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Abstract

In sports, wearable gaze tracking devices can enrich the
viewer experience and be a powerful training tool. Be-
cause devices can be used for long periods of time, often
outside, it is desirable that they do not use active illumina-
tion (infra-red light sources) for safety reasons and to min-
imize the interference of the sun. Unlike traditional wear-
able devices, in sports, the gaze tracking method must be
robust to (often dramatic) movements of the user in relation
to the device (i.e. the common assumption that, because the
device is wearable, the eye does not move with regards to
the camera no longer holds.) This paper extends a visible-
spectrum gaze tracker in the literature to handle the re-
quirements of a motor-sports application. Specifically, the
method presented removes the original assumption (in the
original method) that the eye position is fixed, and proposes
the use of template matching to allow for changes in the eye
location from frame to frame. Experimental results demon-
strate that the proposed method can handle severe changes
in the eye location and is very fast to compute (up to 60
frames per second in modern hardware.)

1. Introduction
The question “where was he looking at?” has been asked

countless times by both coaches and fans. Analysis of the

gaze direction of athletes can give an insight into their per-

ception of the sport and the motivations of their actions

(e.g., whenever a soccer or football player passes to the

wrong teammate, was it because of poor judgment or be-

cause he did not “see” the correct teammate?)

Recent video-based eye tracking (video-oculography)

systems can be divided into appearance-based and shape-

based methods. Appearance-based methods map the entire

eye image directly to gaze position [10], and are generally

less accurate when compared with shape-based methods,

which track specific portions of the eye anatomy such as the

corneal reflection [7], pupil contour [8], and iris contour [4].

(See [3] for a recent survey of the eye-tracking literature.)

Eye Camera

Forward Camera

Figure 1. Early prototype for initial data collection in a NASCAR

race circuit. This prototype consists of a forward facing camera to

observe the environment from the driver’s point of view and an eye

facing camera for estimation of the gaze direction. Both cameras

are connected to a laptop computer for data recording.

Among the more accurate shape-based methods, corneal

reflection and pupil contour normally require infrared ray

(IR) active illumination. These methods can be highly accu-

rate, but are not adequate for extended daily use [6] and are

susceptible to interference from other IR sources, namely

the sun. Non-active illumination methods usually focus

on the detection of the iris contour. Unlike IR, visible-

spectrum gaze tracking is more challenging due to reflec-

tions and specularities introduced by arbitrary illumination,
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Figure 2. Eye model. The eye sphere is represented in gray;

the camera coordinates are (x, y, z); the eye coordinates are

(xe, ye, ze); and the eye surface is parameterized by (θ, φ).

variability in the iris color between users, and variability

in the eye texture due to changes in eye irrigation. Thus it

is often more computationally complex and requires use of

advanced computer vision methods.

One of the earliest approaches [5] to this problem used

RANSAC to fit an ellipse to the iris but was not robust

to changes in illumination and occlusions. The methods

in [12] and [11] also use ellipse fitting to estimate the iris

but use three-dimensional (3D) models to improve robust-

ness. However, they either require the estimation of a large

number of parameters per frame [12] or require complex

calibration procedures [11].

More recently, the “Unwrapping the Eye” method pro-

posed in [9] uses a 3D model to represent the eye and uses

that model to estimate the planar appearance of the eye sur-

face (thus “unwrapping” the eye.) Because the iris is a circle

on the eye surface, iris detection can be obtained by a circle

fitting procedure instead of the more computationally de-

manding ellipse fitting used by other methods. This method

was demonstrated to out-perform other visible-light gaze

tracking methods and to be competitive with commercial

IR based solutions [9].

Despite their ability to track the gaze of the user, none

of the visible light gaze tracking methods in the literature

is suitable to applications in sports because they do not al-

low for significant movements in the eye location in relation

to the camera. I.e., they degrade very rapidly if the user’s

head moves in relation to the wearable device. This paper

proposes an extension to the method in [9] so that the eye

location is tracked from frame to frame, thus dramatically

increasing the gaze tracking robustness in practical sports

applications.

Organization of the Paper Section 2 gives a brief

overview of the “unwrapping” the eye method that serves as

the basis of the proposed method. Section 3 describes the

proposed method as an extension of [9] that uses template

matching to determine the eye corners and thus is robust

movement of the user in sports applications. This section

also details the choice of optimal template size. Section 4

details the comparison of the proposed method against the

state of the art. Finally, Section 5 concludes the paper.

2. Overview of the Method in [9]
The “Unwrapping the Eye” method models the eye-

ball as a three-dimensional sphere and the iris as a two-

dimensional circle on the sphere. Iris detection is achieved

by determining the center of the iris on the surface of the

eye. Since this method is used as the basis to the paper’s

contribution, we briefly review the “Unwrapping the Eye”

method here for completeness.

Eye Model Following the assumptions of [9], (x, y, z) is

the camera coordinate system and the eye coordinate system

(xe, ye, ze) is defined so that its origin coincides with the

eye center Xc = [xc yc zc]
T
; the axis z and ze are aligned;

and the angle between x and xe is γ (see Figure 2). If r
is the radius of the eye sphere, the surface of the eye can

be parameterized by (θ, φ) such that (see [9] for detailed

derivation:)⎡
⎣ x

y
z

⎤
⎦ = Rz (−γ)Ry (φ)Rx (θ)

⎡
⎣ 0

0
−r

⎤
⎦+Xc (1)

where the rotation matrices are defined by:

Rz (−γ) =

⎡
⎣ cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦ (2)

Ry (φ) =

⎡
⎣ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤
⎦ (3)

Rx (θ) =

⎡
⎣ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎤
⎦ (4)

Calibration Equation 1 shows that the eye model is fully

parameterized by the γ angle, the eye radius r, and the eye

center Xc. If the eye is fixed with regards to the camera,

these parameters remain constant and can be determined

during calibration of the system. This is achieved by de-

termining, on the eye image I (u, v), the corners of the

eye
(
v0l , u

0
l

)
and

(
v0r , u

0
r

)
. Assuming that the corners are

aligned with the ye axis of the 3D eye model, they corre-

spond to (θ, φ) = (±π/2, 0). The authors in [9] show that,

assuming that the camera parameters are known, this infor-

mation is sufficient to determine the γ parameter precisely

and the Xc and r model parameters up to a scale factor.
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Figure 3. Left: original eye images I (u, v) with the 3D model

superimposed. Right: “unwrapped” image I (θ, φ), which is a

planar representation of the eye surface.

Eye Surface Image At run-time, the method creates, for

every image from the eye camera I (u, v), a new image

I (θ, φ) such that the pixels in the 3D eye surface are warped

to a plane. The authors in [9] refer to this new image as the

“unwrapped” image since the spherical eye surfaced is un-

wrapped into a plane.

Using equation (1), the 3D location (x, y, z) of the eye

surface for each value of (θ, φ) can be determined. Assum-

ing the intrinsics of the eye camera are known, the standard

perspective projection model is used to determine the pro-

jection of every (x, y, z) point into the image plane (u, v).
Thus, one can write u and v as functions of θ and φ and

obtain the planar representation of the eye surface I (θ, φ)
- the “unwrapped” image - by re-sampling the eye image

I (u, v):
I (θ, φ) = I (u (θ, φ) , v (θ, φ)) (5)

See Figure 3 for an example of both the eye image and the

“unwrapped” eye surface image.

Iris Detection The iris detection algorithm uses exclu-

sively the “unwrapped” eye surface image and takes advan-

tage of the fact that the iris is circular in this image. Thus,

the method can replace the traditional ellipse fitting with a

simpler, faster, and more robust circle fitting procedure.

Because the iris is circular, the method starts by using the

circular Hough transform to coarsely estimate the center of

the iris. Based on this information, the method searches for

features by determining the maximum of the image gradient

in radial paths from the iris center (the maximum of the

gradient corresponds to the edges of the iris.) Finally, a

robust circle fitting procedure is used to determine the exact

iris location. See [9] for details.

3. Proposed Method
The method in [9] works well for stable applications,

such as when the user is sitting and gazing at a screen, but

it is not able to cope with situations where the user’s activ-

ities may cause the camera to move with relationship to the

head (and consequently) the eye of the wearer. See Figure 4

Figure 4. On the original method, the eye model does not change

after calibration, which causes errors if the eye position changes

with regards to the wearable device. Top: Initial image used

for calibration and corresponding “unwrapped” eye surface im-

age. Bottom: The user’s eye moved in the image which causes the

3D model to sample the eye surface image incorrectly (note the

distortion on the “unwrapped” eye surface image on the right.)

for an example. The method presented here expands on [9]

to remove this limitation. In particular the eye corners (or

other distinctive features visible in the camera feed and an-

notated by the operator) are tracked and the 3D eye model

is adjusted from frame to frame. This allows the method

to obtain a consistent “unwrapped” eye surface image and

thus achieve high quality iris detection.

3.1. Movement of the Camera

Although the eye location, when observed from the eye

camera, can change significantly, the distortions are limited

by the geometry of the wearable device used. In particular,

for cameras mounted on helmets or eyeglasses, the motion

corresponds to a rotation centered on the head of the user

(see Figure 5.) Because the distance from the eye to the

camera remains approximately constant and because the ra-

dius of the camera rotation is much larger than the distance

to the eye, the movement distortions in the eye image can

be accurately modeled by a translation.

Mathematically, the argument above states that, on the

camera reference coordinates (x, y, z), the movement of the

eye center Xc with regards to the eye camera can be mod-

eled by:

Xc =

⎡
⎣ xc

yc
zc

⎤
⎦ =

⎡
⎣ x0

c + xc(t)
y0c + yc(t)
z0c

⎤
⎦ (6)

where Xc =
[
x0
c y0c z0c

]T
corresponds to the original eye
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Figure 5. Although the eye can move significantly with regards to

the camera (see Figure 4,) the type of distortions is constrained by

the geometry of the wearable device.

center location determined during calibration and the move-

ment is modeled by the terms xc(t) and yc(t).
Using equation 1, and assuming an upper triangular in-

trinsic camera matrix, equation 6 implies that locations of

the corners of the eye can be modeled by:{
ul = u0

l + u(t)
ur = u0

r + u(t)

{
vl = v0l + v(t)
vr = v0r + v(t)

(7)

which shows that the camera movement is modeled by a

translation in the eye image with time varying parameters

u(t) and v(t).

3.2. Eye Corner Detection

During calibration, in addition to highlighting the user’s

eye corners, the operator selects the range of expected trans-

lations to be observed due to the movements of the user’s

head in relation to the wearable device. The corner informa-

tion is used to select a region of the image as a template for

each eye corner Tl (u, v) and Tr (u, v). At run-time, tem-

plate matching [2] is used to determine the correct location

of the eye corners.

Template matching works by comparing all segments in

the region of interest selected by the operator to the cor-

responding eye corner template, and determining the best

match. For the left corner, we have:

(ûl, v̂l) = arg max
(ul,vl)

S (I (u+ ul, v + vl) , Tl (u, v)) (8)

where the optimization is done for every eye image but the

time index t was omitted for compactness, and S is a simi-

larity measure between the two image segments. The result

for the right corner is equivalent.

To determine the best measure of template similarity

S (I (u+ ul, v + vl) , Tl (u, v)) we compare four different

measures (all summations are done over the range of (u, v)
values where the template was sampled:)

- Squared Difference (sqdiff):

S (•) = −
∑
u,v

[I (u+ ul, v + vl)− Tl (u, v)]2 (9)

- Normed Squared Difference (sqdiffNormed):

S (•) = −
∑

u,v [I (u+ ul, v + vl)− Tl (u, v)]2√∑
u,v I2 (u+ ul, v + vl) ·

∑
u,v T 2

l (u, v)

(10)

- Normed Cross Correlation (ccorrNormed):

S (•) =
∑

u,v [I (u+ ul, v + vl) · Tl (u, v)]√∑
u,v I2 (u+ ul, v + vl) ·

∑
u,v T 2

l (u, v)

(11)

- Normed Pearson Correlation (ccoefNormed): where

the similarity is as in equation (11) but the image I
and template T are replaced by their mean subtracted

counterparts I ′ = I − Ī and T ′ = T − T̄ (see [1] for

more details.)

The comparison of similarity measures was performed

on a dataset of 250 frames extracted from a video recorded

with a helmet equipped with visible-spectrum miniature

cameras. The helmet is moved with relationship to the

user’s eye to simulate natural conditions during the prac-

tice of the sport. The template is extracted from the initial

frame manually, and the similarity measures are compared

with the ground truth for all other frames.

Figure 6 presents the percentage of correct eye corner

detections (number of times that the detection is within 5%
of the eye radius from the ground truth divided by the total

number of analyzed frames) and the time to compute the

best match. In both cases results are presented as a function

of the template size (as a percentage of the eye radius.)

The best similarity measure and template size strike a

balance between fast computation times and large percent-

age of correct detections. From Figure 6, we determine that

the Normed Cross Correlation measure with a template size

of approximately 4.5% of the eye radius achieves the best

trade-off.

4. Experimental Results
The complete iris detection method was implemented in

C++ and uses OpenCV [1] for some of the basic vision

tasks. In practical applications the template matching task

runs in parallel with the iris detection so as to not reduce

the frame rate (note that, from Figure 6, we know that the

template matching tasks takes less than 200ms, i.e. runs at

approximately 5 frames per second.) After each template

matching operation the eye model is recomputed and the

iris detection procedure is updated appropriately.
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Figure 6. Comparison of similarity measures. Left: Percentage of correct eye corner detections (defined as a detections where the distance

from the ground truth is less than 5% of the eye radius) as a function of the template size (as a percentage of the eye radius.) Right: Time

to compute the template detection also as a function of the template size.

In order to evaluate the performance of the proposed

method, we compared it against the original method in [9]

on a different set of 250 frames (again, taken with a hel-

met wearable device, simulating the head movements with

regards to the helmet.) To fully explore the properties of

the proposed method, the corners were detected on every

frame at the expense of slower frame rate. However, the

performance was very similar to the real-time system. See

Figure 7 for a summary of the results.

We first note that, to produce better results, it is often

useful to use the last few frames of history to “stabilize” the

iris detection result (e.g., by using an exponentially decay-

ing average filter.) Under normal circumstances, this im-

proves the quality of the detection at the expense of a small

lag when there is large eye movement. During testing we

have discovered that omitting this stabilizing operation im-

proves results for the original method [9]. This can be ex-

plained by the fact that, since this method assumes the eye

is fixed, the movements of the eye ball with regards to the

camera are actually interpreted as very rapid movements of

the iris on a fixed eye ball. As would be expected, since the

proposed method tracks the eye ball, it observes fairly con-

strained iris movement and omitting the stabilization step

on this case reduces (slightly) the performance.

Figure 7 shows that, even in the best case, the proposed

method always outperforms the original method in [9]. It is

important to note, however, that the proposed method still

has a failure case when the distortion is so large that the

corners are not detected. These cases however, can be miti-

gated by modeling the corners’ movement over time or us-

ing more advanced matching method.

Finally, Figure 8 illustrates the advantages of the pro-

posed method by showing its output for the images in Fig-

ure 4.

Figure 8. The proposed method can accurately track the user’s eye-

ball and is robust to movements of the wearer’s head with relation

to the eye camera.
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Figure 7. Percentage of frames where the distance from the detected eye center to the ground truth is below a given normalized distance

(i.e. distance divided by the eye radius.) Left: Previous history is not used to stabilize the method results. Right: Previous history is used

to stablize results.

5. Conclusion

There are many potential applications of gaze tracking

technology in sports. But, in order for the technology to be

widely used, it is necessary to solve a set of problems spe-

cific to the sports industry. Non-active illumination based

gaze tracking that copes with movement of the user with

regards to the wearable device is desirable for field appli-

cations. This paper proposes such a method by extending

of a visible-spectrum gaze tracker in the literature to cope

with the necessary motion distortions. In particular, the pro-

posed method uses template matching to track the corners

of the eyes of the user and incorporates this information into

the iris detection procedure. The resulting method is fast to

compute and can handle large changes in the eye location.
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