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Abstract

We present a new approach to the collection and label-
ing of ground truth data for annotation of temporal events
in ad-hoc videos taken by active operators recording inter-
actions and activities in the field. We present experimen-
tal data and related research from experimental psychology
which indicate that the conventional methodology based on
asking annotators to pick a single instance in time for an
event boundary is both unnatural and has several undesir-
able effects. Our approach is based on allowing the annota-
tors to choose event boundary intervals and modeling each
annotators segmentations with mixtures of Gaussians. We
use fuzzy measurements to determine an annotators qual-
ity and compute a segmentation likelihood function as a
Gaussian Mixture of Models (GMMs) over all annotators
and boundary intervals. Since the majority of evaluation
methods require hard boundaries, we can extract these from
the likelihood function as relevant local maxima. We show
that given a small set of annotators, this GMM approach
provides a more stable ground truth than conventional ap-
proaches including majority voting, and demonstrate the
application of our approach on two segmentation problems.

1. Introduction

As video recording devices become more portable and
affordable there has been an explosion of ad-hoc videos
available on the internet. These videos follow very lit-
tle production quality constraints. Namely they often do
not have hard cuts between scenes, involve various pans
and zooms, and have a wide range of video quality. As a
result, performing common video analysis tasks becomes
more difficult, as does annotating them.

Historically, annotators have been asked to select a sin-
gle frame to mark an event boundary. Pioneering work in
human event perception [3] involved showing several an-
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notators a set of videos and asking them to press a but-
ton when they detect an event boundary. However, using
this approach, given consecutive events, if two annotators’
boundaries differ by even just a single frame their combined
effect may be that of over-segmentation.

28 30 34 38

Figure 1: Histogram of segmentation interval widths. x axis
represents the interval width in frames and y axis the num-
ber of times that width appears.

Zacks, et al. [15, 16], have done extensive work in hu-
man event perception. In [15] they provide a hierarchical,
recurring, and cyclical model of human event perception.
While acknowledging fuzzy temporal boundaries between
events and observering that humans process event segmen-
tation at several timescales, there still remains little work
on building ground truth segmentation from several crowd-
sourced annotators that takes into account this issue of fuzzy
boundaries.

We argue that especially when dealing with ad-hoc
videos, single frame event boundary annotation is un-
natural. As evidence, Figure 1 shows the histogram of these
boundary interval widths when annotators were given the



opportunity to choose boundary intervals for the task of se-
mantic sub-scene segmentation. Over four annotators on six
videos the resulting mean interval width was 7 frames, the
median width was 6 frames, and the maximum width was
40 frames. Furthermore the width variance was 12 frames.

This inherent uncertainty in the precise location of the
event boundaries can be overcome by performing gaussian
smoothing over the boundaries. This is akin to de-noising.
Yet we must then choose a value for the Gaussian’s o and
by fixing this we loose inherent and independent bound-
ary confidence. Instead, if the annotators were to provide
boundary intervals we could then use those to determine a
separate o value for each boundary. Combined with anno-
tator quality we can then model the segmentation likelihood
as a Gaussian Mixture of Models (GMM). Finally, from this
GMM we can easily create a hard segmentation as relevant
local maxima of the likelihood function. An overview of
this ground truth extraction pipeline can be seen in Figure
2.

The paper is organized as follows. In Section 2 we first
look at related work in the domains of event segmentation
and the use of crowdsourced data for establishing ground
truths. In Section 3 we look at proposed annotations for the
task of temporal segmentation. Section 4 is the heart of our
work. It outlines the Ground Truth Extraction Pipeline and
all of its components. In Section 5 we explain the experi-
mental setup. Finally in Section 6 we extract ground truths
to evaluate the segmentation tasks discussed in Section 5
and show that given boundary intervals and a limited num-
ber of annotators, our GMM approach provides more stable
ground truths than a conventional majority voting approach.

2. Related Work

As mentioned in the introduction, the traditional ap-
proach to event boundary detection is to have several anno-
tators, each of whom vote on whether a boundary occurs at
each frame. To do this task, Newtson [3] had each annotator
click a button upon event boundary detection. In this frame-
work, given ¢ = 1, ..., N annotators, let L;(t) € {0,1} be
the binary label for frame ¢ chosen by annotators 7 (0O of
there is no boundary, 1 if there is a boundary). A soft ground
truth boundary can then be computed as:

Y, Li(t)

N

From this a hard ground truth, L*, can be obtained by a
majority voting scheme:

L(t) (1

2

However, as noted by Zacks, et al.[15], especially in ad-
hoc home movie style videos, event boundaries can be very

L* = {L(t) : L(t) > 0.50}
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fuzzy. Therefore it is more desirable to somehow either
smooth the boundaries, and/or to use intervals.

As leveraging crowdsourced data to provide annotation
has become increasingly popular, there has been growing
interest and research into questions including “should we
consider all annotators as equals?” and “how do we fuse de-
cisions?”. Recently, V. Sheng, et al.,[7] discusses the trade-
off between quantity and quality of annotators. In order to
reduce the number of poor annotators, J. Vuurens, et al.,[ 1 1]
use qualification tests, trick questions, and time spent on
their tasks. Annotators (human or bot) who fail the quali-
fication or the trick question, or who spend too little time
on the task are considered unreliable and are dropped from
the annotator list. Additionally, annotators who fail to agree
with enough other people are also dropped. In the tasks of
video ranking, they managed to show that reducing the an-
notators to mostly high quality annotators provides results
on par with a true super-expert annotator.

V. C. Raykar, et al.,[4] take a similar anti-spamming
approach. They attempt to detect spammers in labeling
tasks using an empirical Bayesian algorithm that iteratively
eliminates the spammers and estimates the consensus labels
based only on the good annotators for binary or categorical
labels.

Instead of pruning the annotator list, [12, 10] rank an-
notators and use those rankings to weight their contribu-
tion to a final decision. [12] uses fuzzy measures (FMs)
to model the subjective “worth” of individuals who con-
tribute to crowdsourced data. Their work focuses on pro-
viding ratings on things like movies and products, and al-
lows annotators to provide rating intervals. To determine
an annotator’s worth (or ranking), they look at both the an-
notator’s specificy (based on the rating interval width) and
agreement. They then aggregate these two FMs to create a
meta-measure and use it in fuzzy integration to determine
final ratings.

In [10] the authors explore a set of annotation scor-
ing functions. They then score each annotator in one of
five ways: number of annotation control points, annotations
size, edge detection, Bayesian matting, and object proposal.

The authors of [13] model the task difficulty and annota-
tor competence, expertise, and bias as multidimensional en-
tities. They extract features from images and analyze their
parameters among classes and annotators. Their Bayesian
approach is heavily reliant on priors and decisions on fea-
tures to extract.

However, throughout these works only binary, ranking,
and rating tasks are addressed.

Our work differs in that we are addressing tasks in-
volving temporal segmentation where event boundaries can
be fuzzy and we model the system as such. As with
[4, 12, 11, 10] we are computing annotator quality. Simi-
larly to [12] which allows annotators to specify a range or



interval, we argue that an event boundary may not occur at a
single moment in time with a likelihood of one, but instead
may occur over an interval with varying likelihood. There-
fore we model these fuzzy boundaries as Gaussians whose
value of o depends on the interval width. Finally, while
common segmentation evaluation metrics require a ground
truth with hard boundaries, we postpone this decision until
the end in order to ensure that all data from all annotators
can contribute to the final decision. Similar to [7], this al-
lows us to preserve uncertainty until the final decision.

3. Expert Annotation

For the majority of tasks, in order to perform evaluation
a ground truth must be created by an annotator or group of
annotators. We call these people experts without actually
defining what makes someone an expert. Often finding a
large number of people who can provide reliable and un-
biased ground truth data is difficult and/or expensive. Re-
cently websites, like the Amazon Mechanical Turk (AMT),
provide a marketplace where people (know as Requestors)
can post tasks and ask workers to complete the tasks. While
the AMT does allow you to restrict which workers can work
on your task according to their credentials (acceptance rate,
completion of a moderated tasks, etc.) this does not neces-
sarily guarantee their abilities in completing your task, and
placing rigid constraints can greatly reduce the number of
eligible and willing workers. In the AMT, finding the bal-
ance between quality and quantity of workers, as well as
monetary incentive, is an art-form unto itself. Nevertheless
let us assume that the requestor has figured this out and now
wants to create a ground truth from the worker’s responses.

In this work we will look at two experiments, which both
involve temporal segmentation but have different annotation
formats. Let us first look at the simpler case where we ask
a user/worker/annotator to indicate each moment in time
(frame) that an event boundary occurs, thus segmenting the
timeline. While this seemingly goes against our claim that
an annotator should specify intervals, we can consider this
a subset of full interval annotation where all intervals have
a width of zero.

3.1. Boundary Labeling by Annotators

For each video, each annotator ¢ = 1,..., N looks for
event boundaries that would indicate temporal segmenta-
tions. Let u¥ be the frame at which annotator i detected
event boundary number k = 1, ..., K (i), where K (¢) is the
number of event boundaries detected by annotator . We ask
each annotator to provide their userID and a comma sepa-
rated list of boundary frames:

userID1023: 10, 22, 85, 200
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3.2. Interval Labeling by Annotators

There are many event boundaries which cannot be effec-
tively described by a single frame. For the task of determin-
ing semantic sub-scene boundaries, given the opportunity
to choose intervals, annotators chose with a mean interval
width of 7 frames, a median width of 6 frames, and a max-
imum width of 40 frames. Furthermore the width variance
was 12 frames. The complete histogram can be seen in Fig-
ure 1. Choosing intervals for tasks that have ambiguous
event transitions, as common in ad-hoc style videos, is sig-
nificantly more natural than choosing a single frame since
it is not clear at exactly which frame the boundary occurs.
We also show in Section 6.1 that given limited annotators
who provide intervals, we can use this information to cre-
ate ground truth data that is more stable than simply using a
majority voting approach based on single-frame boundaries.

Let us redefine our labeling problem. For each video,
each annotator ¢ = 1,..., IV looks for an event boundary
interval that would indicate a temporal segmentation. Let
sk and ef be the start and end frame of the k-th interval,
respectively. Each annotator can then provide a single line
stating their userID and a comma separated list of [s¥, eF]
intervals. For example:

userID1023: [8, 12], [20, 23], [75, 90], [199, 201]

4. Ground Truth Discovery Pipeline

Once we have labeled data from our annotators we then
need to determine a ground truth using their data. Since
not all workers are created equal (in fact some may even be
malicious!) and the fact that mislabeling an event boundary
by a single frame can have a negative effect, we first model
a soft ground truth, or event segmentation likelihood func-
tion, as a Gaussian Mixture of Models (GMMs). Each event
boundary interval for each annotator provides a Gaussian,
and the Gaussians are mixed according to their annotator’s
quality. This quality in determined using the Fuzzy Mea-
surement of Agreement as demonstrated in [12]. Once we
have established an event segmentation likelihood function,
we transform it into a hard ground truth segmentation by
finding local maxima and keeping only the local maxima
which exhibit at least 50% likelihood relative to the maxi-
mum likelihood.

Figure 2 shows the ground truth discovery pipeline. We
will now examine each of these steps in detail.

4.1. Determining Annotator Quality

The Fuzzy Measurement of Agreement measures how
often an annotator agrees with the group[12]. To determine
this, for each annotator we observe how much of their seg-
ments agree with the segmenents of others. Let x;(¢) be the
segment label assigned by annotator ¢ at time ¢. This seg-
ment label can either be the segment number that the frame
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Figure 2: The Ground Truth Discovery Pipeline

falls within and/or can contain some semantic information
about the segment (for example, the relevant characters in
the video). Regardless, given T" frames, we can compute
how often an annotator ¢ agrees with all other annotators as:
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We can then normalize this to provide our annotator
qualities:
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If we have p = 1, ..., P event boundaries accumulated
over all NV annotators, we can then let W (p) = «; be the an-
notation quality (confidence) associated with event bound-
ary p which was generated by annotator 7. Note that we can
also opt to set W(p) = + in order to set uniform quality
across all annotators.

In our experiments with semantic sub-scene segmenta-
tion, which had four annotators, we found the values of «
to be in the range of 0.11 to 0.30.

4.2. Building a Temporal Event Likelihood Func-
tion

We model our event segmentation likelihood function as
a Gaussian Mixture Model where we have one Gaussian per
event boundary and weight the Gaussians according to the
annotator’s quality, using Equations 3 and 4.
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If we fix the value of o for each Gaussian (as would
be the case if the annotators only provide a single frame),
the effect of using Gaussians to model events boundaries is
akin to Gaussian smoothing with a ¢ function centered at
each boundary location with its height based on its annota-
tor quality. However if an annotator provides intervals we
can use these to compute a ¢ value for each Gaussian.

Given annotations in the interval format, for a given an-

ko Kk
e;+s; _ k k
7121 =€; —5;

notator 4’s k*" boundary, let ¥ and wk A
be the boundary center and width, respectively. Then using
basic statistics and the quantile function we can determine
the value of o¥ given the interval width w¥ and the desired

capture probability p. Let us define the inverse probit func-
tion ¢~ (p) as

o Hp) =V2erf 1 (2p—1),p € (0,1) Q)

where erf is the error function. If we denote the quantile

z, = ¢~ *(p) we can then say that a normal random variable
k

X will exceed pu + z,0% = p + “5- with probability 1 — p.
Therefore, given capture probability p, we can compute z,

and determine o¥ as:

k
k wy

ET 2k Zp ©)
In our work we chose p = 0.90.
Let U/ and X be the collection of all event boundary cen-

ters and their respective standard deviations across all anno-

tators. We can then compute the event segmentation likeli-

hood function as:

_(t=u@)?
25 (7)

(7

where W (i) is the weight of event boundary 4 based on
its annotator’s quality as computed in Section 4.1.

Figures 3 and 4 show the event segmentation likelihood
graph for a single annotator for the task of semantic video
sub-scene detection (see Section 5.1). In the first figure the
annotator specifies the event boundary interval (and thereby
its value of o¥), whereas in the second figure they only pro-
vide a single frame boundary and a fixed value of ¥ = 0.6
is used. Note that this value of o¥ could also be a parameter
that can be tuned based on event boundary ambiguity.

Figure 5 shows the final event segmentation likelihood
graph based on four annotators who provided intervals and
whose quality were computed as in Section 4.1.

4.3. A Hard Segmentation Ground Truth from
Event Segmentation Likelihood Function

Having a final hard segmentation ground truth allows for
application of many evaluation metrics and measurements.
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Figure 3: Single annotator’s segmentation likelihood func-
tion in frames [0 800] based on event boundary infervals
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Figure 4: Single annotator’s segmentation likelihood func-
tion in frames [0 800] based on event boundary frames
(o =0.60)

Figure 5: Multi-person event segmentation likelihood func-
tion in frames [0 800] based on annotator event boundary
intervals

Therefore it is imperative that we are able to extract a hard
segmentation from our likelihood function. To do this we
first find the local maxima in the likelihood function. These
represent potential boundaries. However we are only inter-
ested in highly likely boundaries, in particular boundaries
that have at least 50% likelihood relative to the most likely
boundary (though hypothetically this could be a parameter
that a user could tweak in order to establish ground-truth
sensitivity). Therefore we filter out all local maxima that
are below this level of likelihood, leaving us with a final
hard ground truth.

Figure 6 shows the likelihood and hard segmentation
graphs based on four annotators who provided intervals for
a video with 1194 frames. The top graph is the likelihood
graph as created in Section 4.2 and the bottom graph is the
hard segmentation extracted from the likelihood function as
described in this section.
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Figure 6: Multi-person segmentation based on annotator
event boundary intervals with weighting by annotator qual-

ity

5. Experimental Setup

In this work we looked at two problems where we need
an event segmentation ground truth in order to evaluate the
segmentation quality of different algorithms.

5.1. Semantic Sub-Scene Segmentation

The first task is that of segmenting a video into semantic
sub-scenes. We define a semantic sub-scene as a sequence
of frames that all have the same principal characters. When
either new principal characters enter the frame, or one or
more leave it, the current semantic sub-scene terminates and
a new one is spawned.

The collection of videos we applied semantic sub-scene
segmentation to, consists of ad-hoc videos with hand-held
camera and low resolution. Two frames of an example video
can be seen in Figure 7.

(b)

Figure 7: Example frames in Annarella video

5.2. Object Track Segmentation

Even state-of-the-art object trackers are highly flawed.
When faced with appearance or illumination changes as
well as partial or entire occlusion, trackers exhibit errors
including false positives, false negatives, association, and
drift. Therefore it is often quite important to identify sub-
sequences of object tracks that are stable. This is the task
of object track segmentation. Figure 8 shows examples of
tracked objects (people).



o -
g A _—"\" - _4“

-

'
!
‘. 4

Figure 8: Examples of tracked objects

5.3. Evaluation

Let us define the ground truth and automatic segmenta-
tions as:

X ={z1,...., TNy} 8)

Y = {ylw'wyNy} (9)

respectively. We can then use the purity[9], m, which

is a performance metric commonly applied in segmenta-

tion problems, to evaluate the quality of our segmentations.

Given the ground truth and automatic segmentations the pu-
rity m is defined as:

Nx

(3

=1

> (i, )
72(x;)

7 (2;)
T

Ny
>
=1
! (10)
Ny

D

j=1

7 (y5) & 72 (24, y5)
T Z 72(y;)

i=1

where 7 (2;, y;) is the length of the overlap between the
time interval corresponding to segments x; and y;, 7 (x;) is
the length of the time interval corresponding to segment x;,
T is the total length of all the segmentations. In each paren-
thesis, the first term is the fraction of the current evaluated
story, and the second term indicates how much a given story
is split in to smaller stories. Purity values are in [0, 1]. The
closer it is to 1 means greater similarity between the auto-
matic segmentation and the ground truth.

6. Results

In Section 6.1 we analyze ground truth stability for both
our GMM-based and a majority voting approach. We define
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a stable method as one that results in similar ground truths
independent of the set of labelers. Using this stability mea-
surement, we do in fact show that given only a few annota-
tors who provide event boundary intervals, our GMM-based
method is more stable than a conventional majority voting
approach.

We then look at the application of our temporal ground
truths for evaluating segmentation algorithms for the two
tasks mentioned in Section 5. Note that since the purity
metric measures similarity between two segmentations, we
only compare against our GMM-based method. We do not
compare the resulting purity values against a ground truth
built using majority voting since purity only measure how
well two segmentation match. As a result, a higher purity
measurement using different ground truths does not neces-
sarily imply that the ground truth that provided the higher
purity measurement is more accurate. It only implies that it
matches the automatic segmentation better.

6.1. Analysis on Ground Truth Stability

In this work we have made the claim that providing
boundary intervals for event segmentation allows for more
robustness to annotation noise. For largely subjective tasks,
like that of annotating events in ad-hoc videos, a ground
truth can be determined by leveraging crowdsourced an-
notations. We argue that we can assess the quality of our
ground truth by observing how stable the generating pro-
cess is. We measure this stability by building several ground
truths using different annotators and determining how simi-
lar they are to one another.

Given A = {1,..., N} annotators, let us choose a sub-
set of annotators at random, B C A. From this subset of
annotators we can build a ground truth. We can then re-
peat this process M times to generate M ground truths. Let

{ gmm,m) be the m*" hard ground truth segmentation using
our approach in Section 4 and Lzmv’m) be the associated
ground truth using Majority Voting as in Equations 1 and 2.
Then between any two ground truths, we can compute a pu-
Li ;)

and define the set of pairwise

rity measure 7 (L’(" o L

purities as:

T = {w (Lz‘_’i),Lz‘_J)) li=1,.,Mj=1, M}
1D
Table 1 shows the statistics for g, and m,,. The
ground truths were generated using the annotations from
semantic sub-scene segmentation experiment (see Section
6.2). From this we can gleam that our GMM based ap-
proach is more stable than a Majority Voting approach due
to the higher average purity and lower standard deviation
of purity, as computed between ground truths built on ran-
domly selected annotators.



GMM Based GT Majority Voting GT
Trgmm 7va
Min 0.430 0.168
Max 1.000 1.000
Median 0.944 0.660
Mean 0.859 0.711
Std 0.173 0.242

Table 1: Statistics on ground truth set purities, g, and
Tmw, as computed in Equation 11.

Method Sub-Scenes MDL  ShoryShed
Annarella 0.580 0.815 0.506
Annarella2 0.194 0.194 0.560
David_Blaine 0.118 0.118 0.179
Quartli 0.151 0.431 0.264
Venizelos_clipl 0.663 1.0 0.990
Venizelos_clip2 0.371 0.912 0.989
[ Overall 0.346 0.624  0.581 |

Table 2: Purity Measurements for three semantic segmenta-
tions against our ground truth segmentation. Larger values
are better.

6.2. Application: Semantic Sub-Scene Segmenta-
tion

Here we asked four annotators to provide event boundary
intervals for six different ad-hoc videos. For each video, we
determined annotator quality, created an event segmenta-
tion likelihood function, and finally produced a hard ground
truth segmentation. We then segmented each video into se-
mantic sub-scenes based on character participation using a
proprietary algorithm. Next we used two methods to dis-
cover semantic scenes: Minimal Description Length[5], and
Story Shed[14]. Finally, using the hard ground truth and the
purity measurement, we compared the quality of these dif-
ferent segmentations. The results can be seen in Table 2.

6.3. Application: Object Track Segmentation

Here we made available on the Amazon Mechanical
Turk 36 different object tracks. The number of annotators
who attempted to segment each track ranged from 4 to 57.
The annotators were only asked to specify event boundaries
in the format outlined in Section 3.1. Since the annotators
only provided single frame boundaries, we fixed the interval
width to be three. This design choice was made by subjec-
tive observation of the data and could be a parameter varied
according to desired uncertainty. From the annotations we
then generated a hard ground truth segmentation.

Against this ground truth we compared five different seg-
mentation algorithms. These include global agglomerative
clustering methods, like mean shift[!], the L-Method[0],
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Algorithm Feature Type Purity
IT Sum of RGB Histograms  0.400
Meanshift RGB Histogram 0.265
L-Method Hue Pixels 0.196
Jump-Method Indexed RGB Histogram  0.142
Gap Statistic ~ Sum of RGB Histograms  0.446
Shot Detect 0.457

Table 3: Object Track Segmentation Purity

the Gap Statistic[8], and the method used in [14] to de-
termine the number of main characters, which we call the
Jjump method. We also look at a local method where we seg-
ment a track whenever adjacent (temporally) features have
a greater value of disjoint information than they do mutual
information. For each of the methods we looked at several
different features (see Table 3).

Finally we also use a shot boundary detection algorithm
[2] on a video generated using the tracked object crops, re-
sized to 30x30.

To evaluate the quality of the segmentations we use the
purity measurement 10 .

Figure 9 shows the ground truth segmentation of the ob-
ject in Figure 8b against the shot detect[2] algorithm’s seg-
mentation and Table 3 shows the purity of each method
against the computed ground truth.
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Figure 9: Segmentation for object track show in Figure 8b.
(a) is the segmentation according to the shot detect [2] algo-
rithm. (b) is the ground truth segmentation likelihood func-
tion. (c) is the ground truth hard segmentation. (d) shows
(a) and (c) together.

7. Conclusions

In this work we presented a novel way to create ground
truth data for temporal event segmentation using crowd-



sourced annotations. We demonstrated its application to
two different segmentation problems and showed that by us-
ing event boundary intervals, we are able to produce ground
truths that are more stable than with majority voting. While
the applications we demonstrated are related to computer
vision and human perception, the concepts of this work are
meant to be applicable to various research fields and prob-
lems, especially those that have the need for segmentation
of temporal data in the face of ambiguous, fuzzy, and sub-
jective boundaries.

Moving forward we aim to do further analysis on our
ground truth segmentations. In particular to observe the ef-
fects of annotator quality and quantity on ground truth sta-
bility. Much like done in the work by Zacks, et al., we are
also interested in using our approach to analyze segmenta-
tion tasks in a variety of disciplines.
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