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Abstract

We have been researching three dimensional (3D)
ground-truth systems for performance evaluation of vision
and perception systems in the fields of smart
manufacturing and robot safety. In this paper we first
present an overview of different systems that have been
used to provide ground-truth (GT) measurements and then
we discuss the advantages of physically-sensed ground-
truth systems for our applications. Then we discuss in
detail the three ground- truth systems that we have used in
our experiments: ultra wide-band, indoor GPS, and a
camera-based motion capture system. Finally, we discuss
three different perception-evaluation experiments where
we have used these GT systems

1. Introduction

We have been researching three dimensional (3D)
ground-truth systems for performance evaluation of robot
perception systems in the fields of smart manufacturing
and robot safety. Object recognition and localization are
among the most common and challenging tasks that a
robotic perception system must accomplish. These tasks
are necessary to support more complex perception tasks
such as identifying meaningful events and activities. In
our studies, an object can be a robot, an automated guided
vehicle (AGV), a person or limb, a queue of people, or any
other object commonly found in an industrial
environment. The goal of object recognition is to use
sensed data to correctly identify objects that are present in
a 3D scene. Achieving this goal is complicated because
the scene could be cluttered, objects could occlude one
another, and there could be illumination or viewpoint
variations.

Object recognition and localization are important in
many practical applications such as manufacturing
automation, navigation, part inspection, and computer
aided design/computer aided manufacturing (CAD/CAM),
among others. Our main interest is evaluating algorithms
used to recognize objects for manufacturing applications
in a dynamic indoor factory environment. We emphasize
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the recovery of position and orientation (pose), motion,
and classification of these objects so that, for example, we
can determine if a person or object is moving across the
scene. We are less concerned with the identification of
individual people or objects. The following scenarios are
those for which we would like to capture ground-truth
data.

* Human and object detection and tracking from a

moving platform

* Human detection and tracking for safety

* Articulated human motion tracking

» Tracking of robots and AGVs

* Human-robot collaboration

Our approach to algorithm evaluation is to compare
algorithm results on a set of objects and tasks with known
ground truth. The comparison is based on standardized
performance metrics, such as identification accuracy,
geometric position accuracy, or robustness to scene
complexity. The tasks, ground-truth data, and different
performance metrics should allow researchers to fully
understand the strengths and limitations of different
algorithms.

Typically, ground-truth measurements should be an
order of magnitude more accurate than those obtained by
the algorithm being evaluated. Since the algorithm will
be used in a dynamic environment, its temporal resolution
should be high enough to resolve the motions of the
objects and eliminate motion blur. Its spatial resolution
must be high enough to resolve the locations of the objects
to the accuracy needed to perform the required task.
There are a number of issues that need to be resolved for a
successful evaluation, such as synchronization, latency
issues, and time drift between the ground-truth system and
the system under test. The importance of these issues
varies depending on the object, the task, and the system
being evaluated.

In this paper, we present a unique way of capturing 3D
ground-truth data in a common world coordinate system.
We first present an overview of different systems that
have been wused to provide ground-truth (GT)
measurements and then we discuss the advantages of



sensor-based ground-truth systems for our applications.
Then we discuss in detail the three ground-truth systems
that we have used in our experiments. These systems
included: an ultra-wide-band system, a laser-based indoor
GPS system, and a camera-based motion capture system.
Finally, we discuss three different perception evaluation
experiments where we have used these GT systems.

2. Overview of Ground-Truth Systems

There are four main approaches to acquiring ground
truth data for object recognition and tracking (for details
see [24]): annotation/label-based systems, platform-based
(or fixture-based) systems, physics-based simulation, and
sensor-based systems.

The most popular way to create GT for object detection
and tracking is by human annotation of images (including
video and depth images) using annotation/label-based
systems. One of the commonly used desktop tools for
video annotation is VIPER-GT [1]. With this tool, users
can annotate an image by drawing a bounding box around
an object, indicating its identity, and providing detailed
spatial and temporal information. Annotation-based
approaches are typically applied to scenarios where a
scene is monitored by an image or video sensor suitable
for human interpretation. They have the following
advantages over other approaches.

a) Complex scenes and behaviors can be annotated by

hand when effective algorithms do not exist.

b) The software is often free, allowing a low-cost entry

into the project.

c¢) The resulting annotated data support analysis by

multiple groups using multiple algorithms, so
repeatability is good and cross-comparisons are
easily made.

Disadvantages include the labor cost of performing
annotation, the variable and often unknown accuracy and
reliability of the labels, and the fact that the annotations
are mainly based on the images and recorded in sensor-
based coordinates instead of 3D world coordinates. Also,
when multi-sensor data are captured, each sensor’s data
are annotated independently; this can make this approach
cost prohibitive and time consuming.

Platform-based systems give ground-truth for object
pose by placing the object on a platform that fixes the pose
in advance of a test. They usually only work for static
object recognition, although a highly repeatable fixture,
such as a robot, can provide dynamic poses. Physics-based
simulation systems use synthetic simulated imagery based
on the laws of physics. Since the environment is
simulated, the exact ground-truth is known. On the other
hand, sensor data generated from a simulation do not
exactly match real world sensor data because of different
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noise characteristics and incomplete simulation of the real
world.

These factors are significant for our interest in
manufacturing and robotics applications and our need to
use multiple sensors and to put the resulting GT data into a
single global coordinate frame. The ground-truth system
that most closely meets the needs for the applications
described below is a sensor-based system in which
physical attributes of the object are sensed remotely and
analyzed to determine its identity, location, and/or pose.
Such systems use any of a number of technologies for
sensing, including radio frequency, optics (photonics),
acoustics (sound), and inertial sensing. Metrics for
evaluating such systems include static and dynamic
precision, scalability, update rate, degrees of freedom,
maximum number of tracked objects, latency, work
volume, range, cost, and time to identify an object [2-6].
In this paper, we review only the three sensor-based
systems that we have used to obtain ground-truth
measurements.

3. 3D Ground-Truth Systems

We have used the following systems to obtain ground-
truth measurements in our experiments: ultra wide-band
(UWB), indoor GPS, and a camera-based motion capture
system. These systems are described in the following
subsections and the reasons for the selection are explained
according to the needs of the applications.

3.1. Ultra-Wide-band (UWB)

The UWB tracking system [12, 13] uses a collection of
UWRB radio receivers located around the perimeter of the
test area to track multiple static and dynamic objects with
credit-card size transmitter tags (see Figure 1). Each tag
sends UWB pulses, which are detected by the antenna
using a combination of TDOA (Time-Difference of
Arrival) and AOA (Angle of Arrival) techniques to
estimate the 2D or 3D position of the tags, dependent upon
the test.

The UWB tracking system works in open outdoor areas
or indoor areas and can see through some types of walls,
though overall accuracy can vary.

(c)
Figure 1. (a) Shows a UWB receiver deployed in the field
(b) shows the asset tracking system components, ultra-
wideband radio frequency receiver (shown with integrated
high-gain antenna), 1 W transmitter tag, and 30 mW
transmitter tag. c) Several tags are shown attached to
helmets to track people in a scene.

(a) (b)



The UWB tracking system is suited for human and
vehicle tracking because of the following characteristics.
UWB is based on sending ultra-short pulses [2, 3, 4, 5]
over multiple bands of frequencies simultaneously. This
allows them to coexist with other radio frequency (RF)
signals despite their large bandwidth. They are able to
differentiate =~ the  original  pulses from  the
reflected/refracted ones because the brief time span of
each pulse reduces the likelihood of overlap. Each tag and
receiver has a unique identification signal and can be used
in both outdoor and indoor applications. UWB is robust
and provides higher precision indoor positioning
compared to other wireless technologies. These systems
can cover a very large area compared to other technologies
and have been used successfully for human- and object-
tracking applications [12, 13].

UWB systems are available commercially and have
reported accuracies of 15 cm to 30 cm compared with
other RF technologies whose accuracy ranges from 1 m to
3 m. They are easier to set up because they require the
installation of fewer fixed sensors compared to other types
of systems. UWB systems also have the advantage over
optical systems that they do not require direct line of sight.
The tags can, therefore, be embedded in the object being
tracked, which makes it invisible to optical systems under
test and thus will not affect the performance of the system
under test.

We performed characterization tests on a representative
UWB system in ideal conditions to determine the least
possible 2D error of the system, which was measured to
have an average error of 15 cm. We have used UWB to
track vehicles and personnel throughout an area over
80,000 m* with an average error of 23 cm. The system has
an update rate of 25 Hz to 50 Hz, which is sufficient to
track vehicles at highway speeds [12, 13]. We have also
used it to track robots through random mazes with
plywood walls (non-line-of-sight) achieving similar
performance. We have not been successful in tracking tags
through concrete walls, but have used additional receivers
in hallways to compensate during indoor building
deployments. The maximum number of dynamic and static
transmitter tags used simultaneously thus far has been
between 15 and 30 for marking obstacles and known
fiducial points to check performance. Setup time for a new
test site takes about five days, including positioning,
calibrating, and testing the equipment. Returning to a
previously used site takes approximately two days for
calibration prior to testing.

3.2. Indoor Global Positioning System (IGPS)
The iGPS system [11] shown in Figure 2 is a 3D high
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precision, commercial measurement system that uses
stationary laser transmitters together with receivers
mounted on moving or static objects to determine the
poses of those objects. It is modular, suitable for large or
small volumes, and can measure multiple objects
simultaneously with high accuracy for both static and
dynamic objects. It is used by industrial manufacturers
both for positioning and tracking applications and for
robot control.

Figure 2. An iGPS transmitter and two sensor receiver
bars (with cables and position computation engine).

The manufacturer-specified accuracy of 3D positions
measured using the iGPS is 0.25 mm and the measurement
frequency is 40 Hz. A typical measurement volume
based on four to eight transmitters is 1200 m*®. Detailed
system analyses are presented by Schmitt et al. [7] and
Mosqueira et al. [8]. Wang et al. [9] showed that the
tracking accuracy is similar to the static accuracy for
speeds below 10 cm/s. However, they found that as the
speed of an object increases, the tracking accuracy
decreases—at a speed of 1 m/s; the mean tracking error
can be as high as 4 mm. In another study, Depenthal [10]
showed that when tracking objects at velocities of 3 m/s,
the 3D position deviation is less than 0.3 mm. Depenthal
also described the experimental comparison of the
dynamic tracking performance between an iGPS and a
laser tracker and showed that the iGPS performed well
under dynamic conditions. The iGPS, unlike the UWB
system, requires line of sight to at least two transmitters to
be able to make a measurement. In our human-tracking
experiments, the ground-truth sensor, a pair of iGPS
vector bars, is attached to the top of a hardhat worn by the
human as shown in Figure 3. We have also used the iGPS
to provide ground-truth measurements of AGVs (see
Section 4.2).

o

Figure 3. iGPS vector bar attached to hardhat worn by a



human (represented here by a mannequin).

The iGPS sensor has a fast enough update rate to track
people moving at walking or running speeds and is
accurate enough to provide the necessary order of
magnitude better pose measurements than most sensors
used for human tracking. Its wide field of view allows a
range of typical activities to be carried out by the people
being tracked, and the need for only two sensors to have
line of sight to the sensors at any time ensures that the
system can provide data even in scenes with significant
clutter.

3.3. Camera-based Motion Capture

Motion capture [21] refers to a category of methods for
(1) recording the motion of objects and people, or (2)
capturing the articulated motion of a whole human body
and/or robotic arm. These systems are widely used to
provide ground-truth for validating the performance of
computer vision systems and in applications such as
entertainment, sports, medical applications, and robot
control. When the capture includes gestures and facial
expressions or finger motions, it is sometimes referred to
as performance capture. These systems can also be used to
study  human-robot  collaboration, human-object
interaction, human activity tracking, and human-human
interaction applications in manufacturing environments.

The camera-based motion tracking system [15] uses a
network of cameras that emit infra-red illumination. They
track multiple spherical markers that reflect the
illumination. When seen by more than one camera, the
locations and patterns of the reflections provide pose and
identity information. Balan [16] evaluated the 3D pose of
human motion obtained from synchronized, multi-camera
video against 3D ground-truth poses acquired with a
motion capture system [17]. The synchronized video and
motion capture dataset developed in [18] is the most
widely used dataset. In it, actions of a single person were
captured by multi-camera video together with marker-
based motion capture data. The main drawback of the
dataset is that there is only one person in the environment
at a time, so there is no person-to-person occlusion. Other
datasets do include multiple people. One is the Utrecht
Multi-Person Motion (UMPM) Benchmark [19] that
includes a collection of multi-person video recordings
together with ground-truth based on motion-capture data.
It is intended to be used for assessing the quality of
methods for pose estimation and articulated motion
analysis of multiple persons using video data from single
or multiple cameras.

We tested a camera-based motion capture system using
a robot arm (Figure 4) in a test area of about 40 m”, with
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data being collected at approximately 100 Hz from the
system and at 53 Hz from the robot. The robot had
previously been measured using a laser tracker to have
repeatability in position of about 0.03 mm following the
ISO 9283 robot performance standard. The robot moved in
a path that kept the tool-control-point at a fixed height. It
swept out a horizontal box with a zigzag on one side, and
paused at a number of points to enable both dynamic and
static performance to be measured. Because of the
difference in update rates, the data from the robot and
motion  capture system were synchronized by
interpolation. A common coordinate system was
established by referencing each system to a calibration
target. Thus, the results for the accuracy (or, more
correctly, repeatability) of the motion capture system
include calibration errors, interpolation errors, robot
errors, and the system’s own errors. With this caveat, we
found that the system had a mean position error of 0.0140
m, with a standard deviation of 0.0116 m, when the robot
was moving. For the stationary points, the mean position
error was 0.013 m, with a standard deviation of 0.003 m.

Motion capture systems have the advantage of low cost
relative to iGPS or UWB systems, while retaining a
reasonable measurement accuracy and update rate. They
are easy to set up and can cover a large area, depending on
the number of cameras used.

Six cameras
track targets

Target on
Robot gripper

Figure 4. A robot arm with motion capture sensor and
markers.

4. Perception Evaluation Using 3D Ground
Truth Systems

In the following subsections we present three different
perception evaluation experiments, discuss the ground-
truth system used, and why the particular system was
selected over other possible approaches.



4.1. Evaluating Perception Systems Mounted on a
Vehicle

We conducted experiments in collaboration with the
Army Research Laboratory (ARL) to evaluate six different
algorithms for real-time detection and tracking of
pedestrians and other objects. The algorithms used
LADAR (laser detection and ranging) and video sensors
mounted on a moving platform [12, 13]. For the
evaluation, the moving platform was a robot vehicle
equipped with two pairs of stereo cameras, two sets of
imaging LADARs and two sets of 2D laser line scanners.
The vehicle was driven by an operator along a straight
path of approximately 240 m. Along the path were various
configurations of eight moving pedestrians, four
mannequins, four barrels, four cones, two trucks, two
crates, seven tripods, and a number of trees. Besides
variations in the complexity of the environment, the
experimental variables included two vehicle speeds (30
km/h and 15 km/h) and pedestrian speeds of 1.5 m/s or 3.0
m/s.

The goal of the evaluation was to determine the
performance of each of the algorithms. Because of the
large area to be covered, the outdoor environment, and the
relatively low position accuracy required, an UWB system
was employed as the ground-truth sensor system. We
developed a robust filtering algorithm to produce higher
quality tracking solutions than those provided by the raw
data captured by the UWB system. As described below,
we developed a temporally consistent algorithm for
finding the correspondence between the ground-truth data
and the tracking data to improve analysis of the
performance of the recognition and tracking systems. In
addition, we developed a visualization tool to provide
early detection of errors in data collection and to support
data analysis of the test results [12].

4.1.1  Filtering the Ground-Truth Data

Filtering is a post-processing step to remove outliers
and reduce error levels in the ground-truth data (for details
see [12]). We first identify outliers based on the maximum
conceivable speed of the tag. We then apply a polynomial
least squares fit filter to a set of measurements earlier and
later in time than the identified measurement. We fit a
spline through the filtered points to identify the tag’s
position as a function of time. We interpolate the trimmed,
filtered, and splined data at timestamps obtained from
each of the different algorithms. The interpolated ground-
truth data are used to establish spatial and temporal
correspondences.

4.1.2  Evaluation using the UWB Tracking System
The main experiment consisted of 32 runs (Figure 5).
The vehicle was driven south to north on a 240-meter
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path. Scripted scenes with human motion, mannequins,
and course clutter were sensed and interpreted and
reported by the algorithms in real time. Eight humans were
present in each run, four on either side of the street. Four
moved parallel to the street, three at 45° to the street, and
one at 90° to the street.

o

Figure 5. Right side of course durig arun.

The performance evaluation focused on the questions of
what an algorithm detected, when it detected it, and how
long the detection persisted. These measures were
calculated for each algorithm and in the context of the
experimental factors under which the data were collected.
The ground-truth system allowed the evaluation of all
these questions.

Table 1 shows performance measures for the six
algorithms in terms of  object  detections,
misclassifications, and false positives over the complete
set of 32 runs [12]. Entries are percentages except for the
false positive entries, which report the number per run. All
rows referring to objects other than people show the
algorithm misclassification of these objects as humans.
The evaluation performance of the six algorithms varied
widely. Some systems that reported a high probability of
detection also misclassified other course objects as
humans. For some, the number of false positives reported
was also an issue.

Table 1. Performance of six different algorithms

Performance of Six Different Algorithms
Object Alg-1 | Alg-2 Alg-3 Alg-4 Alg-5 Alg-6
Type
Humans 97.3 90.8 98.4 98.0 89.5 85.7
(%)
Mann. (%) 10.2 - 97.7 98.4 914 62.6
Cones (%) 0.0 - 4.7 0.0 65.6 0.0
Barrels (%) | 14.1 - 54.7 70.3 89.1 0.0
Crates (%) 46.9 - 100.0 90.6 100.0 70.3
Trucks (%) | 25.0 - 100.0 25.0 100.0 90.6
Tripods 1.3 46.7 53.6 60.7 58.9 60.7
(%)
False 29.8 77.9 155 37.3 29.8 13
Positives

The UWB ground-truth system was selected for this
evaluation because of the large test area and the level of
accuracy required. The system was used to track vehicles



and personnel, including tracking vehicles moving at
highway speeds. The system was also selected because
part of the test area did not provide a direct line of sight
between the platform and transceivers.

4.2. Evaluation of Automated Guided Vehicle
(AGYV) Safety Standard

NIST evaluated the performance of 2D and 3D imaging
sensors on an automated guided vehicle (AGV) for safety
applications. The experiments and results are presented in
Bostelman et al. [20, 22]. The experiments involved
comparisons of measurements of dynamic standard test
pieces using sensors on an AGV, with ground-truth
measurements provided by an iGPS system. The factors
investigated in the experiments included the type of test
piece, the type of AGV stop (controlled braking or
coasting to a stop), the speeds of the test piece and AGV,
the trajectory of the test piece relative to the AGV path,
and operation in confined vs. open spaces. The test results
will be used to develop standard test methods and to
recommend improved stopping methods in an AGV safety
standard [23]. Figure 6a shows the AGV instrumented
with different sensors. The graph in Figure 6b shows the
velocity vs. distance plot of the AGV with starting speed
of 1.2 m/s after an object entered the AGV path and was
detected by the onboard AGV safety sensor.

navigation sensor

; top 3D LIDAR sensor
light bar

; vertical 2D LADAR sensor
B 3D Kinect sensor

bottom two 3D LIDAR
1 sensors

horizontal 2D safety
LADAR sensor

Figure 6a. AGV with various onboard sensors.

w

AGV Speed = 1.2 m/s

E

ooy i

bbuum (m)'

d
Figure 6b. Velocity vs. distance plot at a starting speed of
1.2 m/s. The solid and dashed lines indicate two different
types of braking — controlled braking and coasting to a
stop, respectively.
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AGYV low-level stop braking is mandated by the safety
standard, whereas controlled braking is not mandatory.
Controlled braking uses the safety sensors to continually
monitor areas in the AGV path beyond the low-level brake
sense distance. The sensor data can be used with
controlled braking to plan and execute appropriate AGV
decelerations as needed when obstacles are in the vehicle
path and regain speed when the path is clear. The iGPS
was used to measure braking distances for both methods.
The evaluation allows the AGV industry to decide which
method best fits their application. The iGPS was used
because this application required high accuracy
measurements of relatively fast-moving objects. Even
though there was significant occlusion of the iGPS
receivers, there were enough transmitters (8) to ensure that
accurate date could be collected.

4.3. Evaluating Perception Systems used in
Workspace Situational Awareness

Next generation robotic systems will perform highly
complex tasks in dynamic manufacturing environments.
To be successful in performing these tasks, they need
situational awareness—the ability to detect, localize,
interpret, and anticipate the actions of people and objects
in their environment. Prototypes of these perception
algorithms are being developed, but methodologies to
measure their performance do not exist. We are currently
developing the metrics and methods to support the
development of these methodologies, with an initial focus
on the ability to detect people and objects as they move
about the workspace. We will build test-beds and conduct
experiments to assess the methodology. The results can be
used to develop new standards that enable the use of
perception systems in manufacturing applications. The
first sets of experiments that are planned are on human
detection and tracking for safety applications. Factors that
affect the perception system’s performance include
occlusion, clutter, speed of motion, and pose variation.
The ground-truth will be collected by an iGPS receiver
mounted on a hardhat worn by each participant as shown
in Figure 3 and by a camera-based motion tracking
system. The human detection and tracking experiments
will be used to compare the two ground-truth systems.

We previously conducted human tracking experiments
in which the system under test was a calibrated network of
cameras and the ground-truth measurements were
provided by the iGPS system. Figure 7 shows the setup
for those human tracking experiments.



Figure 7: Different camera views during a test. Note the
hardhat being tracked by the iGPS system (white circle).
[14]

The localization errors between the multi-camera

network and the iGPS ground-truth data are presented in
Figure 8.
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Figure 8. Graph of localization error between a base line
system and a new system

5. Conclusions

This paper presented an overview of different systems
that can be used to obtain ground-truth measurements. We
focused on sensor-based ground-truth systems as opposed
to annotation/label-based  systems, platform-based
systems, and physics-based simulation systems.

We discussed three systems that have been used in our
experiments to obtain ground-truth measurements: UWB
(ultra-wideband), indoor GPS (iGPS), and camera-based
motion capture. We then provided the results of three
different experiments that we have conducted and
discussed why the particular ground-truth system used was
better than other possible approaches.

Future work will involve establishing test-beds with
systems that can provide ground-truth measurements and
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conducting experiments to assess the performance of
perception systems. The results will provide scientific
foundations for development and guidance of new
standards that enable the use of perception systems in
manufacturing applications.

1. Disclaimer

Certain commercial equipment, instruments, or materials
are identified in this paper to foster understanding. Such
identification does mnot imply recommendation or
endorsement by NIST, nor does it imply that the materials
or equipment identified are necessarily the best available
for the purpose.
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