
A multi-sensor traffic scene dataset with omnidirectional video

Philipp Koschorrek1, Tommaso Piccini1, Per Öberg2, Michael Felsberg1, Lars Nielsen2, Rudolf Mester1,3

1Computer Vision Laboratory, Dept. of Electrical Engineering, Linköping University, Sweden
2Vehicular Systems, Dept. of Electrical Engineering, Linköping University, Sweden

3VSI Lab, Computer Science Dept., Univ. Frankfurt, Germany

{firstname}.{lastname}@liu.se

Abstract

The development of vehicles that perceive their environ-
ment, in particular those using computer vision, indispens-
ably requires large databases of sensor recordings obtained
from real cars driven in realistic traffic situations. These
datasets should be time shaped for enabling synchroniza-
tion of sensor data from different sources. Furthermore,
full surround environment perception requires high frame
rates of synchronized omnidirectional video data to prevent
information loss at any speeds.

This paper describes an experimental setup and software
environment for recording such synchronized multi-sensor
data streams and storing them in a new open source for-
mat. The dataset consists of sequences recorded in various
environments from a car equipped with an omnidirectional
multi-camera, height sensors, an IMU, a velocity sensor,
and a GPS. The software environment for reading these data
sets will be provided to the public, together with a collection
of long multi-sensor and multi-camera data streams stored
in the developed format.

1. Introduction
Computer vision is evolving into a key technology for

the automotive area, starting from simple, mostly visual-

ization related tasks such as rear cameras, to driver assis-

tance functionalities like lane-keeping assistants, traffic sign

recognition, and soon including the field of visually guided

autonomous driving. It is obvious already today that multi-

ple cameras will be present in future cars, thus allowing to

monitor the complete 360◦ field of view of a car in flow-

ing traffic, detect dangerous situations and increase safety

and comfort in driving. These prospects depend crucially

on the availability of intelligent algorithms, evaluated and

optimized on data of real traffic situations.

Building a dynamic environment model from a stream of

data coming from a set of cameras looking into multiple di-

rections around a vehicle is a challenging problem. Further

Figure 1. Test platform car with roof rack mounted Ladybug 3

challenges arise from the immense variability of scenes un-

der different weather and illumination situations, consider-

ing occlusions and sensor imperfections, that make images

difficult or ambiguous to be interpreted.

In order to develop robust and reliable algorithms for

camera based environment sensing and interpretation in

multi-view scenarios, large realistic datasets are needed.

Our contributions are a framework for storing synchro-

nized multi-sensor multi-camera data and example datasets,

suitable for testing solutions to tasks such as visual odom-

etry, SLAM, sensor fusion, motion estimation and optical

flow computation.

Such datasets provide several significant benefits:

• It is possible to test algorithms from a real experimen-

tal car without investing time and money to actually

build such a setup and record sequences with it.

• Evaluation on a standard dataset allows direct compar-

ison of algorithms and methods.

• Thanks to redundant sensors, ground truth for e.g. ego-

motion can be determined by sensor fusion.

Data that is of primary interest besides video is a) the

true ego-motion of the car w.r.t. the static environment, and

b) the true 3D structure of the environment, including the

static scene and other moving objects.

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.110

721

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.110

721

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.110

721

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.110

727

1.1. Motivation

Our aim is to develop algorithms working in real urban

or highway traffic situations, including high speed ranges.

Hence, high frame rates and real traffic sequences are

needed. Since none of the existing datasets provides such

information in a way which also allows real time simula-

tions, we decided to provide a new dataset, aimed mainly at

visual odometry applications. The dataset features the kind

of information we consider to be lacking in previous work,

and a flexibility that allows to represent any kind of mul-

tisensor setups in the same framework. The experimental

setup we used includes an omnidirectional camera, an IMU,

laser-based height sensors, a velocity sensor based on opti-

cal road surface correlation, and a GPS receiver, mounted

on a roadworthy car allowing us to take part in real traf-

fic situations. All recorded data are stored in a new, flex-

ible format using common timestamps, which makes real

time playbacks possible. We provide also the necessary

software environment and APIs to access data for different

popular programming languages. Existing algorithms for

visual odometry with a similar setup like the one proposed

of Tardif et al. [7] can be revisited and compared against a

common ground truth, even when driving in regions where

absolute reference (e.g. GPS) is not available.

1.2. Ground Truth

While the 6D pose can be extracted from auxiliary sen-

sors, by design, we chose not to include such information

in our dataset. This choice is dictated by our view on what

should be considered ground truth. In the case of real life

scenarios we do not have access to the true model parame-

ters (as we have for synthetic data) and we have to rely on

measurements and sensor data from independent sensors.

Moreover those may be afflicted by accidental or system-

atic distortions in the measuring procedure or in the sensor

readings. At best, these distortions are statistically inde-

pendent of the measurements under assessment. Also since

the state-of-the-art in fusion methods continuously evolves,

storing raw data instead of processed data ensures sustain-

ability. We therefore prefer to leave the choice on the algo-

rithm to determine ’ground truth’ to each final user of our

data, while groups interested in sensor fusion may gain in-

terest in our data and contribute to a, possibly evolving, gold

standard for ground truth in our sequences. Another factor

that brought us to our choice is that it is generally preferable

if ground truth is extracted from the data by an indepen-

dent third party as suboptimal ground truth can constitute a

strong bias in algorithm evaluation. For all these reasons,

we decided to store the raw sensor recordings.

While we are using mid-level IMU and GPS sensors,

they can be fused with further high accuracy sensor data

(height and speed sensors, 2.1) to obtain ground truth.

Similarly, the available data can be used for evaluating

Structure-From-Motion (SFM) algorithms. While we do

not provide any ground truth for the 3D structure of the

scenarios, a highly accurate model can be obtained from

state-of-the-art bundle adjustment on all data of a sequence

together with the provided calibration parameters. Such a

model may be useful for evaluations of SFM algorithms on

subsets of data of the corresponding sequence. A similar

approach is used in Middlebury data [5].

1.3. Related work

Automotive, vision related datasets have been published

by different research groups in the past few years.

The KITTI dataset and benchmark suite [3] provides

combined IMU and GPS data, point clouds produced by a

laser scanner and stereo visual data in both grayscale and

color format. The primary aim of the KITTI dataset is, how-

ever, to provide a benchmark suite for the testing of com-

puter vision algorithms on real automotive applications. It

is thus composed of several short sequences consisting in

challenges of levels of difficulty for algorithms. Though this

is an ideal approach for testing and benchmarking of algo-

rithms, when the aim is the design of robust, industry ori-

ented software, much longer and diverse sequences showing

as various situations as possible are needed. For compari-

son, the size of the whole KITTI dataset is of approximately

20GB, about equivalent to the size of our shortest sequence

after compression.

Blanco et al. present in [1] a dataset with a focus on

”centimeter-accuracy ground truth” of position data for test-

ing SLAM algorithms designed for small mobile robots.

Their dataset is composed of synchronized data coming

from multiple sensors (color cameras, laser scanners, differ-

ent kinds of GPS receivers and IMU sensors) and provided

in a structured, plain text file based format together with

an API to handle the data. The data is, however, taken at

slow speeds from a steady and controlled environment such

as a university campus and a parking lot. In a later exten-

sion of their work, data has been gathered also for a longer

sequence taken in a urban scenario1. Their setup misses,

however, the omnidirectional visual data that we consider

of fundamental importance for full surround sensing.

We identified only two publicly available datasets that

show significant affinity to our work. One is the work pre-

sented by Smith et al. [6]. Visual and inertial data is gath-

ered with a multisensor setup based on a Segway like vehi-

cle driven through the New College Campus in Oxford, UK.

The dataset comprises odometry information, GPS data and

point clouds provided with a couple of laser scanners to-

gether with visual data coming from both a stereo pair of

grayscale cameras at 20 frames per second (fps) and an om-

nidirectional color camera (3 fps). The dataset is provided

in a structured format where the sensor readings are in a

1http://www.mrpt.org/MalagaUrbanDataset

722722722728

time stamped, time ordered text file, separated from the vi-

sual data. This approach is very similar to our own, but the

plain text format used introduces a lot of unnecessary re-

dundancy in the data which also results in a increased size

of the files while giving in exchange only a small advance in

data handling. Pandey at al. [4] published a second dataset

similar to our own. They provide recordings of omnidirec-

tional visual data at 8 fps together with laser scans and in-

ertial sensor readings. The data presented have, however,

to be synchronized in post-processing since the readings of

the sensors are stored separately. Furthermore the dataset

consists only of two sequences.

While the merits of these two works are undeniable, they

both still fall short in aspects that we consider of primary

importance, such as the frame rate of the omnidirectional

visual data, the environment chosen for the data recordings

and the possibility for real-time simulation. The omnidi-

rectional visual data is provided at only 3 and 8 fps respec-

tively, and in both cases the sequences were recorded inside

the respective university campuses where no other or only

few vehicles are present. The vehicle speed and the vari-

ability of the surrounding landscape within the sequences,

as well as between the sequences, is low compared to our

dataset. Furthermore their APIs do not provide a comfort-

able method for the streaming of the data.

2. Experimental setup
In this section, we provide a detailed description of our

experimental setup in both hardware and software aspects.

2.1. Hardware

The dataset was recorded with a Volkswagen Golf 5 (Fig.

1) equipped with an omnidirectional multi-camera system,

a Point Grey Ladybug 32 (C), and several sensors recording

the motion of the car both in the car’s own frame of refer-

ence and a global coordinate system. The camera consists

of 6 synchronized global shutter color cameras configured

to a raw resolution of 616 × 1616 pixel (width × height)
each, stored as Bayer images. While one camera is pointing

upwards and will be of marginal interest for most applica-

tions, the five remaining cameras depict the horizontal sur-

roundings of the car. The arrangement of the cameras with

overlapping fields of view allows a 360◦ view of the envi-

ronment. The frame rate of 30 fps is much higher than in

similar datasets [6, 4].

Such a setup is chosen for the flexibility it provides. While

an omnidirectional camera positioned on the roof of a car

will hardly be the choice of a car producer, experimentally

it allows to simulate any case of camera setting with slightly

overlapping fields of view. Omnidirectional stereo vision is

theoretically possible using two LadyBug cameras stacked

2http://www.ptgrey.com/products/ladybug3/

on top of each other, but this is practically unfeasible due

to mechanical and data-rate constraints. Localized stereo

vision, on the other hand, could be easily introduced in the

future, if deemed necessary, by e.g. adding a single forward

looking camera.

Several other sensors complement the camera in order to

obtain an extended and redundant set of measurements from

which egomotion and dynamic attitude can be computed.

The sensors are the following:

• camera mounted IMU

• lateral & longitudinal velocity sensor (car front)

• three non contact laser ride height sensors (side doors

and car front)

• GPS receiver

Figure 2 shows the mechanical setup, whereas the sensor

setup of the car is shown in Figure 3, with the multi-camera

rig being shifted in the drawing from the roof. A more de-

tailed sketch of the car setup can be found on the project

website (see Section 4).

Figure 2. Mechanical setup: C - Camera, I - IMU, G - GPS re-

ceiver, HR, HL, HF - Height sensors, VF - Velocity sensor

The XSens MTi AHRS3 (I) is an IMU with 9 channels

which measures the acceleration, angular velocity and mag-

netic field in all three directions of its internal coordinate

system. The velocity sensor (VF) and the height sensors

mounted at the front (HF) and at the side doors (HR, HL,

right and left respectively) of the car provide additional in-

formation such as more accurate estimates for the attitude

and speed of the car to optimize and stabilize state estima-

tions based on IMU data. Additionally to the longitudinal

velocity VF measures the lateral velocity, too. The height

sensors are mounted on the front and the sides of the car

allowing an estimation of the roll and pitch angle of the car.

The velocity sensor, a Kistler Correvit S-350 Aqua, and the

height sensors, Kistler HF-500C, are parts of the 3-axis op-
tical measurement system by Corrsys Datron4. The GPS re-

ceiver is a uBlox AEK-4P GPS development kit using only

pure GPS information without RTK correction signals.

The Ladybug camera has been setup in such a way that one

camera points in the forward direction of the car, while the

viewing directions of the four remaining cameras are to the

3http://www.xsens.com/en/general/mti
4http://www.corrsys-datron.com/optical sensors.htm

723723723729

side and rear of the car with an angle of 72◦ between ad-

jacent cameras. Due to the distances between the sensors,

each sensor has to be described in its own coordinate sys-

tem. These coordinate systems are named after the sensors

plus a suffix e.g. HRCS, HLCS, etc. All sensor coordinate

systems are right-handed and set in reference to the coordi-

nate system of the car (CARCS) which lies in the geometric

center of the bounding box of the car chassis, i.e., the car

without tires and suspension. CARCS is also a right-handed

coordinate system where the x-axis is pointing forward and

the y-axis to the right of the car whereas the axes are parallel

to the bounding box edges of the car. The attitude of the car

describes the rotation of this coordinate system to a coor-

dinate system SCS which lies on the street with x pointing

forward and z parallel to the downwards directed surface

normal, i.e. to the model of a plain street. The relations

of the sensor coordinate systems to the car reference frame

as well as the calibration data of the camera done with the

framework provided by [2] can be found on the project web

page, see Section 4. Furthermore, the known calibration

parameters allow us to merge the six camera recordings ac-

cording to different camera models, e.g. panorama images,

dome projections or spherical projections. The sampling

frequencies FSi of the different sensors are shown in Table

1.

Table 1. Sampling frequencies

Sensor FSi[Hz]
C 30

I 100

VF 250

HR, HL, HF 250

GPS ∼ 4

Furthermore, the car internal CAN (Controller Area Net-

work) bus messages are recorded in raw format, too, but are

not yet further processed.

The measurements gathered by the IMU and GPS have not

been combined. The absolute position and velocity of the

car in the world reference frame obtained by the GPS mod-

ule and the measured IMU data in its coordinate system are

stored separately. Attitude estimates for the IMU and, due

to their rigid coupling, also for the camera are produced by

the internal Kalman Filter of the IMU and stored, as well.

Obviously a fusion of all sensor data or at least a few, e.g.

IMU and GPS, would improve the accuracy of the estimated

position, but it has not been applied due to the reasons al-

ready mentioned in Section 1.2.

The sensors acquire their measurements continuously at the

mentioned sampling frequencies and send them to a com-

puter, which is referred to as LinCom in the following.

The camera is connected via FireWire to and controlled

from a second computer, WinCom, controlling only the

multi-camera due to high necessary data rates. LinCom

is controlling and reading the remaining sensors to obtain

measurements in real-time. Both computers are connected

via Ethernet in a Local Area Network in order to provide

time synchronization.

Figure 3. Sensor arrangement scheme

2.2. Software

This section describes the software running on the differ-

ent computers as well as the method to synchronize them.

Data synchronization For the combination of sensor data

and images, it is necessary that they share the same time

base. In consequence of the need of two computers, their

internal clocks have to be synchronized to achieve this goal.

In order to provide high accuracy, a synchronization via

Network Time Protocol (NTP) was chosen. LinCom was

adapted to act as a NTP server sending out time informa-

tion. The stratum value of the NTP server was set very low

to make sure that the connected computer, WinCom, trusts

the time signal. Obviously it is not necessary to have an ac-

curate global time, rather it is necessary for the computers to

share the same time. LinCom sends out its own kernel time

as time base and WinCom is synchronizing to this time. The

time difference between the computers achieved with this

method is, according to the NTP client, below 2ms.

Further time information such as global time (UTC) can be

extracted from GPS recordings if this is required.

WinCom WinCom runs Windows 7 as operating system,

as this is necessary for accessing the API of the Ladybug3

camera with the full feature set. A recording program was

written in C/C++ to grab the images of the camera and store

them. Besides the image handling, the software also records

the time at which the image was grabbed. This time cor-

responds, except for the mentioned synchronization uncer-

724724724730

tainty, to the kernel time of LinCom. With those time val-

ues and corresponding time stamps in the recordings of Lin-

Com, a merging of the sensor data and image information

is possible. Extra camera information, such as the shutter

time, is also stored with the images.

LinCom A Gentoo Linux distribution without graphical

user interface is running on LinCom to achieve maximal

performances while having all benefits of a modern operat-

ing system. A real-time Linux could not been used since

there are no real-time Linux USB stacks. The measurement

program was written in C/C++ using the Boost5 library and

the APIs of the sensors and interface devices for CAN. It

is thread-based for simultaneous event-based reading of all

sensors. In consequence of the asynchronous transmission

of the sensor data, it is necessary that all functions which

collect measurements are running in parallel. Otherwise it

cannot be avoided that sensor data capture is delayed, or

even data is lost. The principal structure of the program

has been adopted from [8] whereas now each sensor is as-

signed to its own thread, which waits in a loop for incoming

data. After the reception of data, the current kernel time is

determined and the difference of the current time and a ref-

erence time (the start of the measurement program) is used

to calculate a time stamp of the incoming message which is

stored together with the sensor data. After reading the raw

data and calculating the time stamp of these messages, the

readings are converted in physical values with a given unit

of measure, e.g. [ms2] for acceleration or m
s for velocity. In

the next step the time stamp, a unique identifier describing

the sensor data and the converted data are written to a string

and stored temporarily in a thread-coupled FIFO memory.

Each sensor thread deals with the data like this. A round-

robin scheduled thread periodically reads out the FIFOs one

by one and stores the contained data strings in a CSV file.

3. Dataset structure
To the best of our knowledge, a standard file format for

the storage of large image sequences with additional syn-

chronized data such as IMU or GPS data has not been pro-

posed in the public yet. There are already available, related

storing methods such as the one used by ROS6, bag files,

which are capable of storing different kinds of data. We

considered to store the data as bag files, but this has severe

disadvantages, among which the fact that it is not stable on

all platforms and only fully supported for Ubuntu Linux.

Since ROS is needed to read the bag files, parts of the pro-

gram have to be ROS nodes. Furthermore, the data would

only be accessible through ROS topics. Hence a set of static

ROS message definitions and publisher would be needed

5http://www.boost.org/
6http://www.ros.org/

additionally to the bag file for describing the ROS message

structure and publishing the topics. This makes usage of

ROS less flexible here than our approach in terms of adding

new sensors. The major problem though, is the size of the

data. Due to the high data rates and the large number of

cameras, the bag files would be monolithic files with sev-

eral Gigabytes in size.

The format proposed here, the LiU Stream Format , in-

stead, handles such combined data recordings under the

constraints given by different file systems such as FAT32,

NTFS, ext3 and ext4, on which a storage of the dataset

should be possible. The images are stored as standard im-

age files in a hierarchical but transparent folder structure to

achieve a limited number of files per folder. The additional

sensor data are stored in linked binary files, called stream
files, organized as message blocks in temporal order. We

propose this format as an Open Source format and provide

APIs to read from it, as well as guidelines for expanding our

work.

3.1. Stream File

In the stream file, each message corresponds to one mea-

surement at a certain time and has a specific frame format

(Figure 4).

Figure 4. Format of a streamfile message

Each message consists of a header composed of three

fixed parts: a block start signal ($BST), an identifier and

a length variable. The block start is a unique character se-

quence to identify the begin of a message. It should not be

too long to waste memory and not to short to avoid mis-

matches with random data. The identifier, the ID, describes

the kind of message, i.e. the content of the message. Con-

nected to a certain ID is a specific message structure as well

as a specific sensor. Subsequent to the ID, the length of

the message payload in bytes is stored. The actual message

called payload follows; it is sensor- and user-dependent and

can vary from sensor to sensor. Payloads have been speci-

fied for the sensors we used so far. As an example, Table 2

shows the payload format for IMU recordings. This payload

is 80 byte long whereas the first 8 bytes are one unsigned int
value and each of the following 8 bytes are double values.

All message payload structures, their corresponding IDs

and additional information are described in a XML-file

which is used to initialize the reading of the stream file, but

serves also to describe the structure in a format accessible

to human readers, and finally allows also ID and message

pool expansion. This file is available together with the data

set and the API; see more in Section 4.

725725725731

Table 2. Structure of an IMU message payload with �a as a three

component vector �a = {ax, ay, az}
Order Description Data type Unit

1 Time stamp uint64 μs
2 Acceleration 3x double �a m/s2

3 Angular velocity 3x double �a deg/s
4 Magnetic flux density 3x double �a Gs

There are also message blocks for the beginning, the end

and also the linking of stream file parts. The stream file is

partitioned since the size of a stream file part has been lim-

ited. These meta data are not visible to the user; instead, by

usage of the API, several stream files will appear as one.

3.2. File organization

The structure and organization of the proposed stream

format is shown in Figure 5. Each stream of data, i.e. each

Figure 5. Hierarchical tree structure of the LiU stream format

test drive or dataset, corresponds to one root folder in the

topmost level of a hierarchical file/folder structure. This

root folder is named test in the example given by Fig. 5.

In the next layer, the dataset consists of several folders, but

at least two. There is always one folder containing the ac-

tual stream files, the stream folder, while the other folders

are representing the multi-cameras: each folder one multi-

camera. A multi-camera is a camera, which may have more

than one optical sensor or camera, e.g. the Ladybug 3 ap-

pears as a multi-camera with six cameras. The name of

those multicam folders are the unique identification num-

bers of the multi-cameras. Each single camera of a multi-

camera is associated with its own folder camxx in the cor-

responding multi-camera folder where the x are placehold-

ers for the number of the camera with leading zeros. This

folder contains all images recorded by this camera, each one

stored as single image file in the Portable Networks Graph-

ics (PNG) format. Two levels of sub-folders deeper in each

cam folder, the images are stored. Each folder and image

has a name consisting of a 3-digit number, beginning with

000 ending with 999. With this naming convention it is pos-

sible to store up 1.000 elements in each folder. This choice

is due both to avoid possible limitations imposed by file

systems and to make browsing through the directory struc-

ture painless as loading a directory containing hundreds of

thousands of images can be challenging even for modern

systems. The composition of an image path of an image

with a given number is easily done with this structure with-

out providing more information than the image number and

the multi-camera which captured the image. This makes an

image-only reading possible.

It is important to mention that there has to be the same

number of images for every camera. That would mean that

every image with the image number 0 would be an image

recorded at a certain time by all cameras of a corresponding

multi-camera, i.e. the images are synchronously recorded.

The stream file parts are saved in the stream folder. To

match the constraints set by some file systems, e.g. FAT32,

which has a limited file size of 4 GB, the maximum size of

a file was set to 2 GB. The stream file parts are stored in a

folder tree in the stream folder. The structure of the stream

folder and the underlying folders, called streamfile folders,

is quite similar to the structure of the image folders. The

stream folder consists out of up to 1.000 stream file folders

named with the convention szzz with each z being a sin-

gle digit. The single character ’s’ is a constant character

to show that this folder contains stream file parts. In each

stream file folder, the stream file parts are stored. The nam-

ing follows the same guidelines as for images, but the file

type is .uuu. Each folder can contain up to 1.000 stream file

parts and in total the system allows up to 1.000.000 stream

file parts per project.

3.3. StreamReader

Since the structure of the data storage is complex, it is

necessary to have suitable interfaces to read the data and ac-

cess the sensor recordings and images. Therefore a Stream-
Reader API was developed, which facilitates the reading

of stream files and delivers the information stored in the

files, but also provides a simple interface to the images to

make the structure transparent again. This API was writ-

ten in C/C++ for simple integration in common frameworks

e.g. OpenCV7, but was also ported to Python and Matlab

for rapid prototyping applications. Another port allows the

integration of the StreamReader in ROS.

While reading the stream file, it is possible to set a filter

which only returns wanted information while neglecting un-

7http://www.opencv.org/

726726726732

wanted ones. Another possibility is an image-only reading

if the interest is focused on visual data, since the image path

depends only on the image and camera number.

Besides the API and the datasets, two XML files are needed:

one containing all available IDs and messages, their struc-

tures and their corresponding IDs and a second one which

stores the paths to the dataset and to the first XML file and

is used to initialize the StreamReader.

4. Data access
The present dataset consists of 7 sequences which have

been recorded in different environments, traffic situations

and test paths. Two sequences provide several loop closure

situations, whereas the others have been recorded on main

streets with both low and higher traffic volume. A short

description of all 7 sequences is given in Table 3.

Table 3. Recorded sequences

Name Length # Frames Size Specifics

Seq1 0.7km 4180 45 GB loop closing

Seq2 2.9km 9826 106 GB medium traffic

Seq3 1.4km 6689 72 GB loop closing

Seq4 4.6km 21912 236 GB rush hour

Seq5 ca. 1.4km 6469 70 GB low traffic

Seq6 ca. 4.3km 19487 210 GB snow on lens

high traffic

Seq7 ca. 9.1km 39830 430 GB long sequence

Figure 7 shows example images of the five horizontal

cameras (the one pointing upward was disregarded). The

images are stored in Bayer format in order to achieve a min-

imum of redundancy and information loss. Example traffic

situations from the dataset are shown in Fig. 8 as panoramic

images composed from single images with the Point Grey

Ladybug 3 SDK. Figure 6 shows examples of the recordings

of the GPS, velocity sensor and IMU (yaw rate) of a similar

sequence where the car has been driven three laps around a

building.

The APIs for the mentioned programming languages

(C/C++, Matlab, Python and as ROS node) and the tech-

nical documentation are made available together with the

sequences. The documentation contains

• a description of the sequences,

• a detailed sketch of the experimental setup,

• a camera calibration parameter file,

• a detailed description of the stream format,

• a description of the APIs functions and

• a list of IDs and message structures.

All these details are publicly available on our website 8.

8http://www.cvl.isy.liu.se/research/datasets/must

Figure 6. Sensor recordings: GPS recordings (top), Speed data

from velocity sensor (middle), Yaw rate from IMU (bottom)

Figure 7. Sample images showing the surrounding of the car

The size of the data recorded so far does not allow us to pub-

lish all sequences on a website. However, short sample se-

quences can be downloaded from the website, and instruc-

tions on how to obtain the full dataset are provided there as

well.

5. Concluding remarks
In this work, we presented two contributions which will

help to advance the technology of visual environment sens-

ing for vehicles. The first contribution is the publication

727727727733

Figure 8. Scenes with different traffic and weather conditions as stitched and clipped panoramic images

of sequences recorded with our experimental car, which al-

lows the community to test and prototype multi-sensor data

processing procedures even without having access to an ex-

perimental vehicle and the recording hardware. The sec-

ond contribution is a by-product of our dataset: a versatile

multi-purpose dataset API, which allows to record and re-

produce asynchronous time stamped multi-sensor data, in-

cluding multiple cameras.

Benchmark testing of methods that use asynchronous

time stamped multi-sensor data can be done in a quasi-

standardized way in different research groups. In the long

run, this may support the circulation of methods which have

been tested under truly realistic situations, and which actu-

ally make the leap from an academic development environ-

ment into real systems. We hope that other groups will ex-

tend the pool of datasets using their vehicles, sensors and

cameras. The proposed scheme for organizing the data in

general stream files supports the idea that other groups pro-

vide similar data in a compatible format.

Future work

The presented sequences are larger than most existing

ones today, but there is a need for even more extensive data

and we will record more datasets from diverse real traffic

situations in various weather, surrounding and traffic condi-

tions. We also plan, in the future, to increase sensor redun-

dancy in our data for both egomotion and surround sensing,

with the aim of allowing a more precise ground truth extrac-

tion. Parts of this data, with an emphasis on long sequences,

will be made available to the scientific community.

Acknowledgments

This work has been funded by the Swedish Excellence

Center at Linköping - Lund in Information Technology

(ELLIIT) and the Linnaeus research environment for Con-

trol, Autonomy and Decision-making in Complex Systems

(CADICS) at Linköping University.

References
[1] J.-L. Blanco, F.-A. Moreno, and J. González. A collection

of outdoor robotic datasets with centimeter-accuracy ground

truth. Autonomous Robots, 27(4):327–351, November 2009.

[2] J. Y. Bouguet. Camera calibration toolbox for Matlab, 2008.

[3] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

Computer Vision and Pattern Recognition (CVPR), Provi-

dence, USA, June 2012.

[4] G. Pandey, J. R. McBride, and R. M. Eustice. Ford campus

vision and lidar data set. International Journal of Robotics
Research, 30(13):1543–1552, November 2011.

[5] D. Scharstein and R. Szeliski. High-accuracy stereo depth

maps using structured light. In Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Soci-
ety Conference on, volume 1, pages I–195. IEEE, 2003.

[6] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman.

The new college vision and laser data set. The International
Journal of Robotics Research, 28(5):595–599, May 2009.

[7] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular vi-

sual odometry in urban environments using an omnidirec-

tional camera. In Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS08), 2008.

[8] J. Wiklund, K. Nordberg, and M. Felsberg. Software architec-

ture and middleware for artificial cognitive systems. In Inter-
national Conference on Cognitive Systems, 2010.

728728728734

