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Abstract

In this paper we consider the problem of face recogni-

tion in imagery captured in uncooperative environments us-

ing PTZ cameras. For each subject enrolled in the gallery,

we acquire a high-resolution 3D model from which we gen-

erate a series of rendered face images of varying viewpoint.

The result of regularly sampling face pose for all subjects

is a redundant basis that over represents each target. To

recognize an unknown probe image, we perform a sparse

reconstruction of SIFT features extracted from the probe

using a basis of SIFT features from the gallery. While di-

rectly collecting images over varying pose for all enrolled

subjects is prohibitive at enrollment, the use of high speed,

3D acquisition systems allows our face recognition system

to quickly acquire a single model, and generate synthetic

views offline. Finally we show, using two publicly available

datasets, how our approach performs when using rendered

gallery images to recognize 2D rendered probe images and

2D probe images acquired using PTZ cameras.

1. Introduction

Automatic face recognition is one of the classic, fun-

damental problems in the computer vision community. In

recent years even more effort has gone into studying tech-

niques and systems for accurately modeling facial appear-

ance and for recognizing faces in diverse environments [14].

A general statement of the automatic face recognition prob-

lem, from a computer vision standpoint, can be formulated

as follows: given a probe image or video of a scene, ver-

ify the identity of one or more of the persons in it using

stored gallery of known individuals. Despite its long his-

tory as a central problem in computer vision, face recog-

nition remains a subject of great practical and theoretical

interest [14].

The basic process of face recognition consists of:

• Enrollment of individuals in the gallery of known

people. Enrollment usually takes the form of the cap-

Figure 1. Synthetic data generation process: given a 3D model,

we sample the yaw angle by rendering 25 poses. The highlighted

camera gives the facial image shown in top right corner.

ture of a sequence of high resolution images of each

person, or a 3D model of each face if the system is de-

signed for recognition of 3D probe images. A critical

point for applicability of face recognition systems in

practice is that enrollment be as efficient as possible.

• Learning of discriminative or generative models of

gallery subjects to be used for later recognition of faces

in probe images. A variety of methods can be used for

this stage, and in case of 3D face recognition the learn-

ing process often involves the estimation of an average

3D face that will be used to register probe image faces

at recognition time.

• Recognition of unknown individuals in probe images.

In this phase unknown faces in probe images are clas-

sified using models learned on the gallery image set.

There are also myriad recognition scenarios, though

they can be coarsely categorized into cooperative and

uncooperative scenarios. In cooperative scenarios the

unknown person is assumed to actively submit to fa-

cial image capture at recognition time and the result-

ing probe images are usually frontal and of very high

quality. In uncooperative scenarios, recognition is pas-

sive and probe images must be captured using passive

sensors in the environment. As with enrollment, it
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is important that recognition be as efficient and non-

intrusive as possible.

In this paper we take a hybrid approach that exploits

3D face models to recognize faces in PTZ camera imagery.

From a high resolution 3D model of faces, we artificially

generate multiple views of each subject by rendering the en-

rolled 3D models from varying viewpoints. The acquisition

process for rendered 2D model views is illustrated in Fig. 1.

From these rendered face images we extract SIFT descrip-

tors at salient image positions, and, rather than quantizing

these descriptors against a visual vocabulary, we then repre-

sent each individual as an unordered bag of SIFT features.

By varying the viewpoint of subjects in the gallery, we re-

duce the need for frontal face imagery for use as probes.

Probe images are also represented as unordered bags of

SIFT features, and recognition is performed through sparse

reconstruction of probe image features from gallery image

features. The use of sparse reconstruction allows our ap-

proach to leverage the multiple views of each subject in the

reconstruction of unknown probe images.

In the next Section we discuss work related to face recog-

nition and sparse discriminative classifiers. In Section 3

we describe how we acquire high-resolution 3D models of

gallery subjects, generate rendered images from multiple

viewpoints of each, and finally classify unknown probe im-

ages using these rendered views. We describe a series of

experiments performed on two face datasets in Section 4,

and finally conclude with a discussion of ongoing work in

Section 5.

2. Related Work

In this section we briefly review the literature on hy-

brid recognition approaches, by which we mean automatic

recognition systems using both 3D and 2D face data. For

a more thorough survey of face recognition in general,

the interested reader should consult the excellent reviews

in [1, 17].

The method in [5] estimates 3D shape and texture of

faces from single images. Rather than directly acquiring

a 3D model from faces at enrollment, an estimate of a 3D

face model is computed by fitting a morphable 3D model,

learned from a set of textured 3D scans of faces, to images.

Recognition is performed by matching the shape and tex-

ture information after fitting the 2D probe images to the 3D

model.

In [9] the authors propose a method for view and pose

invariant face recognition that combines component-based

recognition and 3D morphable models. The approach first

uses a 3D morphable model to generate 3D face models

from only two input images of each person enrolled in the

gallery database. By rendering the 3D models under vary-

ing pose and illumination conditions they create a large

number of synthetic face images which are used to train a

component-based face recognition system. Differently from

our approach they generate a coarse 3D model from two

2D views of face and perform a two stage classification in

which they first individuate the face component in the test

image using an SVM classifier then detect the configuration

of components to feed a geometric classifier.

The authors of [6] propose a face recognition solution

combining both 2D and 3D face data. They develop a

PCA-based approach tuned separately for 2D and for 3D.

A multi-modal decision is obtained by first matching a 2D

probe against the 2D gallery, and then the 3D probe against

the 3D gallery. A confidence is computed for the 2D and

3D recognition scores and these confidences are used as

weights in the sum of distances to obtain final classifica-

tion score. Unlike our approach they use both 3D and 2D

images in both the probe and gallery sets and only use the

texture information of the 3D model as 2D views.

In [13] the authors propose a method to learn a person

detector from synthetic data generated from virtual scenar-

ios. More specifically, they record training sequences in

virtual scenarios to learn an appearance-based pedestrian

classifiers based on HOG and linear SVM. By testing the

learned model on images containing real pedestrians they

demonstrate that is possible to learn a model for detection

also from synthetic data. One of the objectives of our work

is to extend this approach from detection to recognition

tasks by generating synthetic views from high resolution 3D

models of faces.

The �1-regularized sparse basis expansion has been used

in literature to perform person recognition on well-cropped

2D face images coming from the same source. In particular,

Wright et al. [16] show how sparse representation can be

used as a powerful classification tool for face recognition.

This approach has been extended several times, integrating

correntropy [8] and kernel-based sparse reconstruction [10].

Elhamifar and Vidal [7] extend the Sparse Discriminative

Classifier of [16] by constraining the method to find a rep-

resentation of a test example using the minimum number of

blocks from the dictionary (each block corresponds to mul-

tiple instances of the same subject).

3. 2D Face Recognition from 3D Models

In this Section we describe our approach to hybrid

2D/3D face recognition. The first step in our approach is the

acquisition of high resolution 3D models of each individual

enrolled in the gallery, and then the synthetic generation of

multiple 2D views of each individual. The final step is face

recognition using the synthetic redundant basis to identify

the probe.
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3.1. 2D Face Synthesis and Feature Extraction

A high resolution 3D model for each individual is

quickly acquired at enrollment using a 3D scanner. From

each model we artificially generate n synthetic images

across varying viewpoints. These images of the i-th person

in the gallery are:

Ii =
{
u1

i , u
2

i , . . . , u
n
i

}
, for i ∈ [1, . . . , P ] . (1)

In principle, the rendered images of each subject can be gen-

erated by varying both the yaw and pitch of each 3D model,

and also by varying the illumination direction and illumi-

nant. In this work, however, we consider only varying yaw

angle for generating synthetic 2D images of each subject.

We generate views by uniformly sampling 25 yaw angles in

the range [−90◦,+90◦]. This process is illustrated in Fig. 1.

The final representation of individuals is an unordered

bag of SIFT descriptors calculated at salient image points

identified using a Harris-Laplace corner detector. The Bag

of Features corresponding to the i-th person in the gallery:

Xi =
{
x
1

i ,x
2

i , . . . ,x
ni

i

}
, for i ∈ [1, . . . , P ] ,

where each x
j
i is the j-th SIFT descriptor extracted from the

images of the i-th gallery individual. To simplify notation

we do not use an index on SIFT features to indicate from

which image X comes.

In Fig. 2 we illustrate some of the rendered images de-

rived from a model in the Florence 2D/3D face dataset.

Note the high quality of the resulting images, which is due

to the very high resolution of the models in the dataset (each

model has around 70,000 facets, and a 4MPixel texture, on

average).

Feature extraction from probe images is performed in a

similar fashion, though of course without the synthesis pro-

cess from 3D models. Assume we have a probe image that

contains a face region corresponding to a single individual.

We use the Viola-Jones face detector [15] to identify frontal

and profile faces [2]; then we extract SIFT descriptors at

salient points identified with the Harris-Laplace corner de-

tector in the detected face region. The probe image is rep-

resented as a bag of SIFT features:

Z = {z1, z2, . . . , zm} , (2)

where zj is the j-th SIFT descriptor extracted from the

probe image.

3.2. Face Recognition by Sparse Reconstruction

Given the gallery representation as bags of unordered

SIFT features Xi and a probe image Z , also represented

as a bag of SIFT features, we perform face recognition us-

ing a sparse discriminative classifier, similar to that of [16].

We start by computing a �1-regularized sparse basis expan-

sion of each probe SIFT zi as a sparse linear combination

of SIFT descriptors in X :

Â = argmin
A

||Z−XA||2 + λ||A||1, (3)

where X is a column-wise concatenation of all gallery

SIFT features from all Xi, and thus is a matrix of size

128×
∑P

i=1
ni, and Z is similarly a column-wise concate-

nation of the m SIFT points from the probe image (and thus

a matrix of size 128 × m). Despite the potentially large

number of SIFT points (especially in the gallery), there ex-

ist very efficient techniques for solving these types of �1-

regularized reconstruction problems [12]. We discovered a

good value for λ to be 0.1 and fixed this value for all the

experiments.

To perform classification, we examine the reconstruc-

tion error obtained by limiting the basis expansion to SIFT

points extracted from gallery images corresponding to a sin-

gle individual:

εi = ||Z−XIiÂ||2, for i ∈ {1, . . . , P} , (4)

where Ii is a diagonal matrix with ones on the diagonal cor-

responding to SIFT descriptors in X extracted from images

of subject i, and zeros everywhere else. This matrix effec-

tively selects only those coefficients in the solution matrix

Â that correspond to the i-th person in the gallery. The

identity of the probe image is classified as the one yielding

the lowest overall error εi.

If we have multiple probe images of each subject, we

apply the method described above for each image and ac-

cumulate the reconstruction errors across all probe images.

Then we assign the identity to the person by taking the min-

imum of the ratio between the probe image yielding mini-

mum reconstruction error and the probe image yielding the

second best reconstruction error.

4. Experimental Results

In this section we report on a variety of experiments we

performed on two face datasets. For each experiment we

define the number of tested images per subject as N , while

the number of images per subject in the gallery is M . We

evaluate our approach using two test modalities:

• Single image vs Multi image: considering each sin-

gle image in the probe tested independently (N = 1),

and having multiple images per subject in the gallery

(M > 1 ).

• Multi image vs Multi image: using multiple images in

the probe (N > 1) in addition to multiple gallery im-

ages (M > 1), modeling scenarios in which multiple

face images of the same subject can be reliably associ-

ated.
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Figure 2. 2D face views synthesized from the 3D model. Images are generated by varying the yaw angle of the 3D model rendering a 2D

image.

Figure 3. Some of the 2D face views obtained from a PTZ camera at different level of zoom.

We express the performance figures of our approach in term

of ROC (Receiver Operating Characteristic) curves and by

reporting the Recognition Rate at First Rank.

4.1. Experiments on 2D Images

The first set of experiments we performed was on the

FacePix dataset of 2D face images [11]. This dataset is par-

ticularly appropriate for testing the central idea of our ap-

proach since each subject has been directly imaged under a

variety of poses and illumination conditions. In particular,

the FacePix dataset provides facial poses for each subject

from +90◦to -90◦at increments of one degree. This results

in 181 images per subject considering only pose variations.

In this experiment both the gallery and the probe sets

contain real 2D images from the same dataset. The objec-

tive of this experiment is to show the ability of our approach

to scale with respect to the number of images present in the

gallery and to validate our belief that a redundant gallery

can provide excellent recognition performance. We perform

2-fold cross validation considering all the images per sub-

ject where the pose ranges from -90◦to +90◦. After select-

ing these poses, we vary the number of images in the gallery

by sampling the pose.

The results of our approach are shown in Fig. 4. The

ROC curves represent the improvement in performance over

varying numbers of images in the gallery M = {3, 6, 12}.
The probe images are tested independently of each other

using the Single image vs Multi image modality, and thus

N = 1. Considering the number of images in the gallery,

our method achieves recognition rates at first rank of 75.9%

with M = 3, 92.2% with M = 6 and 98.5% with M = 12.

These results indicate, as expected, that given enough vari-

ety in samples of each individual, high classification accu-

racy can be achieved.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Acceptance Rate

R
ec

og
ni

tio
n 

R
at

e

ROC curve − Facepix

 

 

M = 12
M = 6
M = 3

Figure 4. ROC curves for face recognition on FacePix. The dif-

ferent curves represent different numbers of gallery images per

subject (M ).

4.2. Experiments on Rendered 2D Images

For these experiments we use the 3D models from the

Florence 2D/3D Face Dataset [3]. The models in the

database are raw 3D meshes along with associated textures.

In order to asses the potential of our approach, we dupli-

cate the FacePix experimental scenario with face imagery

renderd using the 3D models from the Florence dataset. We

rendered images from 22 of the subjects of this dataset using

the approach described in Section 3.1. Sampling 25 yaw an-

gles per subject, we obtain a gallery of 550 images. On this

dataset we perform again 2-fold cross validation by vary-

ing the number of images per subject in the gallery in the

range M = {2, 3, 13}. The rendered images are very simi-

lar to each other and face recognition performance saturates

quickly. We achieve excellent recognition accuracy when

considering half of the images (M = 13) in the gallery set

per subject. The probe images are tested independently of
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each other in the Single image vs Multi images modality,

and thus N = 1. The ROC curves for these experiments

are given in Fig. 5(a). Varying the number of images in the

gallery, we obtain recognition rates of 66.6% with M = 2,

84.0% with M = 3 and 100% with M = 13.

4.3. Rendered 2D Gallery versus 2D Probes

In this Section we report preliminary experimental re-

sults on face recognition in a video streams from the Flo-

rence 2D/3D Face Dataset captured from a PTZ camera

viewing one person, as shown in Fig. 3. Recognition is per-

formed using a gallery of rendered images from 3D models

as described in Section 3.1. This scenario is very challeng-

ing considering that subjects were told to act naturally and

we are basically comparing multi-modal data: probes im-

aged by the PTZ camera, and gallery images rendered using

3D models.

In these experiments, we tried using both a single probe

image for test (N = 1), and multiple probe images (N >

1). In all these experiments we used the synthetic rendered

images as described in Section 3.1 as gallery, thus each sub-

ject has 25 images rendered across with varying yaw as

shown in Fig. 2.

Figure 6. Face recognition results. Left: the probe image to iden-

tify. Right: the most similar images in the gallery (from left to

right) in terms of the coefficient energy used the reconstruction

(IiÂ). Note that the face pose of the image with highest coeffi-

cient energy tends to be very similar to the pose of the subject in

the 2D image.

Single image vs Multi image. The performance using

single probe image per subject is shown in Fig. 5(b). In this

experiment we also attempted to quantify how the system

performs under zoom variation (given that zoom variations

affect the imaged face size) by sampling faces uniformly

across the entire PTZ sequence and hence including testing

probe images at difference zoom levels. In the legend of

Fig. 5(b) we report the average size of the faces in probe

images. In these ROC curves, there is little difference be-

tween the three sets of zoom levels, each achieving a recog-

nition rate between 20% and 28%. This is likely due to the

fact that other factors, such as facial expression and extreme

pose variation, affect accuracy more than variations in face

size.

In Fig. 6 we show four cases of true positive along with

the three most similar images from the gallery from left to

right. Note the probe images are captured “in the wild” with

expressions, large pose variations and motion blur. It is in-

teresting to note that most similar face image in the probe

usually has a face pose similar to that of the face in the im-

age.

Multi image vs Multi image. In this experiment we eval-

uate the performance of our approach using multiple images

in the probe. This assumption of multiple images in the

probe is well known in literature for person re-identification

[4] and it seems also a reasonable assumption in real world

scenarios if we consider a tracker that can track and sched-

ule a PTZ camera to follow the target face [2].

In Fig. 5(c) we report the performance of our approach

over varying number of images used in the probe (N > 1).

From this figure we see that using more than one image to

describe an unknown person improves overall accuracy. In

particular just considering N = 7 we outperform the Single

image vs Multi image approach, with a recognition rate of

31.8%. If we continue to add images from the video stream,

the chance of get the right person goes up to 36.3% with

N = 10 and to 45.5% with N = 15.

5. Conclusions and Future Work

In this paper we described a hybrid approach to face

recognition that uses rendered images of 3D models to form

a gallery of images with varying pose for each enrolled sub-

ject. SIFT feature descriptors are extracted from these im-

ages and form a bag of features representing each gallery

image. Probe images are similarly represented as unordered

bags of SIFT descriptors. An �1-regularized reconstruction

of probe image descriptors is used to derive a sparse dis-

criminative classifier that effectively incorporates the infor-

mation present in multiple views into the recognition pro-

cess. An advantage of our approach is that no discrimina-

tive model is learned and adding new subjects to the gallery

requires only concatenation of SIFT features to the existing

gallery.

Experiments on a standard 2D face dataset demonstrate

that our approach is very effective when very many views

of each subject are incorporated into the gallery, and simi-

lar experiments on rendered 2D images for both gallery and
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(c)

Figure 5. ROC curves showing performance on the Florence 2D/3D Face Dataset: each curve represents a result in function of (a) number

of images (M ) per subject in the gallery when recognizing 2D rendered images (b) the image size when recognizing face imagery from a

PTZ camera (c) and of the number of images (N ) present in the probe when recognizing face imagery from a PTZ camera

probe show that the approach generalizes to synthetic im-

agery as well. Experiments on recognizing real 2D face

imagery using rendered gallery images show promising re-

sults, particularly when incorporating multiple probe im-

ages per subject.

Our ongoing work is related to determining the best

face images to extract from PTZ sequences and quantifying

more conclusively how performance is affected by varying

face resolution and quality. We are also looking at better

ways of structuring SIFT descriptors in the gallery (for ex-

ample according to pose) and of structuring sparse solutions

in discriminative ways (for example using the group lasso).
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