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Abstract

Estimation of facial expressions, as spatio-temporal pro-

cesses, can take advantage of kernel methods if one consid-

ers facial landmark positions and their motion in 3D space.

We applied support vector classification with kernels de-

rived from dynamic time-warping similarity measures. We

achieved over 99% accuracy – measured by area under

ROC curve – using only the ’motion pattern’ of the PCA

compressed representation of the marker point vector, the

so-called shape parameters. Beyond the classification of

full motion patterns, several expressions were recognized

with over 90% accuracy in as few as 5-6 frames from their

onset, about 200 milliseconds.

1. Introduction

Because they enable model based prediction and timely

reactions, the analysis and identification of spatio-temporal

processes, including concurrent and interacting events, are

of great importance in many applications. Spatio-temporal

processes have intriguing features. Consider three exam-

ples. First is a feature-length movie, which is a set of time

series of pixel intensities in which the number of pixels is

on the order of 100,000 and the values follow each other at

a rate of 30 fps for a time interval of 2 hours or so. Second

are financial time series. Currency exchange rates, stocks,

and many other finance related data are heavily affected by

both common underlying processes and by one another and

exhibit large coupled fluctuations over 9 orders of magni-

tude [16]. Third, and a focus of the current paper, are facial

expression time series. The motion patterns of landmark

points of a face, such as mouth and eye corners comprise a

’landmark space’. The dynamics of change in this space can

reveal emotion, pain, and cognitive states, and regulate so-

cial interaction. For effective human-computer interaction,

automated facial expression analysis is important.

Figure 1. Overview of the system.

In all three types of time series, i.e., movies, financial

data, and facial expressions, we are dealing with spatio-

temporal processes. For each, kernel methods hold great

promise.

The demands for characterizing such processes pose spe-
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cial challenges because very different signals may represent

the same process when the process is viewed from different

distances (in the case of the movie), different time scales

(market data), or different viewing angles (facial expres-

sions). Such invariances and distortions need be taken into

account.

Early attempts to use support vector methods for the pre-

diction of time series were very promising [15] even in

the absence of algorithms compensating for temporal dis-

tortions. In other areas, such as speech recognition, time

warping algorithms have been developed early in order to

match slower and faster speech fragments, see, e.g., [6] and

the references therein. Dynamic time warping is one of the

most efficient methods that offer the comparison of tempo-

rally distorted samples [18].

Recently, the two methods, i.e., dynamic time warping

and SVMs have been combined and show considerable per-

formance increases in the analysis of spatio-temporal sig-

nals [5, 4]. Efficient methods using independent compo-

nent analysis [12], Haar filters [22], hidden Markov models

[1, 2, 20] have been applied for problems related to the esti-

mation of emotions and facial expressions. Here, we study

the efficiency of novel dynamic time warping kernels [5, 4]

for emotional expression estimation.

Our contributions are as follows: We show that (1) time

series kernel methods are highly precise for emotional ex-

pression estimation using landmark data only and (2) they

enable early and reliable estimation of expression as soon

as 5 frames from expression onset, i.e., around 200 ms.

The paper is organized as follows. First, in the Methods

section we review how landmark points are observed in 3

dimensions, sketch the two spatio-temporal kernels that we

applied, and describe support vector machine (SVM) prin-

ciples. Section 3 is about our experimental studies. It is

followed by our Discussion and Summary.

2. Methods

2.1. Facial Feature Point Localization

To localize a dense set of facial landmarks, Active Ap-

pearance Models (AAM) [14] and Constrained Local Mod-

els (CLM) [19] are often used. These methods register a

dense parameterized shape model to an image such that its

landmarks correspond to consistent locations on the face.

Of the two, person specific AAMs have higher precision

than CLMs, but they must be trained for each person be-

fore use. On the other hand, CLM methods can be used for

person-independent face alignment because of the localized

region templates.

In this work we use a 3D CLM method, where the shape

model is defined by a 3D mesh and in particular the 3D ver-

tex locations of the mesh, called landmark points. Consider

the shape of a 3D CLM as the coordinates of 3D vertices

that make up the mesh:

x = [x1; y1; z1; . . . ;xM ; yM ; zM ], (1)

or, x = [x1; . . . ;xM ], where xi = [xi; yi; zi]. We have

T samples: {x(t)}Tt=1. We assume that – apart from scale,

rotation, and translation – all samples {x(t)}Tt=1 can be

approximated by means of the linear principal component

analysis (PCA).

In the next subsection we briefly describe the 3D Point

Distribution Model and how the CLM method estimates the

landmark positions.

2.1.1 Point Distribution Model

The 3D point distribution model (PDM) describes non-rigid

shape variations linearly and composes it with a global rigid

transformation, placing the shape in the image frame:

xi(p) = sPR(x̄i +Φiq) + t, (2)

(i = 1, . . . ,M), where xi(p) denotes the 3D location

of the ith landmark and p = {s, α, β, γ,q, t} denotes

the parameters of the model, which consist of a global

scaling s, angles of rotation in three dimensions (R =
R1(α)R2(β)R3(γ)), a translation t and non-rigid transfor-

mation q. Here x̄i denotes the mean location of the ith

landmark (i.e. x̄i = [x̄i; ȳi; z̄i] and x̄ = [x̄1; . . . ; x̄M ]) and

P denotes the projection matrix to 2D:

P =

[
1 0 0
0 1 0

]
. (3)

We assume that the prior of the parameters follow a nor-

mal distribution with mean 0 and variance Λ at a parameter

vector q:

p(p) ∝ N(q;0,Λ), (4)

From xi points PCA provides x̄ in (2) and Λ in (4).

2.1.2 Constrained Local Model

CLM is constrained through the PCA of PDM. It works with

local experts, whose opinion is considered independent and

are multiplied to each other:

J(p) = p(p)

M∏
i=1

p(li = 1|xi(p), I)→ min
p

, (5)

where li ∈ {−1, 1} is a stochastic variable telling whether

the ith marker is in its position or not, p(li = 1|xi(p), I)
is the probability that for image I and for marker position

xi (being a function of parameter p, i.e., for xi(p)) the ith

marker is in its position.

876884884890



t = 2

Anger

Disgust

Fear

Joy

Sadness

Surprise

(a)

t = 4

(b)

t = 8

(c)

σ = 16

Anger

Disgust

Fear

Joy

Sadness

Surprise

(d)

σ = 32

(e)

σ = 64

(f)

Figure 2. Gram matrices induced by the pseudo-DTW kernel (a-c) and the GA kernel (d-f) with different parameters. The rows and columns

represent the time-series grouped by the emotion labels (the boundaries of the different emotional sets are denoted with green dashed lines).

The pixel intensities in each cell show the similarity between two time-series.

The interested reader is referred to [19] for the details of

the CLM algorithm.1

2.2. Time-series Kernels

Kernel based classifiers, like any other classification

scheme, should be robust against invariances and distor-

tions. Dynamic time warping, traditionally solved by dy-

namic programming, has been introduced to overcome tem-

poral distortions and has been successfully combined with

kernel methods. Below, we describe two kernels that we ap-

plied in our numerical studies: the Dynamic Time Warping

(DTW) kernel and the Global Alignment (GA) kernel.

2.2.1 Dynamic Time Warping Kernel

Let XN be the set of discrete-time time series taking val-

ues in an arbitrary space X. One can try to align two time

series x = (x1, ..., xn) and y = (y1, ..., ym) of lengths n
and m, respectively, in various ways by distorting them. An

alignment π has length p and p ≤ n+m− 1 since the two

series have n + m points and they are matched at least at

1We used the CLM software of Saragih, which is available here

https://github.com/kylemcdonald/FaceTracker.

one point of time. We use the notation of [4]. An align-

ment π is a pair of increasing integral vectors (π1, π2) of

length p such that 1 = π1(1) ≤ ... ≤ π1(p) = n and

1 = π2(1) ≤ ... ≤ π2(p) = m, with unitary increments

and no simultaneous repetitions. In turn, for all indices

1 ≤ i ≤ p − 1, the increment vector of π belongs to a

set of 3 elementary moves as follows

(
π1(i+ 1)− π1(i)

π2(i+ 1)− π2(i)

)
∈

{(
0

1

)
,

(
1

0

)
,

(
1

1

)}
(6)

Coordinates of π are also known as warping functions. Let

A(n,m) denote the set of all alignments between two time

series of length n and m. The simplest DTW ’distance’

between x and y is defined as

DTW (x, y)
def
= min
π∈A(n,m)

Dx,y(π) (7)

Now, let |π| denote the length of alignment π. The cost can

be defined by means of a local divergence φ that measures

the discrepancy between any two points xi and yj of vectors

x and y.

Dx,y(π)
def
=

|π|∑
i

φ(xπ1(i), yπ2(i)) (8)
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The squared Euclidean distance is often used to define the

divergence φ(x, y) = ||x − y||2. Although this measure is

symmetric, it does not satisfy the triangle inequality under

all conditions – so it is not rigorously a distance – and can-

not be used directly to define a positive semi-definite ker-

nel. This problem can be alleviated by projecting matrix

Dx,y(π) to a set of symmetric positive semi-definite ma-

trices. There are various methods for accomplishing such

approximations. They called distance substitution [7]. We

applied the alternating projection method of [8] that finds

the nearest correlation matrix. Denoting the new matrix by
ˆDTW (x, y), the modified DTW distance induces a positive

semi-definite kernel as follows

kDTW (x, y) = e−
1
t

ˆDTW (x,y), (9)

where t is a constant.

The full procedure can be summarized as follows: (1)

take the samples, (2) compute the Euclidean distances for

each sample pair, (3) build the matrix from these sample

pairs, (4) find the nearest correlation matrix, (5) use it to

construct a kernel, and (6) compute the Gram matrix of the

support vector classification problem. Fig. 2 (a)-(c) show

Gram matrices induced by the pseudo-DTW kernel with

different t parameters.

2.2.2 Global Alignment Kernel

The Global Alignment (GA) kernel assumes that the min-

imum value of alignments may be sensitive to peculiari-

ties of the time series and intends to take advantage of all

alignments weighted exponentially. It is defined as the sum

of exponentiated and sign changed costs of the individual

alignments:

kGA(x, y)
def
=

∑
π∈A(n,m)

e−Dx,y(π). (10)

Equation (10) can be rewritten by breaking up the align-

ment distances according to the local divergences: similar-

ity function κ is induced by divergence φ:

kGA(x, y)
def
=

∑
π∈A(n,m)

|π|∏
i=i

e−φ(xπ1(i),yπ2(i)) (11)

def
=

∑
π∈A(n,m)

|π|∏
i=i

κ
(
xπ1(i), yπ2(i)

)
, (12)

where notation κ = e−φ was introduced for the sake of

simplicity. It has been argued that kGA runs over the whole

spectrum of the costs and gives rise to a smoother measure

than the minimum of the costs, i.e., the DTW distance [5].

It has been shown in the same paper that kGA is positive

definite provided that κ/(1 + κ) is positive definite on X.

Furthermore, the computational effort is similar to that of

the DTW distance; it is O(nm). Cuturi argued in [4] that

global alignment kernel induced Gram matrix do not tend

to be diagonally dominated as long as the sequences to be

compared have similar lengths.

In our numerical simulations, we used local kernel e−φσ

suggested by Cuturi, where

φσ
def
=

1

2σ2
||x− y||2 + log

(
2− e−

||x−y||2

2σ2

)
. (13)

Fig. 2 (d)-(f) show Gram matrices induced by the GA

kernel with different σ parameters.

2.3. Time-series Classification using SVM

Support Vector Machines (SVMs) are very powerful for

binary and multi-class classification as well as for regres-

sion problems [3]. They are robust against outliers. For

two-class separation, SVM estimates the optimal separat-

ing hyper-plane between the two classes by maximizing the

margin between the hyper-plane and closest points of the

classes. The closest points of the classes are called support

vectors; the optimal separating hyper-plane lies at half dis-

tance between them.

We are given sample and label pairs (x(i), y(i)) with

x(i) ∈ R
m, y(i) ∈ {−1, 1}, and i = 1, ..., K . Here, for

class ’1’ and for class ’2’ y(i) = 1 and y(i) = −1, re-

spectively. We also have a feature map φ : Rm → H,

where H is a Hilbert-space. The kernel implicitly per-

forms the dot product calculations between mapped points:

k(x, y) = 〈φ(x),φ(y)〉H . The support vector classification

seeks to minimize the cost function

min
w,b,ξ

1

2
wTw+ C

K∑
i=1

ξi (14)

y(i)(wTφ(x(i)) + b) ≥ 1− ξi, ξi ≥ 0. (15)

where ξi (i = 1, . . . ,K) are the so called slack variables

that generalize the original SVM concept with separating

hyper-planes to soft-margin classifiers that have outliers that

can not be separated.

3. Experiments

3.1. Cohn-Kanade Extended Dataset

In our simulations we used the Cohn-Kanade Extended

Facial Expression (CK+) Database [13]. This database was

developed for automated facial image analysis and syn-

thesis and for perceptual studies. The database is widely

used to compare the performance of different models. The

database contains 123 different subjects and 593 frontal im-

age sequences. From these, 118 subjects are annotated with
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(a) (b) (c)

(d) (e) (f)

Figure 3. ROC curves of the different emotion classifiers: (a) anger, (b) disgust, (c) fear, (d) joy, (e) sadness and (f) surprise. Thick lines:

performance using all frames of the sequences. Thin lines: performance using the 6th frames of the sequences. Solid (dotted) line: results

for pseudo DTW (GA) kernel.

the seven universal emotions (anger, contempt, disgust, fear,

happy, sad and surprise). Action units are also provided

with this database for the apex frame. The original Cohn-

Kanade Facial Expression Database distribution [11] had

486 FACS-coded sequences from 97 subjects. CK+ has 593

posed sequences with full FACS coding of the peak frames.

A subset of action units were coded for presence or absence.

For these sequences the 3D landmarks and shape parame-

ters were provided by the CLM tracker itself.

3.2. Emotional Expression Classification

In this set of experiment we studied the two kernel meth-

ods on the CK+ dataset. We measured the performances of

the methods for emotion recognition.

First, we tracked facial expressions with the CLM tracker

and annotated all image sequences starting from the neu-

tral expression to the peak of the emotion. The CLM esti-

mates the rigid and non-rigid transformations. We removed

the rigid ones from the faces and represented the sequences

as multi-dimensional time-series built from the non-rigid

shape parameters.

We calculated Gram matrices using the pseudo DTW and

the GA kernels and performed leave-one-subject out cross

validation to maximally utilize the available set of training

data. For both kernels, we searched for the best parame-

ter (t in the case of pseudo-DTW kernel and σ in the case

of GA kernel) between 2−5 and 210 on a logarithmic scale

with equidistant steps and selected the parameter having the

lowest mean classification error. The SVM regularization

parameter (C) was searched within 2−5 and 25 in a similar

fashion. If the pseudo-DTW kernel based Gram matrix was

not positive semi-definite then we projected it to the nearest

positive semi-definite matrix using the alternating projec-

tion method of [8].

The result of the classification is shown in Fig. 3. Perfor-

mance is nearly 100% for expressions with large deforma-

tions in the facial features, such as disgust, happiness and

surprise.

To the best of our knowledge, classification performance

with time-series kernels is better than the best available re-

sults to date, including spatio-temporal ICA, boosted dy-

namic features, and non-negative matrix factorization tech-

niques. For detailed comparisons, see Table 1.

3.3. Early Expression Classification

Encouraged by the results of the first experiment, we de-

cided to constrain the maximum length of the sequences

used in training and testing in order to estimate performance

in the early phase of the emotion events.

We cropped the the time series between 2 and 16 frames

and trained kernel SMVs for one-vs-all emotion classifica-

tion. Figure 4 shows the classification performance as a

function of the maximum length of the sequences. Accord-

ing to the figures, 3-to-4 frames can reach 80% AUC-ROC

879887887893



Table 1. (a) Comparisons with hand-designed spatio-temporal Gabor filters (Wu et al. 2010 [21]), learned spatio-temporal ICA filters (Long

et al. 2012 [12]) and Sparse Non-negative Matrix Factorization (NMF) filters (Jeni et al. 2013 [9]) on the first 6 frames. (b) Comparisons

with boosted dynamic features (Yang et al. 2009 [22]) on the last frames of the sequences.

(a)

Method Anger Disg. Fear Joy Sadn. Surp. Average

Wu et al. [21] 0.829 0.677 0.667 0.877 0.784 0.879 0.786

Long et al. [12] 0.774 0.711 0.692 0.894 0.848 0.891 0.802

Jeni et al. [9] 0.817 0.908 0.774 0.938 0.865 0.886 0.865

This work, DTW 0.873 0.893 0.793 0.892 0.843 0.909 0.867

This work, GA 0.921 0.905 0.887 0.910 0.871 0.930 0.904

(b)

Method Anger Disg. Fear Joy Sadn. Surp. Average

Yang et al. [22] 0.973 0.941 0.916 0.991 0.978 0.998 0.966

Long et al. [12] 0.933 0.988 0.964 0.993 0.991 0.999 0.978

Jeni et al. [9] 0.989 0.998 0.977 0.998 0.994 0.994 0.992

This work, DTW 0.991 0.994 0.987 0.999 0.995 0.996 0.994

This work, GA 0.986 0.993 0.986 1.000 0.984 0.997 0.991

(a) (b) (c)

(d) (e) (f)

Figure 4. Area Under ROC curve values of the different emotion classifiers: (a) anger, (b) disgust, (c) fear, (d) joy, (e) sadness and (f)

surprise. Solid (dotted) line: results for the pseudo DTW (GA) kernel.

performance, whereas 5-to-6 frames are sufficient for about

90% performance.

4. Discussion and Summary

We have studied time-series kernel methods for the anal-

ysis of emotional expressions. We used the well known 3D

CLM method with the available open source C++ imple-

mentation of Jason Saragih. Compared to previous results,

we found superior performances both on the first 6 frames

and on the last few frames of the sequences collected from

the CK+ database. It is notable that we used only shape

information and neglected the textural one, since the 3D

CLM model can compensate for the head poses making the

method robust against head pose variations [10].

The NMF method [9] that deeply exploits textural fea-

tures comes close to our method and one expects that mix-

ing the two methods may unite the advantages of the two ap-

proaches, namely the robustness of the shape based method

against pose variations and light conditions, and sometimes

strong textural changes under small landmark position vari-

ations. Also, textural changes are less sensitive to the esti-

mation noise of the landmark positions.

We achieved highly promising results at early times of

the series: 3-to-4 frames reached 80% AUC-ROC perfor-

mance, whereas 5-to-6 frames were sufficient for about 90%

performance. Such early detection enables timely response

in human-computer interactions and collaborations. Fur-

thermore, the early frames of the series have smaller AUC

values and should make emotion estimation more robust.
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In sum, time-series kernels are very promising for emo-

tion recognition. There is a number of potential im-

provements to our method, such as (i) joined texture and

shape based facial expression recognition using for exam-

ple, probabilistic SVMs, and (ii) novel DTW optimization

methods, like lower bounding or the UCR suite approach

[17] that can make the proposed system tractable for real-

time analysis.
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