distance

simultaneously. However, the classical LDA and many of

its variants [6, 7, 26, 32, 33] generally learn dense bases

for the projection matrix, which are not robust to local im-

age distortions and partial occlusions. Considering this, Cai

et al. proposed a sparse LDA algorithm [5] for robust sub-

space learning, which utilizes the LASSO [28] penalty on

the bases to promote a sparse solution. However, since the

learned sparse coefficients are globally distributed across

the basis image, the derived solution is still not robust to

local image distortions and partial occlusions.

To learn a subspace that is robust to partial occlusion-

s and local illumination variations, a good suggestion is

to make the basis image only contain local object part-

s [14, 15, 16]. This is inspired from the field of Nonneg-

ative Matrix Factorization (NMF) [15, 16], where the non-

negative constraint helps to derive local object parts. In this

way, the learning algorithm is able to extract local features

instead of holistic features for image representation, which

is proved to be less affected by partial occlusions [14, 16].

In this paper, we propose a Local Sparse Discriminan-
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t Analysis (LoSDA) approach for robust visual classifica-

tion. The proposed method aims at learning discriminant

bases that consist of local object parts, which enables lo-

cal feature extraction for image representation (see Fig. 1).

First, we divide each basis image of the projection matrix

into several local blocks, and treat each block as a group

of variables. Then, the proposed model is formulated as a

constrained least square regression problem with a group s-

parse regularization. In this way, most of the groups will be

shrunk to zeros, leaving few groups have none zero entries.

Furthermore, we derive a weighted LoSDA (WLoSDA) ap-

proach to better control the coefficient distribution across

groups, enforcing a solution of localized basis images. With

different weighting strategies, WLoSDA also enables multi

subspace learning and fusion. Finally, we develop an algo-

rithm based on the Accelerated Proximal Gradient (APG)

technique [21, 29] to solve the resulting weighted group s-

parse optimization problem.

Our experimental results on the FRGC v2.0 and the AR

face databases show that the proposed LoSDA and WLoS-

DA algorithms both outperform the other state-of-the-art

discriminant subspace learning algorithms. Especially, on

face images with both synthesized and real partial occlu-

sions, the proposed WLoSDA algorithm outperforms exist-

ing algorithms for more than 5% in recognition accuracy,

which demonstrates the effectiveness of the proposed algo-

rithm for robust visual classification.

The contribution of this work is summarized as follows.

• A novel discriminant subspace learning approach

called LoSDA is proposed, which learns local object

parts as bases, and hence enables local feature extrac-

tion for robust image representation.

• A weighted LoSDA (WLoSDA) method is proposed,

which learns more localized basis than LoSDA, and

with different weighting strategies, it enables multi-

subspace learning and fusion.

• The proposed model is formulated as a least square re-

gression problem regularized by a weighted group s-

parse constraint, and an algorithm based on the APG

technique is developed to solve the resulting weighted

group sparse optimization problem.

The rest of this paper is organized as follows. First,

we briefly review the related work in Section 2. Then, we

formulate the proposed LoSDA model and present its op-

timization in Section 3, as well as the WLoSDA. The ex-

periments are shown in Section 4 with a useful discussion.

Finally, we summarize the paper in Section 5.

2. Related Work
LDA is a supervised learning algorithm, which learn-

s a discriminant subspace that minimizes the within-class

distance and maximizes the between-class distance simul-

taneously. The dimensions of the derived subspace of the

classical LDA can be very low; it is no more than c− 1 di-
mensions, where c is the number of classes of the original
data [8, 10]. However, one of the drawback of LDA is that

it often trapped into the curse of high dimension, especial-

ly when there are limited number of training samples. It is

known as the small sample size problem (SSS) [9]. Based

on this, many extensions of the LDA algorithm have been

proposed to overcome it, such as PCA+LDA [4, 26], null

LDA [7], the directed LDA [33], and the Regularized L-

DA [32]. All of the algorithms were developed to deal with

the SSS problem. The proposed method follows the regular-

ization idea, and the proposed group sparse regularization

makes the algorithm also robust to the SSS problem.

There are also other extensions of LDA, such as the

Local LDA [24, 25], spectral regression based LDA (SR-

DA) [6], and the sparse LDA [5]. It should be noted that

the local LDA and our proposed LoSDA are totaly different

models. The local LDA in [25] deals with different local

clusters of samples in the same class, which is done in the

sample space. The study in [24] is also done in the sample

space as well. In contrast, the proposed LoSDA algorithm
aims at learning local basis image, which adds spatial con-
straints on basis images. The SRDA algorithm proposed

by Cai et al. is based on the spectral clustering algorith-
m [6], which can be divided into two steps. On the first step,

the SRDA learns the target subspace representation for each

sample by the spectral technique based on a designed undi-

rected graph. Second, the least square regression is applied

to the original data and the subspace representation learned

in the first step to calculate the transformation matrix. For

the sparse LDA (SSRDA) in [5], it is the sparse version of

the SRDA algorithm. The difference is that SSRDA applies

the LASSO penalty in the second step of SRDA to compute

the transformation matrix. While, our algorithm does not

need to learn the transformation matrix and the subspace

representation separately. The LoSDA is done directly in a

regression form. Therefore, in our model, it just needs to

solve the group sparse regularized least square regression

problem.

With the development of LDA techniques, researchers

have realized that there are some connections between the

LDA and the least square regression problem [8, 10, 30, 34].

Duda has proved the equality between the LDA algorithm

and the least square regression with a binary-class classifi-

cation problem in [8]. Zhang and Riedel also proposed a

discriminant learning analysis algorithm based on the ridge

regression [34]. Recently, Ye [30] shows that by defining

a special correspondence matrix based on the data’s labels,

the least square regression problem is equal to LDA under

a mild condition that can be easily satisfied. The proposed

algorithm is closely related with this development, and our
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model is directly built upon the least square regression for-

mulation of LDA proposed in [30].

Face recognition under partial occlusion is an important

problem, for which many algorithms have been developed

[11, 13, 14, 16, 20, 22]. Among these, there are the SVM

based algorithms [11, 13], the subspace based algorithm-

s [14, 16, 22], and so on. Especially, the Local NMF (L-

NMF) algorithm suggests that learning local basis for face

representation is effective against occlusion [16]. Our al-

gorithm follows the subspace learning direction, which can

learn a discriminant subspace with local object parts, and

enable multi subspace learning and fusion.

3. Algorithm
In this section, we firstly give a brief review of the clas-

sical LDA algorithm. Then, based on the connection of the

LDA and the least square regression problem [8, 10, 30],

we propose the Local Sparse Discriminant Analysis (LoS-

DA) formulation along with the Weighted LoSDA. The op-

timization of the proposed objective function is finally built

upon the accelerated proximal gradient method [21, 29].

3.1. Classical Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a basic algorithm

in the pattern recognition field. The binary-class LDA is to

learn an effective direction in which the two class data can

be separated the utmost [8]. For the multi-class problem

with c classes, the LDA projects the original data into c− 1
dimensional subspace to separate them. In the derived sub-

space, the mapped data achieves the minimum within-class

distance, and the maximum between-class distance simul-

taneously.

Suppose the original data has n samples from c classes,
namely {ai, yi}n

i=1, where ai ∈ Rd×1 is the feature vector,
yi is the class label, and each class j has nj samples. Then

the data matrix A = [A1,A2, . . . ,Ac], where Aj consists

of samples belonging to the j-th class. The objective func-
tion of the LDA is [8],

max
X

J(X) =
tr(XTSbX)

tr(XTSwX)
, (1)

where X is the projection matrix that needs to be learned,

Sb and Sw are called the between-class scatter matrix and

the within-class scatter matrix, respectively. By denoting

the centroid mj = 1
nj

∑
yi=j ai for the j-th class and the

global centroid m = 1
n

∑c
j=1 njmj , the between-class s-

catter matrix Sb, and the within-class scatter matrix Sw can

be written as [8]

Sw =
∑c

j=1

∑
yi=j

(ai −mj)(ai −mj)
T ,

Sb =
∑c

j=1
nj(mj −m)(mj −m)T ,

respectively.

The Linear Discriminant Analysis has a strong connec-

tion with the least square regression problem, which has

been shown in [8] with a binary-class classification prob-

lem. Recent studies on LDA have proved that, the multi-

class LDA problem is equivalent to the multivariate linear

regression with a predefined correspondence matrix under a

mild condition [30]. The equivalent formulation is,

min
X

{1
2
‖ATX−H‖2F }, (2)

where ‖ · ‖F denotes the Frobenious-norm, and the element

of the correspondence matrixH = [h1,h2, . . . ,hc] is con-
structed as

hi,j =

⎧⎨
⎩
√

n
nj

−
√

nj

n , if yi = j,

−
√

nj

n , otherwise.
(3)

The equality holds under a mild condition that rank(St) =
rank(Sb) + rank(Sw), where St is the total scatter matrix

defined as

St =
∑n

i=1
(ai −m)(ai −m)T = Sw + Sb.

This mild condition can be easily satisfied in many practical

applications [31].

3.2. Local Sparse Discriminant Analysis

The motivation of the proposed LoSDA algorithm is to

learn discriminant subspaces consisting of local basis im-

ages, which is robust to local image distortion and partial

occlusions. The basic idea is, we can divide each basis im-

age of the projection matrix into several local blocks, and

treat each block as a group of variables. Then, the proposed

model is formulated as a constrained least square regres-

sion problem with a group sparse regularization. In this

way, most of the groups will be shrunk to zeros, leaving

few groups have none zero entries.

Let X = [x1,x2, . . . ,xc] be the projection matrix as in
Eq. (1), where each xj is a basis or component to learn. We

define g groups for each basis xj (see Fig. 2 for an illus-

tration of group definition), and denote the k-th group of
variables in the j-th basis as xj,Gk

. Then, using the nota-

tions defined in the above subsection, the proposed LoSDA

model can be formulated as

min
X

{1
2
‖ATX−H‖2F + λ

c∑
j=1

g∑
k=1

wk‖xj,Gk
‖2}, (4)

whereH is constructed as in Eq.(3), λ is the regularization
parameter, and wk is the weight of the k-th group for each
basis. Here we use equal weights for the LoSDA algorithm.
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It can be observed that the second term of Eq.(4) is a local

group sparse constraint. By rewriting Eq.(4) as

min
X

1

2

c∑
j=1

‖ATxj − hj‖22 + λ

c∑
j=1

g∑
k=1

wk‖xj,Gk
‖2, (5)

it can be easily discovered that the original problem can be

decomposed into c sub-problems, which have the same sim-
plified formulation as follows

min
x

1

2
‖ATx− h‖22 + λ

∑g

k=1
wk‖xGk

‖2, (6)

where x and h are column vectors from the matrix X and

H, respectively, and xGk
is the k-th group of variables in x.

In fact, Eq.(6) is a kind of sparse regression problem,

which is a convex but non-smooth optimization problem.

In the following, we adopt the accelerated proximal gradi-

ent (APG) algorithm [3, 12, 21, 29] to solve Eq.(6). The

proximal gradient method is a first order gradient descent

method, who has received popular attentions in recent years

because of its fast convergence rate O(1/t2) when dealing
with the non-smooth convex problem, where t is the itera-
tion number [3, 12, 21, 29]. By decomposing the objective

function Eq.(6) into a smooth term and a non-smooth term,

we have

l(x) =
1

2
‖ATx− h‖22, (7)

min
x

f(x) = l(x) + λ
∑g

k=1
wk‖xGk

‖2. (8)

APG finds the proximate solution x based on another

sequence of search points {vi}, where vi is a linear com-

bination of xi and xi−1 (see Eq.16). First, we construct a
proximal operator of the Eq.(8) to find the solution x,

min
x

g(x) =l(vt) + 〈l′(vt),x− vt〉+ 1

2ηt
‖x− vt‖22

+ λ
∑g

k=1
wk‖xGk

‖2,
(9)

where

l′(vt) = A(ATvt − h). (10)

and ηt is the update step. By replacing the constant term

l(vt) by another constant term ηt‖l′(vt)‖22/2, with respect
to x, the above proximal operator is equal to

min
x

1

2
‖x− ut‖22 + ληt

∑g

k=1
wk‖xGk

‖2 (11)

where

ut = vt − ηtl
′(vt), (12)

As for Eq.(11), we can further expand it as the sum of g
local groups,

min
x

1

2

g∑
k=1

‖xGk
− ut,Gk

‖22 + ληt

g∑
k=1

wk‖xGk
‖2. (13)

Then, optimizing Eq.(11) is actually equivalent to optimiz-

ing k sub-problems, where the k-th sub-problem for the lo-

cal group Gk is defined as

min
xGk

1

2
‖xGk

− ut,Gk
‖22 + ληtwk‖xGk

‖2. (14)

Finally, by applying the soft-thresholding technique [18],

the solution of Eq.(14) is obtained by

xGk
=

{
(1− ληtwk

‖ut,Gk
‖2 )ut,Gk

, if ||ut,Gk
||2 > ληtwk

0, otherwise.
(15)

The APG algorithm accelerates the proximal gradient de-

scent by updating vt+1 as,

vt+1 = xt+1 +
αt+1(1− αt)

αt
(xt+1 − xt), (16)

where αt =
2

t+2 [29].

As a result, the accelerated proximal gradient algorithm

updates xt and vt alternatively to find the solution. The

summary of the derived algorithm to solve our objective

function Eq.(6) is shown in Algorithm 1.

Algorithm 1: APG solution for Eq.(6).
Input: A ∈ Rd×n, h ∈ Rn×1, group index G, and

group weight w.
Output: x

1 Initialization vt = 0, t = 0;
2 repeat
3 Compute ut as in Eq.(12);

4 for each group k do
5 if ‖ut,Gk

‖2 ≤ ληtwk then
6 xt+1,Gk

= 0;
7 else
8 xt+1,Gk

= (1− ληtwk

‖ut,Gk
‖2 )ut,Gk

;

9 end
10 end
11 Compute vt+1 as in Eq.(16).

12 until convergence;

3.3. Weighted Local Sparse Discriminant Analysis

In this section, we derive a weighted LoSDA (WLoSDA)

algorithm which considers different weights in Eq. (4). In

our formulation, it can be observed that, we can learn dif-

ferent subspaces according to different weighting strategies.

Our weighting strategy considers to pursue localized basis

images. To this end, we can design a weighting strategy

that selects a certain group as the center group, and assign

weights to other groups according to the spatial distance.

An illustration of this weighting strategy is shown in Fig. 2.
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Generally, we put more weights on groups that are farther

away from the center group. As a result, the optimization of

the algorithm is guided to penalize less on the center group

and its neighbors, and more on other far away groups. Con-

sequently, the algorithm is expected to get a solution with

localized basis images.

Furthermore, with different selection of the center group,

we can learn a different subspace. Therefore, the proposed

WLoSDA algorithm naturally enables multi subspace learn-

ing, which is different from existing subspace learning algo-

rithms. In order to make the learned multi subspaces com-

plementary to each other, we select the center groups that

emphasizing on different object parts (see Fig. 2 for an ex-

ample). We also develop a multi subspace fusion method

for the distance metric. Suppose there are m weighting

strategies, e.g. {wi}m
i=1, then, we can learn m projection

matrices accordingly. Let pk and gk, k = 1, 2, · · · , m,
be the projected vectors of two original samples to the m
subspaces, respectively, then, we can compute the distance

of the two samples by dist(p,g) = minm
k=1 dist(p

k,gk),
which adopts the min fusion rule.

4. Experiments

To evaluate the performance of the proposed LoSDA and

WLoSDA algorithms, we apply them to the face recogni-

tion problem, with experiments conducted on the FRGC

v2.0 [23] and the AR [19] face databases. We also com-

pared several state-of-the-art discriminant analysis algo-

rithms, including the classical LDA [8], regularized LDA

(RLDA) [32], Spectral Regression Discriminant Analysis

(SRDA) [6]1, the Sparse regularized version of the SRDA

(SSRDA) [5], and the famous local object part based learn-

ing algorithms, the NMF [15] and LNMF [16]. For both the

FRGC and the AR databases, we split the data into a train-

ing set and a testing set, where there was no overlapping of

classes (AR) or a partial overlapping of classes but no over-

lapping of images (FRGC), between the two sets. For the

testing set, we selected one sample per class as enrolled in
the gallery set, and used the rest for the probe set. The test-

ing task is to recognize the identity of each face image in the

probe set. We projected each face image in the testing set

in the learned subspace, and calculated the Cosine metric

between two projected features as the similarity measure.

Finally, we applied the K Nearest Neighbor (KNN) classi-

fier with K = 1 for face identification, and used the rank-1
recognition accuracy for performance report.

Some of the compared algorithms in the experiments,

such as the RLDA, SSRDA and the proposed LoSDA, have

a regularization parameter. The optimal value of the regu-

larization parameter for each algorithm was cross validated

on the training set in the range of {0.001, 0.005, 0.01, 0.05,
1The source code is available on the author’s webpage [1].

0.1, 0.2, . . . , 1}. For this task, we randomly split the train-
ing set into two subsets, one for training and the other one

for testing, and repeated this for 5 times for cross validation

of the parameters. The average rank-1 recognition accura-

cy on the testing subset was calculated with each parameter,

and the optimal parameter value was determined according-

ly for each algorithm. As for the NMF and the LNMF algo-

rithms, the only parameter is the dimension of the learned

subspace. Considering they are unsupervised algorithms,

we set the learned dimension as 5 × c, which is 5 times as
the learned dimension of the proposed LoSDA algorithm.

In all experiments, we used the gray scale pixel inten-

sity values as features. All face images were cropped and

resized into 35×35 pixels, and then each face image was
pulled as a long feature vector. For the proposed LoSDA

andWLoSDA algorithms, we simply divided each basis im-

age (in columns of X in Eq. 4) into 25 (5 × 5) equivalent
blocks, so that each block contained 7×7 pixels as a group.
Fig. 2 shows how we defined the groups on a basis image.

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

Figure 2. The 5 × 5 groups on a basis image (left), and two il-
lustration examples where the defined groups are attached on face

images. The example images are from the FRGC (middle) and the

AR (right) databases.

For the WLoSDA algorithm, we applied five weighting

strategies, and the weights for each group were defined as

follows. For each weighting strategy, we chose a block as

the centroid, and then set the weights of other blocks as

the square of the Euclidian distance (blockwise) to the cen-

troid. In the experiments, we chose five blocks as centroids

as shown in Fig. 2 (number 7, 9, 13, 17, and 19). In this

way, for each weighting strategy, the farther a group is to

the centroid, the more penalty is placed to the group. There-

fore, the optimization of Eq. (4) will promote a solution of

basis images localized at the selected centroid.

4.1. Experiments On FRGC

The Face Recognition Grand Challenge (FRGC) v2.0

database [23] is a large and challenging face database which

contains about 50,000 frontal face images. There are 2D

face images taken in both controlled and uncontrolled envi-

ronments, as well as 3D face images, which were not used

in our experiments. The controlled images were taken in-

door with two lighting conditions and two expressions (s-

miling and neutral). The uncontrolled images were taken

outdoor, which also contains two expressions, smiling and

neutral. The FRGC v2.0 database contains a training set

and a testing set for the 2D face images. The training set

contains 12,776 face images of 222 individuals, in which

836844844850



6,360 are controlled images and 6,416 are uncontrolled im-

ages. The testing set consists of 466 individuals, including

16,028 controlled images captured indoor and 8,014 uncon-

trolled images captured outdoor. The testing set contains

some individuals present in the training set, but there is no

overlapping of images between the two sets. The top row of

Fig. 4 shows some cropped face images from the database.

Figure 3. Top row: example indoor face images (first 4) and out-

door face images (last 4) cropped from the FRGC database. Bot-

tom row: some sunglasses and masks used in the experiments, and

some example face images with synthesized occlusions.

In the experiments, the face images were cropped and re-

sized to 35×35 pixels according to the provided eye coordi-
nates, followed by an illumination preprocessing proposed

in [27]. We selected the first image of each individual in the

indoor set as the gallery image, and the remaining images

constituted the probe set, including 15,562 indoor images

and 8,014 outdoor images. Then we randomly separated

the indoor images of each person as two parts, about half

images as the indoor probe images, and the other half for

probe images with synthesized occlusions. Therefore, the

probe images were separated into three subsets, indoor im-

ages, outdoor images, and the occlusion images, with a total

number of 8,014, 8,014, and 7,548 images, respectively. For

the occlusion subset, some sunglasses (a total of 4 types) or

masks (a total 4 types) were randomly selected and placed

on the cropped images. Some face images with synthesized

occlusions are shown in Fig.3. Considering the computa-

tional cost, we just randomly selected 10 indoor face images

and 10 outdoor face images per class from the training set

for the cross validation of parameter values. Then, 5 indoor

images and 5 outdoor images per subject were randomly s-

elected to learn the final projection matrix. Table 1 displays

the recognition accuracy of the compared algorithms on the

indoor subset, outdoor subset, occlusion subset, and the w-

hole testing set, respectively.

From Table 1, it can be observed that, except WLoSDA,

the proposed LoSDA algorithm outperforms all other exist-

ing algorithms, with an improvement of 3% in average over

the best performer, SSRDA, among the existing algorithms.

This shows that, thanks to the local group sparse regular-

ization, the proposed algorithm learns a more robust sub-

space than the existing state-of-the-art algorithms, against

both illumination variations and partial occlusions. Besides,

WLoSDA achieves a further improvement over LoSDA, e-

specially on the occlusion subset (about 6% improvement),

showing that more localized basis is more robust for face

Table 1. Face recognition performance (%) on the FRGC database.

Method Indoor Outdoor Occlu. All

LDA 60.64 19.78 4.37 28.74

SRDA 56.66 14.19 3.97 25.36

RLDA 77.79 39.18 17.17 45.26

SSRDA 80.40 39.62 16.92 46.21

NMF 37.62 4.97 4.90 16.05

LNMF 36.06 1.30 4.66 14.19

LoSDA 83.45 44.91 18.52 49.56

WLoSDA 84.35 44.71 24.17 51.61

recognition under partial occlusion. It is obviously that the

NMF and LNMF fail to learn an highly discriminant sub-

space. The most important reason is that both of them are

unsupervised algorithms, while the others are supervised. It

should also be noted that the NMF and LNMF solve non-

convex problems, thus they are not guaranteed to find the

right solution, and may often be caught in a local minimum.

4.2. Experiments On AR

The AR database is a color facial database which con-

tains more than 3,000 face images corresponding to 135 in-

dividuals (76 men and 59 women). These images are cap-

tured in two sessions, separated by two weeks (14 days).

In each session, frontal face images under four different s-

cenarios have been taken for each individual. Particularly,

there are four face images for different facial expressions

under normal light, three images under different illumina-

tion conditions with normal expression, three images under

sunglasses occlusion and another three images under scarf

occlusion. Images under the same conditions have been tak-

en in both sessions so that there are 26 images per subject.

There are also some people who just participated in one ses-

sion. Fig.4 shows some examples from the AR database.

Figure 4. Example images cropped from the AR database, under

expressions, illumination variations, occlusions with sunglasses

and scarf.

In the experiments, we randomly separated the database

into a training set, which contains 60 individuals, and a test-

ing set consisting of the remaining subjects (75 individual-

s). The recognition accuracy of the compared algorithms on

the testing set are shown in Table 2. We summarize results

for the overall recognition accuracy, as well as on the facial

expression subset (Expr.), illumination subset (Illum.), sun-

glasses subset (Glass), and the scarf subset. From the over-

all recognition accuracy (the last column in Table 2), we can
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Table 2. Face recognition performance (%) on the AR database.

Method Expr. Illum. Glass Scarf All

LDA 37.58 49.38 7.90 21.98 29.50

SRDA 35.42 46.42 5.68 19.26 27.00

RLDA 77.54 89.88 37.78 55.31 65.55

SSRDA 79.27 91.36 36.79 57.53 66.69

NMF 62.20 15.80 8.64 1.98 23.54

LNMF 62.42 13.83 7.41 2.22 22.88

LoSDA 78.83 92.10 37.04 62.72 68.06

WLoSDA 76.89 91.60 41.23 70.62 70.32

see that the proposed WLoSDA algorithm achieved the best

performance, followed by LoSDA. It can be observed that,

except WLoSDA, LoSDA performs the best in overall and

in all subsets except the facial expression subset. Especially,

LoSDA outperforms existing algorithms by more than 5%

recognition rate on the scarf occluded images. This shows

that the proposed method is more effective against occlu-

sion, which benefits from the local group sparse regular-

ization. Furthermore, the WLoSDA algorithm outperforms

LoSDA by about 8% on the scarf subset and about 4% on

the sunglasses subset. The notable improvement is because

WLoSDA learns various localized components and boosts

the performance by fusing information from different local

parts on face images.

4.3. Discussion

The proposed LoSDA and theWLoSDA algorithms have

shown their excellent performance and robustness on dis-

criminant subspace learning for the face recognition prob-

lem. Another important property of an algorithm that we

care about is the parameter sensitivity. With varying pa-

rameters, we expect the algorithm to be stable, making pa-

rameter selection an easy task. Considering this, we made

an analysis on the regularization parameter λ in the pro-

posed algorithms. The experiments were done on the train-

ing set of the AR database that we previously used, under

the cross validation manner. Parameters values in {0.001,
0.005, 0.01, 0.05, 0.1, 0.2, . . . , 1} were evaluated for λ.
Fig. 5 shows the face recognition accuracy with respect to

the value of λ, averaged for five trials on the training set. It
can be observed that the performances of both the LoSDA

and WLoSDA algorithms are improved when the λ increas-
es up to 0.3. Then, the algorithm of WLoSDA becomes sta-

ble, while the performance of LoSDA drops. A good range

of the parameter value λ for WLoSDA is [0.3, 1.0], while

that for LoSDA is [0.1, 0.4].

In this paper, we applied the proposed algorithms to the

face recognition problem, but they can also be applied to

other visual classification applications that needs part-based

representation rather than holistic representation to over-

come the occlusion and local illumination variation chal-
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Figure 5. Recognition accuracy with respect to the value of param-

eter λ on the AR database.

lenges. In practical use, it should be noted that, though

WLoSDA performs the best in our experiments, which is es-

pecially robust against occlusion, the multi subspace learn-

ing and fusion method generally involves more computa-

tion. Therefore, a balance between accuracy and efficiency

should be considered for the adoption between the LoSDA

and the WLoSDA algorithms.

Besides, we just utilized the raw pixel values as our fea-

tures in the experiments, but the proposed algorithms are

not limited to pixels. It can be extended to more complicat-

ed local descriptors to achieve better performance, such as

the LBP [2] and Gabor features [17]. Particularly, the local

histogram based features (e.g. LBP) with local regions can

be conveniently treated as groups for our algorithm. Fur-

thermore, the proposed algorithm can make use of overlap-

ping groups to exploit different local structures for object

image. We will consider this in our future study.

5. Conclusion

In the paper, we have proposed a novel discriminan-

t analysis algorithm called LoSDA, which aims at learning

discriminant bases that consist of local object parts. Fur-

thermore, we derive a weighted LoSDA (WLoSDA) ap-

proach to learn localized basis images, which also enables

multi subspace learning and fusion. The advantage of the

proposed approach is that, it is more robust against partial

occlusions and local illumination variations than tradition-

al dense or global basis based LDA algorithms for visu-

al classification. Experimental results on the FRGC v2.0

and the AR face databases show that the proposed LoSDA

and WLoSDA algorithms both outperform the other state-

of-the-art discriminant subspace learning algorithms under

illumination variations and occlusions.

6. Acknowledgement

This work was supported in part by the National Basic

Research Program of China under Grant 2012CB316304,

838846846852



and the National Natural Science Foundation of China un-

der Grants 61272331 and 61175025.

References
[1] http://www.zjucadcg.cn/dengcai/.

[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face description

with local binary patterns: Application to face recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(12):2037–2041, 2006.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM
J. Imaging Sciences, 2(1):183–202, 2009.

[4] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-

faces vs. fisherfaces: Recognition using class specific linear

projection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(7):711–720, 1997.

[5] D. Cai, X. He, and J. Han. Spectral regression: A unified

approach for sparse subspace learning. In International Con-
ference on Data Mining, 2007.

[6] D. Cai, X. He, and J. Han. Spectral regression for efficient

regularized subspace learning. In International Conference
on Computer Vision, 2007.

[7] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new LDA-

based face recognition system which can solve the smal-

l sample size problem. Pattern Recognition, 33(10):1713–
1726, 2000.

[8] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. John Wiley-Sons, 2001.

[9] K. Fukunaga. Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning: Data mining, inference, and prediction.
Springer, 2001.

[11] K. Hotta. Robust face recognition under partial occlusion

based on support vector machine with local gaussian sum-

mation kernel. Image and Vision Computing, 26(11):1490 –
1498, 2008.

[12] S. Ji and J. Ye. An accelerated gradient method for trace

normminimization. In International Conference on Machine
Learning, pages 457–464, 2009.

[13] H. Jia and A. Martinez. Support vector machines in face

recognition with occlusions. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 136–141, 2009.

[14] J. Kim, J. Choi, J. Yi, and M. Turk. Effective representa-

tion using ICA for face recognition robust to local distortion

and partial occlusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(12):1977–1981, 2005.

[15] D. D. Lee and H. S. Seung. Learning the parts of objects by

non-negative factorization. Nature, 401:788–791, 1999.
[16] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatial-

ly localized, parts-based representation. In IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 207–212, 2001.

[17] C. Liu and H. Wechsler. Gabor feature based classifica-

tion using the enhanced fisher linear discriminant model for

face recognition. IEEE Transactions on Image Processing,
11(4):467–476, 2002.

[18] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via ef-

ficient �2,1-norm minimization. In Uncertainty in Artificial
Intelligence, pages 339–348, 2009.

[19] A. Martinez and R. Benavente. The AR face database. Tech-

nical Report 24, Computer Vision Center, June 1998.

[20] A. M.Martinez. Recognizing imprecisely localized, partially

occluded, and expression variant faces from a single sample

per class. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(6):748–763, 2002.

[21] Y. Nesterov. Introductory Lectures on Convex Optimization:
A Basic Course. Kluwer Academic Publishers, 2003.

[22] H. J. Oh, K. M. Lee, and S. U. Lee. Occlusion invariant

face recognition using selective local non-negative matrix

factorization basis images. Image and Vision Computing,
26(11):1515–1523, 2008.

[23] P. J. Phillips, P. J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang,

K. Hoffman, J. Marques, J. Min, and W. Worek. Overview

of the face recognition grand challenge. In IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, 2005.

[24] X. Shu, Y. Gao, and H. Lu. Efficient linear discriminant anal-

ysis with locality preserving for face recognition. Pattern
Recognition, 45(5):1892–1898, 2012.

[25] M. Sugiyama. Local fisher discriminant analysis for super-

vised dimensionality reduction. In International Conference
on Machine Learning, volume 148, pages 905–912, 2006.

[26] D. L. Swets and J. Weng. Using discriminant eigenfeatures

for image retrieval. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(8):831–836, 1996.

[27] X. Tan and B. Triggs. Enhanced local texture feature sets

for face recognition under difficult lighting conditions. In

Proceedings of the IEEE International Workshop on Analysis
and Modeling of Faces and Gestures, 2007.

[28] R. Tibshirani. Regression Shrinkage and Selection Via the

Lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994.

[29] P. Tseng. On accelerated proximal gradient methods for

convex-concave optimization. submitted to SIAM Journal
on Optimization, 2008.

[30] J. Ye. Least squares linear discriminant analysis. The
Twenty-Fourth International Conference on Machine Learn-
ing, pages 1087–1093, 2007.

[31] J. Ye and T. Xiong. Computational and theoretical analy-

sis of null space and orthogonal linear discriminant analysis.

Journal of Machine Learning Research, 7:1183–1204, 2006.
[32] J. Ye, T. Xiong, Q. Li, R. Janardan, J. Bi, V. Cherkassky,

and C. Kambhamettu. Efficient model selection for regular-

ized linear discriminant analysis. In Proceedings of the 15th
ACM International Conference on Information and Knowl-
edge Management, pages 532–539, 2006.

[33] H. Yu and J. Yang. A direct LDA algorithm for high di-

mensional data with application to face recognition. Pattern
Recognition, 34(10):2067–2070, 2001.

[34] P. Zhang and N. Riedel. Discriminant analysis: A unified

approach. In The Fifth IEEE International Conference on
Data Mining, pages 514–521, 2005.

839847847853


