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Abstract

In this paper we compare different mechanisms for the
prediction of targets position inside a PTZ camera network.
The goal is to predict the next location of each target with
higher accuracy, in order to better plan the movements of
the cameras at the next time step. For that purpose, we are
proposing a probabilistic multimodal approach, and show
that this prediction method can improve the total coverage
of a camera network compared to other probabilistic
prediction methods.

1. Introduction
The use of Pan-Tilt-Zoom (PTZ) cameras for automatic

surveillance systems have recently increased due to ad-
vances in the field of multi-camera multi-target surveillance
camera networks [2]. In classical surveillance systems,
a limited number of CCTV cameras are controlled by
humans, while in a smart network, the PTZ cameras are
automatically controlled to obtain a better coverage of the
targets inside the field of interest.

The challenging objective in these networks is the
control mechanism of the cameras’ pan, tilt, and zoom
capabilities for an overall better coverage of the targets.
For that purpose, the targets should first be detected in the
environment, their movement should then be modelled to
predict the next locations, and finally the PTZ parameters of
the cameras adjusted for optimal coverage at the next time
steps. The focus of this paper is on the targets’ movement
prediction and camera adjustment steps.

Rahimi et al. [6] were among the first to propose a
system to track a target with a network of non-overlapping
cameras. They proposed an algorithm for simultaneous
estimation of targets’ trajectories (current location and
directional velocity) and camera calibration. Later, Lim et
al. [3] proposed a system for active control of cameras to
obtain an non-occluded view of each target. For that pur-
pose, the position of the targets are predicted as a straight
line with uncertainty modelled as a Gaussian function.

Krahnstoever et al. [2] proposed a probabilistic objective
function for coverage estimation of a camera over a target

considering the capture distance, view angle, target reach-
ability, and trackability. Using a similar relevance model
between cameras and targets, Qureshi and Terzopoulos [5]
presented the optimal collaboration between cameras as a
planning problem which was solved using the greedy best-
first search mechanism. Their target location prediction is
calculated by the static cameras, although no more details
are provided on the prediction mechanism.

Recently, Natarajan et al. [4] presented a decision
theoretic approach based on Markov Decision Process to
maximize coverage of the camera network. Their work also
has a probabilistic model for prediction of targets position,
although, as we will mention later, their work is categorized
under the unimodal Gaussian movement assumption.

To the best of our knowledge, in all the previous work
that has been done on target trajectory prediction, the
next location was predicted with a combination of the
target’s velocity and uncertainty on the velocity (we refer
to this approach as the unimodal approach in this paper).
In these approaches, at each time step, the uncertainty
has a unimodal shape and cannot represent simultaneous
alternative hypotheses. For example, if a target is moving
in a zig-zag pattern, the system does not have the capacity
to represent the two possible next locations simultaneously.

In this paper, we are proposing to predict the next
location of a target using a multimodal probabilistic model.
So that the prediction for the next movement is modelled
probabilistically based on the previous movements of each
target. The effectiveness of our proposed model is shown
by comparing its performance with three other prediction
models.

For the rest of the paper, we present the smart camera
network model and the trajectory prediction problem in
Section 2. Different prediction methods are presented in
Section 3. Section 4 reports the simulation setup for the
experiments and the results before concluding the paper in
Section 5.

2. Problem Statement
Assume that we have a camera network C = {Ci|i =

1, . . . , N} consisting of N Pan-Tilt-Zoom (PTZ) cameras
Ci. The state of each camera at time t is defined as
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C
(t)
i = (pi, θ

(t)
i , ξ

(t)
i , f

(t)
i ), where pi = (xi, yi) is the

position of the camera in the coordinate system, θ
(t)
i

is the pan angle, ξ
(t)
i is the tilt angle, and f

(t)
i is the

focal length of the camera. It is also assumed that the
cameras are positioned τ meters above the ground. The
environment Ξ is defined by a Digital Elevation Model
(DEM), where the elevation of each location (x, y) is given
as the function k(x, y). Therefore, the elevation of each
camera is zi = k(xi, yi) + τ . From this definition it is clear
that the position of each camera is static over time. Each
camera has a set of characteristic parameters which define
the maximum and minimum value of each PTZ parameters,
along with their associated speed of change:

〈(θmin, θmax, vθ), (ξmin, ξmax, vξ), (fmin, fmax, vf )〉.
The goal of the network C is to optimally cover an un-

known number of moving targets T = {Tj |j = 1, 2, . . . }.
Each target has a history of past locations Tj = {T(s)

j |s =

tj , . . . , t}, starting at time tj , when the target was first
detected in the environment, up to the current time t. Here,

T
(s)
j = (x

(s)
j , y

(s)
j ) is the location of target j at time s.

The strategy the network follows for camera Ci through

time is defined by Si = {s(t)i |t = 1, . . . , T}, where T is the

total simulation time and s
(t)
i = (Δθ,Δξ,Δf ) is the com-

mand given to camera Ci at time t for updating its PTZ val-
ues. The set of strategies for the N cameras is summarized
as S = {Si|i = 1, . . . , N}. It is clear that the given com-
mand at each time step should satisfy each camera’s move-
ment constraints. More precisely we have as constraints:

|Δθ| ≤ vθ, θmin ≤ θ
(t)
i +Δθ︸ ︷︷ ︸
θ
(t+1)
i

≤ θmax,

|Δξ| ≤ vξ, ξmin ≤ ξ
(t)
i +Δξ︸ ︷︷ ︸
ξ
(t+1)
i

≤ ξmax,

|Δf | ≤ vf , fmin ≤ f
(t)
i +Δf︸ ︷︷ ︸
f
(t+1)
i

≤ fmax.

Now the coverage C(C
(t)
i ,q) of camera Ci on point

q = (xq, yq) in the environment at time t is defined as

a function of distance d(C
(t)
i ,q) = ‖pi − q‖, pan angle

p(C
(t)
i ,q) = ∠p(q − pi) − θ

(t)
i , tilt angle t(C

(t)
i ,q) =

∠t(q− pi)− ξ
(t)
i , and visibility v(Ci,q) of the camera:

C(C
(t)
i ,q) = f [μd(‖pi − q‖), μp(∠p(q− pi)− θ

(t)
i ),

μt(∠t(q− pi)− ξ
(t)
i ), v(pi,q)], (1)

where ∠p(q − pi) = arctan (yq − ypi , xq − xpi) is
the pan angle between camera Ci and point q, and
∠t(q− pi) = arctan (zq − zpi , ‖pi − q‖) is the tilt angle
between camera Ci and point q. In other words, for q to
be covered by camera Ci, we need to take into account its

range, viewing angles, and visibility. The focal point f
(t)
i

indirectly affects the coverage through pan and tilt angles,
and range. This effect will be later discussed in Section
2.1. Let μd, μp, μt ∈ [0, 1] represent some membership
functions of the mentioned coverage conditions, then (1)
can be rewritten as a multiplication of these memberships:

C(C
(t)
i ,q) = μd(‖pi − q‖) · μp(∠p(q− pi)− θ

(t)
i )

· μt(∠t(q− pi)− ξ
(t)
i ) · v(pi,q).

Function v(pi,q) is usually binary. Given a camera
position pi, if the line of sight between camera Ci and q
is obstructed, then we assume that the visibility cannot be
achieved (v(pi,q) = 0), otherwise the visibility is fully
attained (v(pi,q) = 1).

Value C = 1 means full coverage, and C = 0 indicates
no coverage. If more than one camera covers q, a way to
compute the local network coverage Cl of network C over
location q at time t is:

Cl(C
(t),q) = 1−

∏
i=1,...,N

(
1− C(C

(t)
i ,q)

)
.

The speed of the cameras is limited (defined by parame-
ters vθ, vξ, and vr), therefore, at each time step, the system
should predict the location of targets in the next time
step and plan for movement of the cameras appropriately.

More precisely, let us assume that T̂
(t+1)
j is the predicted

position of target Tj at time t + 1, and ĝ(Tj ,q, t + 1) is
the probabilistic displacement model of target Tj for time
t + 1. In Section 3, we will explain how this probabilistic
model is learned from the previous positions of each target.
The probabilistic displacement model assigns a probability

ĝ(Tj ,q, t + 1) = p(T̂
(t+1)
j = q) to all positions q in the

environment which are within a limited neighbourhood of
the target.

Each position q is also attributed to another parameter

w
(t)
q . This parameter defines the importance of location q

for the coverage task at time t. Therefore, higher values of

w
(t)
q represent higher importance of the location q in the

goal coverage problem. Targets are modelled as the weight
they assign to the locations in which they reside. Therefore,
if we predict that target Tj moves into a location q at time
t+1 then it contributes the amount of ĝ(Tj ,q, t+1) to the

weight of q and we have: w
(t+1)
q =

∑
Tj∈T ĝ(Tj ,q, t+1).

The goal of the system is to find an optimal strategy
for the cameras, so that targets are detected as soon as
they arrive inside the environment and they stay under
the maximal possible coverage while they traverse the
environment. We define the following objective function
for a given strategy as the coverage it provides for all of the
targets through time:

O(S) =
T∑

t=1

∑
q∈Ξ

w(t)
q Cl(C

(t),q),
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and the goal is to find a strategy S∗ which maximizes this
objective function:

S∗ = argmax
S

O(S).

The defined objective function provides an estimate
on the actual coverage that the network provides over
the targets. The actual coverage is calculated using the
following formula:

Cg(S) =
T∑

t=1

∑
q∈Ξ

1(T
(t)
j ,q) Cl(C

(t),q),

where the function 1(T
(t)
j ,q) returns one if target Tj is at

location q at time t, and zero otherwise.

2.1. Camera Coverage Model
The following real-valued membership functions are

used in our camera model. These functions provide a
monotonically decreasing membership value over distance
and relative angle of position to the camera.

We propose to use the following function, based on
the well-known sigmoid function, to evaluate the distance
membership:

μ
(t)
di = μd(‖pi − q‖︸ ︷︷ ︸

di

) = 1− 1

1 + exp
(
−βd(di − α

(t)
di )

) ,
with α

(t)
di and βd as the parameters configuring the mem-

bership function. These parameters can be estimated using
experimental observations on camera behaviours (e.g.
object recognition rate as a function of distance). Parameter

βd controls the slope of the function and α
(t)
di determines

the distance where the camera has 50% of its maximum
coverage.

As for the pan angle membership functions, we propose
the following function also based on the sigmoid function:

μ
(t)
pi = μp(∠p(q− pi)− θi︸ ︷︷ ︸

pi

) =
1

1 + exp
(
−βp(pi + α

(t)
pi )

)
− 1

1 + exp
(
−βp(pi − α

(t)
pi )

) ,
where α

(t)
pi controls the “width” of the function and βp

controls the slope of the function at the boundaries. Note
that the proposed function has a range of pi ∈ [−180, 180]
degrees. Therefore, any calculated angle should be brought
into this range accordingly. Similarly, membership function
μt is defined as:

μ
(t)
ti = μt(∠t(q− pi)− ξi︸ ︷︷ ︸

ti

) =
1

1 + exp
(
−βt(ti + α

(t)
ti )

)
− 1

1 + exp
(
−βt(ti − α

(t)
ti )

) ,

Figure 1: Probabilistic coverage model of a camera.
Assuming that a camera is positioned at (30,40) heading
upward, the colour shows different degrees of coverage
for points inside the map. Note that in this figure only the
distance and pan membership functions are visible. The
camera has the same coverage over the tilt as the pan angle.

which has the range ti ∈ [−90, 90]. The pan and tilt
membership functions are related to the focal length value

through the α
(t)
pi and α

(t)
ti parameters. More precisely, these

parameters define the angle of view for the camera, so we
have:

α
(t)
pi = 2 arctan(Lh, 2f

(t)
i ),

α
(t)
ti = 2 arctan(Lv, 2f

(t)
i ),

where Lh and Lv are the horizontal and vertical sizes of
the camera’s sensor, respectively.

The distance membership function is also related to the

focal length value f
(t)
i through the following formula:

α
(t)
di =

[
αdmax

− αdmin

fmax − fmin
(f

(t)
i − fmin)

]
+ αdmin

,

where αdmax and αdmin are the maximum and minimum

value that α
(t)
di can take. In practice, the value of these

parameters depends on the camera type, size of the targets,
the minimum number of pixels inside the images needed
for accurate detection of target, and so forth.

3. Target’s Displacement Prediction
We are now looking for predicting the next position

of each target considering the previous movements of the
targets in the environment.

The displacement vector of each target Tj at time t is

represented by dj(t) = T
(t)
j − T

(t−1)
j . Therefore, each

target is attributed with a list dj = [dj(s)|s = tj+1, . . . , t].

The goal is to predict the next displacement d̂j(t+ 1) using
the history of past movements dj . A simple approach
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would be to take the average of all the previous movements:

d̂j(t+ 1) =
1

n

t∑
s=tj+1

dj(s),

where n = t− tj . There are several problems related to this
approach. First, it gives equal weight to all previous move-
ments. For example, if a target has moved towards the west
and then suddenly it changed direction and moved towards
the east, this method keeps predicting the next position
within the west side, until the east movements can outweigh
the west movements. Therefore, it is clear that more recent
movements are more important. This problem can be
solved using an exponential moving average, as follows:

d̂j(t+ 1) =
1∑k=n−1

k=0 ρk

t∑
s=tj+1

ρt−sdj(s), (2)

where ρ ∈ [0, 1] is the weighting factor. The second
problem is related to the shape of the final result, which
is a vector, so this method gives high importance to one
location and all neighbour locations obtain zero probability.
Here we propose a probabilistic model for the next location
of each target. More precisely, for a target Tj at time t

we define a discrete random variable X
(t)
j over the sample

space of all the locations q ∈ Ξ. X
(t)
j is defined by a

discrete probability mass function g(Tj ,q, t) which returns
the probability of target Tj at location q at time t. The goal
is to incrementally learn the function g as each target moves
within the environment. So far we had a simple binary
probability function where g(Tj ,q, t) = 1 for only one lo-
cation, but a more interesting approach is to use a bivariate
Gaussian distribution around the predicted location:

ĝ(Tj ,q, t+ 1) =

∫∫
Aq

N2(d̂j(t+ 1),Σ),

where ĝ(Tj ,q, t + 1) is the predicted probability that the
target moves to location q in the next time step, Aq is the
cell inside the discretized environment around location q,

d̂j(t+ 1) is the mean of the bivariate distribution which we
calculated in (2), and Σ is the covariance matrix. Here, for
simplicity we assume Σ = σ2

pI.
For the third problem consider the following example.

Assume the target has moved to the west for some time
and then moved towards the north. After the transition,
the predicted location would be towards the north-west for
some time until it is gradually directed towards the north.
While the target has never moved towards the north-west,
and still, after the prediction has moved north, there is no
probability of the target moving towards the west, while it
is more reasonable that the probability of a west movement
would be larger than a probability of a movement in other
directions (e.g. east or south). To solve this problem, we
define the probabilistic measure for all the previous move-
ments and then sum up their values for all the locations

q. Therefore, in each time step, the probabilistic model
of the last movement g(Tj ,q, t) for location q is added
to the prediction of probability calculated for that location
ĝ(Tj ,q, t). We call this approach the multimodal approach
and it is formalized as follows:

ĝ(Tj ,q, t+ 1) = η g(Tj ,q, t) + (1− η) ĝ(Tj ,q, t),

(3)

g(Tj ,q, t) =

∫∫
Aq

N2(dj(t),Σ), (4)

where η ∈ [0, 1] is the learning rate. As can be seen, each
movement is creating a Gaussian distribution (4), and the
effect of these distributions is incrementally added through
time (3). This way, if the target has already moved toward
a direction before, the probability of that direction would
always be higher than other directions towards which the
target has never moved.

So far, we have assumed that the covariance matrix is
constant for all the movements. Another approach is to esti-
mate the mean and covariance matrix of the next movement
using the previous movements. This method is the most
widely used method for target trajectory estimation in the
literature [4, 6]. In this approach, all the previous displace-
ments are weighted and the parameters are calculated using
the maximum likelihood estimation. We call this approach
the unimodal approach. More precisely, assuming that θ(t+
1) = (dj(t+1),Σj(t+1)) are the parameters of the bivari-
ate normal distribution that we want to estimate, we have:

θ̂(t+ 1) = argmax
θ(t+1)

s=t∏
s=tj+1

N2(ρ
t−sdj(s)|θ(t+ 1)),

ĝ(Tj ,q, t+ 1) =

∫∫
Aq

N2(θ̂(t+ 1)).

Note that the estimation is done in polar coordinate
systems. In other words, the distance r and angle θ between

target position T
(t)
j and location q are used for calculations

in this space.
Another possible approach for next movement predic-

tion is the classical Kalman Filter method. In this approach
the mean and covariance matrix is updated at each time
step using the following formulas:

K = Σ̂j(t)(Σ̂j(t) +Σ)−1,

d̂j(t+ 1) = d̂j(t) +K(dj(t)− d̂j(t)),

Σ̂j(t+ 1) = (I−K)Σ̂j(t),

ĝ(Tj ,q, t+ 1) =

∫∫
Aq

N2(d̂j(t+ 1), Σ̂j(t+ 1)),
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(a) Weighted probabilistic (b) Kalman filter (c) Unimodal (d) Multimodal

Figure 2: Assume that target T1 was detected in the first time step t1 = 0, and currently we are at t = 3. Therefore, we have
the history of target T1 movements for the past three time steps d1 = {d1(1), d1(2), d1(3)}. The goal is to predict the next
movement. The probability of next movement is shown for different prediction methods.

Figure 3: Part of the Université Laval map, chosen for the
experiments. The map used for the experiments has 300
rows and 300 columns with a resolution of 1 meter per cell.

where Σ = σ2
pI is the covariance of the dj(t) displacement,

and K is called the Kalman gain, which measures the rela-
tive certainty between the new measurement and the current
estimate. All these prediction methods are presented in Fig.
2.

4. Experiments
In the following, the performance of the proposed

target displacement prediction approach (multimodal)
is compared with other prediction methods on the PTZ
camera movement problem.

4.1. Simulation Setup

Simulation settings are as follows.

Map: Algorithms were tested over a map of Université
Laval campus, in Québec, Canada. The map of the area is
shown in Fig. 3.

Table 1: The parameter values for a realistic model of a
camera.

Parameter Value Parameter Value

Lh 5.37× 10−3 Lv 4.04× 10−3

αdmax 50 αdmin
25

fmin 4.7× 10−3 fmax 9.4× 10−3

βd,βp,and βt 1 τ 1
ξmin −90o ξmax 90o

vθ ±30o/t vξ ±10o/t
vf ±1.33× 10−3

Cameras: Cameras are modelled following a descrip-
tion given in Sec. 2.1. For a reasonable model of a cam-
era, we propose to use the parameters shown in Table 1.
As can be seen, the maximum and minimum pan angles
(θmin, θmax) are not defined in the table, meaning that cam-
eras can freely rotate around the Z axis.

Targets: In our experiments each target is a simulation
of a pedestrian walking on the campus. The target enters
the environment from one gate of a building, walks inside
the environment and exits from another gate (see Fig. 4).
The trajectory of each target is generated based on the cur-
rent location and the temporary goal location it is willing to
reach. The temporary goal is generated based on the short-
est path between the initial gate and the final gate on the
pedestrian path of the campus. Here, the pedestrian path is
represented as a graph with intersections on the path being
the vertices of the graph and the paths themselves being the
edges. Each intersection on the shortest path between the
two gates can be a temporary goal for the target.

At each time step, the next location of a target is ran-
domly chosen from a distribution which itself is produced
by the multiplication of two other distributions, namely the
beta distribution and the Gaussian distribution. More pre-
cisely, at each time step, a Gaussian distribution is applied
on the angle between the target’s location and its temporary
goal and a beta distribution is applied on the distance to de-
termine the step size. The multiplication between these two
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Figure 4: There are eight gates on the campus map. Each
gate is presented by a cyan circle. Targets can enter from
any of the eight gates, walk around the campus and exit
the environment through another gate. The trajectory of
a sample target is also shown using the white line. The
pedestrian paths inside the campus are shown using the
dashed black line. The target follows the path to move
between gates. The position of the cameras is presented by
the yellow squares.

Table 2: The parameter values for the trajectory generation.

Parameter Value Parameter Value
α 2 β 2

μ 0 σ2
a 125

Table 3: The parameter values for the trajectory prediction
methods.

Parameter Value Parameter Value

ρ 0.95 σ2
p 4

δ 7 η 0.05

distributions is normalized to sum up to one and then used
to determine the probability of each location in the environ-
ment to be selected as the next location of the target. Beta
distribution has two parameters α and β and the Gaussian
distribution has the parameters μ and σa. The maximum
step size of the target is also shown with parameter δ (values
for trajectory generation summarized in Table 2 and the val-
ues for different trajectory prediction methods in Table 3).

Table 4: The parameter values for the CMA-ES optimiza-
tion method.

Parameter σCMA gen λ
Value 0.33 100 14

4.2. Coverage optimization
To evaluate the performance of the multimodal pre-

diction method explained in Section 3, we compare its
performance with three other prediction methods, namely
weighted probabilistic, Kalman filter, and unimodal. We
use Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) as the optimization method to determine the
optimal strategy at each time step, based on the prediction
made by each of the four prediction methods.

CMA-ES is an optimization method that belongs to the
class of evolutionary computation methods. Like classical
quasi-Newton optimization methods, CMA-ES tries to
estimate a second order model of the objective function in
an iterative procedure. In contrast to quasi-Newton meth-
ods, CMA-ES does not need the gradient of the objective
function. The algorithm’s parameters that require manual
adjustment are the mutation factor (σCMA), the number of
generations through which the algorithm runs (gen), and
the number of offsprings in each generation (λ) [1]. The
value of these parameters is summarized in Table 4.

For the experiments, at each time step, the optimization
strategy (CMA-ES) is applied on the camera directions to
determine the directions and zoom level of each camera for
the next time step. Next, all the targets move to their new
positions, the combined coverage of the camera network
is calculated as the weighted average of the coverage for

each target Cl(C
(t)
i ,T

(t)
i ). The average is weighted by

the number of targets present in the environment at each
time step. The final result is the average coverage provided
by each prediction method for all the targets through their
presence in the environment.

To test different scenarios, we compare the performance
of each strategy with different ratios between the number of
targets and simulation time. Therefore, at each time step, a
number of targets equal to the ratio between the simulation
time to the total number of targets enter the environment.
The final results of the experiments are presented in Table 5.

As can be seen in Table 5, the Kalman filter produced the
worst results. The main reason for its inferior performance
is that the Kalman filter cannot cope well with targets
changing directions within their path. To improve the
performance of this method there is a need for an extra
mechanism to estimate if the target has changed direction
or not. Therefore, each time that the target has changed di-
rections the method should be reset in order to estimate the
new temporary goal. That will be addressed in future work.

Another problem with the Kalman filter approach is that
it is assuming a Gaussian noise for the displacement of the
target. Although this might be the case, the multimodal
approach can adapt with non-gaussian noise models and
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Table 5: Coverage percentage of the targets with various
numbers of targets. For each scenario, 32 sets of random
paths were generated and the CMA-ES method was applied
on each one of them, with average coverage of the network
and corresponding standard deviation reported. Results
in bold denote best results that are statistically significant
according to a Student’s t-test (p-value of 0.05).

No. of cameras 16 16 16
No. of targets 50 150 300

Simulation time 200 200 200
Kalman filter ave. 73.29% 75.89% 76.57%
Kalman filter std. 2.7 1.6 1.7

Weighted prob. ave. 78.50% 79.49% 79.28%
Weighted prob. std. 2.3 2.1 1.2

Unimodal ave. 79.05% 79.40% 79.18%
Unimodal std. 1.6 1.7 1.5

Multimodal ave. 80.46% 81.28% 80.33%
Multimodal std. 1.8 1.5 1.5

predict the displacement with good accuracy.

The weighted probabilistic approach produced stable
results, which could be related to the simple assumptions
of this method. The only problem with this approach is
its unimodal movement assumption. Although this might
not be the case for pedestrians, but in another application
where targets may often change directions, the multimodal
approach is the only method which has the capability to
present both possibilities with sufficient probabilities.

The unimodal approach produced results close to the
weighted probabilistic approach, which is not surprising
considering that both methods produced similar predictions
in Fig. 2. The strong point of the unimodal approach is that
it is using almost the same assumptions as those that we are
using for target trajectory generation in the environment.
The weak point of the approach concerns the direction
changes. When a target changes direction, it takes some
time for the method to adapt to the new goal.

5. Conclusion

We have presented and compared different methods for
prediction of targets position inside a camera network. The
multimodal approach produced better results compared
to other prediction methods. The strong point of the
multimodal approach is its capability to handle several
assumptions at the same time (e.g. zig-zag movement) and
to adapt to non-gaussian movement models.

For future work, we will continue to improve the
performance of the multimodal method. One possible
approach is to use the history of past targets who passed
a specific location in the environment to help predict the
trajectory of future targets.
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