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Abstract

People are often seen together. We use this simple ob-
servation to provide crucial additional information and in-
crease the robustness of a video tracker. The goal of this
paper is to show how, in situations where offline training
data is not available, a social behavior model (SBM) can be
inferred online and then integrated within the tracking algo-
rithm. We start with tracklets (short term confident tracks)
obtained using an existing tracker. The SBM, a graphical
model, captures the spatio-temporal relationships between
the tracklets and is learned online from the video. The fi-
nal probability of association between the tracklets is ob-
tained by a combination of individual target characteristics
(e.g., their appearance), as well as the learned relationship
model between them. The entire system is causal whereby
the results at any given time depend only upon the part of
the video already observed. Experimental results on three
state-of-the-art datasets show that, without having access
to any offline training data or the entire test video a pri-
ori (conditions that may be restrictive for many application
domains), our proposed method obtains results similar to
those that do impose the above conditions.

1. Introduction
Robust multi-target tracking is a fundamental task for

automated video content analysis and remains a challeng-

ing problem. A popular recent approach has been to gen-

erate tracklets (short-term tracks), which can be done reli-

ably using many existing tracking methods, and then com-

puting associations between them to obtain longer tracks

[10, 22, 25, 27]. Though great progress has been made, tar-

gets with similar appearance or under high clutter still limit

the performance of current tracking systems. Since groups

of people often walk together and affect each others behav-

ior (e.g., two people walking together can be expected to be

seen together in the near future), robust tracking schemes

should consider this aspect. This requires development of

mathematical models that represent the social interactions

between people and incorporation of these models into the

tracklet association schemes. Similar to [7, 19], we term

such models as “social behavior models” (SBMs).

In many application domains, the tracker needs to work

without the advantage of having seen videos captured under

similar circumstances from which the SBMs can be learned

a priori (as in [15, 21, 26]). This implies that the SBMs need

to be learned online. In this paper, we focus on the problem

of obtaining robust, long-term tracks by exploiting the be-

haviors between the individual targets in situations where

the above-mentioned constraints are imposed. We learn the

parameters of the SBM model online, and then integrate it

within the scheme for tracklet association. Our proposed

method is causal unlike [18, 25] which are batch process-

ing approaches (they tradeoff causality for improved perfor-

mance, which is possible in off-line application scenarios).

We show results on multiple publicly available datasets and

demonstrate that without having access to any offline train-

ing data or the entire test video a priori (conditions that

are restrictive for many application domains), our proposed

method obtains results similar to or better than those that do

impose the above conditions.

In building our SBM model, we exploit both the spatial

and temporal information between neighboring targets. As

an example, consider Fig. 1. The upper row shows the re-

sults of the tracking with the SBM, while the lower ones

shows the result of the same tracker without the SBM. In

the third frame of the lower row, it is seen that an ID switch

happens because two people with very similar appearances

are seen close together. However, in the upper row, the

SBM captures the information that there was a group of

three people (shown with the circle) and one separate indi-

vidual. When the appearance information is combined with

this group information, the overall accuracy of the tracking

improves. Therefore, it can be said that, in our framework

all the targets act as a “spatial-temporal” context to each

other. This leads to the joint estimation of the associations

between all the targets.

An overview of the framework is given in Fig. 2. We

first use a state-of-art detector [8] to detect persons in each

frame. The input to our algorithm are the tracklets gen-

erated by a basic tracker using a particle filtering method.
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Figure 1. Illustration of how SBM works. The pink circle represents a group of people. The dotted lines represent their walking paths. The

first row shows that considering the walking behavior in the group (inside the pink circle), the tracking results are correct. The second row

shows the independent estimation of individual target tracks yields wrong association results.

Our algorithm associates the short term tracklets to form

long term tracks by finding the best similarity between the

tracklets. The similarity computation has two parts: an in-

dividual tracklet affinity model, and the learned SBM that

considers the spatio-temporal motion relationships between

multiple tracklets (as described in detail below). The model

parameters are learned online using a belief propagation

framework. We show experimental results on multiple pub-

licly available datasets and clearly describe the improve-

ments generated by using the SBM.

2. Related Work
We briefly review the most relevant papers so as to bet-

ter explain the contribution of the proposed approach. One

of the most popular recent class of methods has been Data

Association based Tracking (DAT), in which there are two

main components: a tracklet affinity model and the associ-

ation optimization framework. The tracklet affinity models

can be divided into two classes: those using only past obser-

vations to estimate the current state (online method) [4, 6]

and those using both past and future information to estimate

the current state (batch method) [25, 30]. The methodology

for computing the associations relies on minimizing a de-

fined cost function using existing approaches, e.g. Linear

Programming [12] and Markov Chain Monte Carlo [22].

The accuracy of the above methods is dependent on how

reliably they can compute the affinity scores between the

tracklets, and many researchers have looked at this prob-

lem. The authors in [10] have described a hierarchical asso-

ciation framework to link tracklets into longer ones, while

[4] uses dynamic feature selection. The method in [24] is

designed to exploit image appearance cues to prevent iden-

tity switches.

The use of context in tracking is being actively explored

currently. The paper [9] makes use of local image features

to vote for the object positions. These features are learned

online to find “supporters” of the target. The authors in [29]

define “auxiliary objects” based on data mining techniques.

Our proposed method uses the other tracked targets in the

scene as context information rather than trying to extract

new information from the images. This notion of context is

based on the dynamics of the targets and is the reason why

we use the term “social behavior” to describe it. The use of

tracklets acting as each others context information has the

advantage that it can be used even when it is difficult to find

other “supporting” objects in the scene. A typical exam-

ple is a multi-camera setup where the background objects

can change significantly between the views, but the social

relationships can remain intact. It is possible to consider a

future scheme that combines both these notions of context

into a single framework, but that is beyond the scope of this

paper.

Multiple researchers have proposed various behavior

models in other applications [19], and some of these have

been applied to tracking. The parameter learning of SBMs

can be divided into two categories - offline learning and

online learning. In the offline learning category, [21] was

possibly the first to consider incorporating social behav-

ior models into tracking. Their model was built on avoid-

ing collisions when people are walking and was incorpo-

rated into the search mechanism for tracking. Our proposed

method considers a different scenario by modeling the prob-

ability that people will stay together. Thus, their models are

complimentary to ours. The work in [26] can be seen as an

extension of [21], which combines several factors that im-

pact how a person walks, including the presence of other

people. The goal of [26] was on target position prediction

while ours is on data association between multiple targets.

The recent work [23] describes a method for forming groups

for better tracking given that the entire video is available,

while [20] requires a certain amount of latency but not the

entire time window. The use of the SBMs in our method

goes beyond simple grouping since it combines the groups

with inter- and intra-person characteristics for more accu-
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Figure 2. Overview of proposed approach

rate association. The work [15] also use the idea of group-

ing targets where the parameters are learned offline. A key

difference of all these approaches with the proposed work

is that we present a method where the relationship model is

learned online.

In the set of papers that learn a relationship model online,

[17] considers a problem similar to [21] with a complex per-

son interaction model. As mentioned above, pairwise con-

text information is ignored in this paper and it is compli-

mentary to the proposed method. The recent paper [5] men-

tioned exploiting the pairwise relationships between people

and proposed a simple model for this purpose. A pairwise

model for inter-person activities is considered in [28]; the

scheme for computing the affinities between detected tar-

gets is a two-step process. At first, a preliminary tracklet as-

sociation is computed based on the appearance and motion

similarities between individual targets and then switches are

made to the association based on the pairwise relations. The

two-step optimization strategy is similar to [25] in the sense

that they also, preliminarily, associate tracklets based on ap-

pearance information and then exploit the smoothness of

features along a long track to correct wrong associations.

For both cases, the results after the first step are the global

optimums that can be obtained with the set of features used

in this step. This is due to use of the Hungarian algorithm in

this step. However, the ultimate association results may not

be the global optimum for the combined features as the as-

sociation is being altered through the second set of features

and the optimization is run on the first set of features. We

combine the appearance based and the motion based fea-

tures via the SBM and run the Hungarian algorithm on the

combined score which guarantees the global optimum for

all the features. The recent work [7] provides a graphical

framework for modeling the social relationships of actions

that can be inferred from videos; however, this approach has

not been combined with tracking.

3. Social Behavior Model (SBM)

We begin by describing the construction of the SBM

based on the motion characteristics of the tracklets. Let us

consider two consecutive time windows, (T ) and (T + 1),
over which we need to find the associations between the

tracklets (Fig. 3(a)). Assuming there are p tracklets in (T )
and q in (T + 1), the goal of our model is to find the best

match between these two sets of tracklets. This is achieved

by considering not only the characteristics of the individual

tracklets, but also the motion relationship between pairs of

tracklets in (T ) and (T + 1). The underlying notion is to

compute the probability that two pairs of tracklets in (T )
and (T + 1) have similar motion characteristics (direction,

position, speed). The method does not require the tracklets

to cover the entire time window, i.e., they can be of varying

lengths, extending over multiple windows.

The SBM is represented as a graph G = (N,E), where

N is the set of the nodes of the graph and E is the set

of edges connecting the nodes (Fig. 3(b)). Each node, in

this graph, represents a pair of tracklets at different time

steps, i.e., Nij = (X (T )
i ,X (T+1)

j ). The weight of the node

represents the possibility that the two tracklets X (T )
i and

X (T+1)
j belong to the same target and is represented by

wn(X (T )
i ,X (T+1)

j ). The weight of the edge between two

nodes depicts the joint occurrence probability of the two

tracklets represented by the nodes. That is, if two nodes Nij

and Nmn have an edge of weight we(Nij , Nmn) between

them, then the probability that tracklet X (T )
i is connected to

X (T+1)
j and trackletX (T )

m is connected to trackletX (T+1)
n is

we(Nij , Nmn). In time window (T ), for any tracklet X (T )
i ,

we consider other nearby tracklets in the scene as context

information for this tracklet. Let us call these context track-

lets “supporting targets”, denoted by (X (T )
i )

−
. For a node

Nij , the set of nodes N−
ij are the supporting nodes of Nij .
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Table 1. Notation Table
Name Definition
(T ) time interval

(T + 1) another time interval after (T )
X a set of tracklets {X1,X2, · · · }
X (T )

i tracklet Xi in (T )

Nij

a node consists of a pair of tracklets

(X (T )
i ,X (T+1)

j )

papp(Nij)

the probability of association between

tracklets X (T )
i and X (T+1)

j

based on appearance similarity

pmotion(Nij)

the probability of association between

tracklets X (T )
i and X (T+1)

j

based on motion similarity

N−ij supporting nodes of Nij

(X (T )
i )

−
supporting targets of X (T )

i
we(Nij , Nmn) edge weight between nodes Nij and

Nmn

wn(X (T )
i ,X (T+1)

j ) node weight Nij

Fig. 3(b) shows a pictorial representation of the SBM for

a pair of tracklets X (T )
i and X (T+1)

j . The top layer of the

graph represents the set of supporting nodes for Nij , which

can be represented precisely as

N−
ij = {(X (T )

l ,X (T+1)
k )} where X (T )

l ∈ {(X(T ))}\X (T )
i }

and X (T+1)
k ∈ {(X(T+1))}\X (T+1)

j }.
(1)

Estimating the node and edge weights requires us to

model the walking behavior of groups of people. In the next

two sections, we explain how we mathematically model this

behavior as the edge weights. Fig. 4 shows a pictorial rep-

resentation of the process.

3.1. Computing Node Weights

To consider the motion characteristics of individual

tracklets X (T )
i and X (T+1)

j , we assume that each target

follows a mean straight line path over a short time pe-

riod. In our paper, we assume a constant velocity motion

model. Let us define the individual time instants corre-

sponding to the time windows as [t0, t1, · · · ] ∈ (T ) and

[t′0, t
′
1, · · · ] ∈ (T + 1). Let P tu

i be a point in the tracklet

X (T )
i and P

t′u
j be a point in X (T+1)

j . Defining the overhead

bar as the expectation operator, the relationship between the

two tracklets based on the velocity difference can be written

as:

Ev =

{
1, if Ṗ

(T )
i − Ṗ

(T+1)
j < δv,

εv, otherwise
(2)

where the first expectation is taken over ∀tu ∈ (T ) and the

second is taken over ∀t′u ∈ (T + 1). δv is a predefined

threshold of the velocity difference between two people and

εv is a small value. If Ev is small, then these two people

have a small probability of walking together.

Figure 3. SBM formulation. (a) shows several tracklets in (T ) and

(T + 1), (b) illustrates the graphical model where the weight of

each node is the independent estimation of probability of associa-

tion of two tracklets in two time windows. The weight on the edge

is based on the motion relationship between two pairs of tracklets.

We can also project ahead P tu
i according to the current

motion direction with time difference t′u − tu and find the

position difference between this projected point, P̂
t′u
i , and

P
t′u
j . The position of the projection point can be computed

as:

P̂
t′u
i = P tu

i + Ṗ tu
i · (t′u − tu). (3)

We can now compute the affinity between two tracklets

based on the position information as:

EP ∝ e−(P̂
t′u
i −P

t′u
j ) (4)

Combining (2) and (4), the node weight of Nij :

wn(Nij) ∝ Ev · EP (5)

Note that the idea in [21] can be incorporated into the

calculation of node weights when the two targets represent-

ing the two tracklets move towards each other. If two people

are not walking together but towards each other, our motion

model can switch to their model in those time windows for

those tracklets.

3.2. Computing Edge Weights

We consider two pairs of tracklets, (X (T )
i ,X (T+1)

j ) and

(X (T )
m ,X (T+1)

n ). In this subsection, the superscript (T ) and

(T+1) only consider the portion of tracklets overlapping in

time (See Fig. 4 (a)). We define S
(T )
i as a vector of all time

overlapping positions of X (T )
i , (see the red line of Fig. 4

(a)). Similarly, S
(T )
m is the corresponding part of X (T )

m . We

assume a linear motion model with parameters A(T ) and

B(T ) between them as:

S
(T )
i = S(T )

m ·A(T ) +B(T ), (6)

where S
(T )
i ∈ R

s×2, S
(T )
m ∈ R

s×2, A ∈ R
2×2 and B ∈

R
s×2.

We can obtain the least square estimate of A(T ) and B(T )

as:

Â(T ) =
[
(S(T )

m − S̄m
(T )

)T (S(T )
m − S̄m

(T )
)
]−1

· (S(T )
m − S̄m

(T )
)T (S

(T )
i − S̄i

(T )
)

(7)
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Figure 4. Pictorial representation of the notation used in (a) Sec. 2

and (b) Sec. 3. (a) corresponds to the Sec. 2 and (b) corresponds

to Sec. 3.

and

B̂(T ) = S
(T )
i − Â(T ) · S(T )

m . (8)

Using the above estimated parameters between two

tracklets in the time window (T ), we want to compare if this

linear model fits a pair of tracklets in the next time window

(T+1). The edge weight between Nij and Nmn is given by

the affinity between pairs of tracklets based on their motion

information:

we(Nij , Nmn) = c · exp{− 1

2σ2
· (S(T+1)

j − S(T+1)
n · Â(T )

− B̂(T ))T · (S(T+1)
j − S(T+1)

n · ˆA(T ) − B̂(T ))},
(9)

where c is a normalization factor and σ is the variance of

motion between tracklets.

4. Tracklet Association Framework
The overall tracklet association methodology combines

the appearance and motion similarity between individual

tracklets, as well as the similarity in the motion behavior

between all pairs of tracklets. Recall that the SBM cap-

tures the motion similarity between individual tracklets as

well as pairs of them. Therefore, we first show how to com-

pute similarity based on the SBM described above using the

max-product algorithm [3]. We then show how to obtain

the final set of tracks by combining the SBM-based simi-

larity with appearance information in a global optimization

framework.

4.1. SBM-based Tracklet Similarity Computation

Given that the node and the edge weights on the SBM

are established, we show how the max-product algorithm is

used for calculating the similarity between the tracklets.

The max-product algorithm is an efficient algorithm for

finding a set of values that jointly have the largest proba-

bility [3]. Using this knowledge, our goal is to find the

maximum probability of association of all pairs of tracklets.

In other words, to compute the probability of association

between X (T )
i and X (T+1)

j , we not only rely on the char-

acteristics of the tracklets (independent estimation of asso-

ciation), but also on those of their supporting nodes N−
ij .

The message is sent from one node to another, which is de-

noted by M . The way a message between two nodes can be

passed is given in the following steps.

Step 1: Message initialization. Without any prior

knowledge of the messages, we assume the messages sent

from one node are uniformly distributed.

Step 2: Message passing. After initialization, we

need to find the message sent from every element of the

set {(X (T )
i )

−
, (X (T+1)

j )
−} to (X (T )

i ,X (T+1)
j ). Similar to

the previous section, we assume that (X (T )
m ,X (T+1)

n ) ∈
{(X (T )

i )
−
, (X (T+1)

j )
−}, ∀m,n. We call this message pass-

ing process a “conversation”. The max-product algorithm

makes sure that this conversation stops after either conver-

gence (the message changing will be less than a small value)

or if the number of iterations of the “conversation” ex-

ceeds a predefined maximum iteration number. Given that

the neighbor of supporting nodes is independent of track-

ing nodes, the message sent from Nmn to Nij denoted by

Mmn−ij , is defined as:

Mmn−ij(Nmn) =max
Nmn

{wn(Nmn) · we(Nij , Nmn)

·
∏

l=(Nmn)
−\Nij

Mlr−ij},

(10)

where r is the index of supporting tracklet ofX (T+1)
n except

j. The messages pass from the supporting nodes Nmn to

Nij and this message is sent back to N−
mn.

The message passing scheme is shown in Fig. 4 (b). As

one target may serve as a supporting target for another tar-

get, there may be cycles in the graph. The loopy algorithm

(e.g. asynchronous message passing schedule) is shown in

[13] to achieve good results in practice. Even though there

is a way to deal with loopy belief propagation, we limit the

number of supporting targets to simplify the graph and re-

duce the computation. One example of implementation is

given in Sec. 5.

Step 3: Belief readout. We read out the belief of associ-

ating X (T )
i and X (T+1)

j by using the product of all possible

messages sent from Nmn to Nij to help modifying the in-

dependent association results. This is given by:

pmotion(Nij) ∝ wn(Nij) ·
∏
Nmn

Mmn−ij(Nmn). (11)

Thus the algorithm gives a weight between a pair of

tracklets by considering the relationships of this pair with

its neighbors through the passing of the messages.
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4.2. Appearance-based Tracklet Similarity Compu-
tation

The appearance information includes the color his-

togram (HSV space) and HOG feature. We use Bhat-

tacharyya distance to find the appearance correlation be-

tween two tracklets, which can then yield the appearance-

based similarity measure, papp.

4.3. Tracklet Association

By combining the above SBM-based probability with the

appearance similarity between tracklets, we can define the

overall optimization function for computing the similarity

between two tracklets using a weighted linear combination

as:

pfinal(Nij) =α · papp(Nij) + β · pmotion(Nij). (12)

α and β can be chosen as design parameters to decide on

whether to weight appearance or motion information. This

separation is intuitive and allows an user to easily set the

weights on each part based on the characteristics of the

video. Given the combined similarity scores, the final track-

let associations are computed using a bipartite matching

scheme [11]. We generate a new graph where a node repre-

sents a tracklet and the weights between nodes are the affin-

ity scores, pfinal between two tracklets. We split the begin-

ning and end of each tracklet into two subsets and build a

weighted bipartite graph with k nodes, where k is the num-

ber of tracklets. We generate a k×k matrix, where each col-

umn belongs to the tracklet end set and each row belongs to

the tracklet beginning set. The Hungarian Algorithm [11]

is used to find only one best match for each row and column

by minimizing the total cost.

The overall SBM-based tracking algorithm is given in

Algorithm 1.

5. Experimental Results
To evaluate the performance of our algorithm, we test

it on three different challenging datasets. The CAVIAR [1]

dataset is captured in a shopping mall corridor with high oc-

clusion, intersection and scale changes. The second dataset

is the TUD Crossing dataset [2], which is a street view of

pedestrians walking. The third one is the ETHZ central [16]

dataset, where pedestrians are far away from the camera and

people look very small.

There are different evaluation methods for multi-target

tracking. We adopt the evaluation metrics used in [14, 18,

25, 27] for comparison. The definition of each metric is the

same as these papers, where MT represents mostly tracked

trajectories, ML represents mostly lost trajectories, Frag

means fragments and IDS means ID switches.

In the implementation, we define a group model first.

That is, we use the motion information (i.e. position, ve-

Algorithm 1: Overview of the SBM-based Tracking

Algorithm

input : Tracklets

output: Associated tracklets

begin
build a graph G with nodes as pairs of tracklets

(Sec. 3)

calculate the weights of nodes wn(Nij) (Sec. 3.1)

while message passing between nodes does not
converge or stop at a predefined iteration number
do

consider one node Nij

for all neighbor nodes of Nij do
find out two pairs of tracklets in (T ) and

(T + 1), i.e. Nij , Nmn

Mmn−ij ← we(Nij , Nmn) (Equ. 10)

end
end
pmotion ←Mmn−ij (Equ. 11)

Update pfinal
Using Hungarian algorithm to find overall tracklet

association results.
end

locity, distance between targets, direction,time overlap) to

cluster the tracklets in each time window. Because the num-

ber of tracklets in each time window is known (generated

by a basic tracker), the clustering method is similar to [23],

where the K-means clustering algorithm is applied here to

get the clustering results. A cluster should have several tar-

gets with similar motion information; or in other words,

these targets have high possibility to walk together. For

example, assuming the number of tracklets is Nt, we can

reduce the number of targets in a cluster �Nt/Ng�, where

Ng is the number of clusters. The SBM considers relations

between tracklets in the same cluster.

The CAVIAR dataset is a very popular public dataset.

Especially in some video sequences, multiple people are

walking in a group or interacting with other people which

makes such sequences very challenging. Table 2 shows the

comparison between some state-of-art works which con-

tain HybridBoosted affinity modeling method [18], the

min-cost flow approach [30], online learned discriminative

appearance approach [14] and stochastic graph evolution

framework [25]. Please note that [18, 25, 30]assume all

the tracklets to be available and processes in batch mode

to get the current association, while we only use previous

and current observations in several time windows. Table 2

shows that our results are comparable to theirs even though

we use less information. Our method does not need future

observations and can be implemented as an on-line system.

We also compare our results to the method without SBM,
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and pictorial results are given in Fig. 5(a) and (b), where

(a) shows the results with some errors and (b) uses SBM to

correct them.

Table 2. Tracking results on the CAVIAR dataset. Results of [14,

18, 30] are reported on 20 sequences and [25] on 7 datasets which

is the same as ours. (the most challenging parts of the CAVIAR

dataset)

MT ML Fg IDS
Zhang et al. [30] 85.7% 3.6% 20 15

Li et al. [18] 84.6% 1.4% 17 11

Kuo et al. [14] 84.6% 0.7% 18 11

Song et al. [25] 84.0% 4.0% 6 8

Proposed method 85.3% 4.0% 7 7

We next show the results on the ETHZ central dataset

where the camera is far from the tracked targets. Thus the

people are very small in the scene. We demonstrate our

results compared to the model without SBM in Table 3.

Table 3. Tracking results on the ETHZ central dataset. The number

of fragments is reduced using the SBM.

MT ML Fg IDS
Without SBM 77.1% 14.3% 9 3

With SBM 82.9% 14.3% 6 3

The third dataset we use is the TUD crossing dataset

which has lot of interacting people. The results show that

we are able to improve the tracking results using SBM. We

are able to track all the visible people in the scene. The

pictorial results are shown in Fig. 5(c) and (d), where (c)

is before using SBM and (d) uses SBM. Both fragments

and ID switch can be reduced using SBM. [5] also shows

the results from this dataset, but they use different evalua-

tion metrics, so we are not able to compare our results with

theirs.

Table 4. Tracking results on TUD crossing dataset. The number of

fragments and ID switches is reduced using the SBM.

MT ML Fg IDS
Without SBM 85.7% 14.3% 4 4

With SBM 85.7% 14.3% 2 1

6. Conclusion

In this paper, we addressed the problem of tracking mul-

tiple targets by considering that people tend to walk together

in most scenarios. Assuming that we are able to generate

reasonable tracklets, we present a new tracklet association

approach considering both spatial and temporal relationship

between them. The spatio-temporal relationships are cap-

tured through a social behavior model. The method can be

extended to track objects other than people, e.g., cars on a

highway also have an inter-relationships which can be sim-

ilarly exploited. We compared our results to some state-

of-art works and demonstrated promising results on several

challenging datasets.
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Figure 5. Advantage of using SBM. (a) and (b) are results from one sequence of CAVIAR dataset. (a) shows the result using prediction

based affinity model without SBM, which contains several ID switches or fragments. (b) shows the result of our proposed method, with the

errors in (a) corrected. (c) and (d) are results from TUD crossing dataset.(d) uses the SBM correcting the wrong association results in (c).
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