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Abstract

In daily life, humans demonstrate astounding ability to
remember images they see on magazines, commercials, TV,
the web and so on, but automatic prediction of intrinsic
memorability of images using computer vision and machine
learning techniques was not investigated until a few years
ago. However, despite these recent advances, none of the
available approaches makes use of any attentional mecha-
nism, a fundamental aspect of human vision, which selects
relevant image regions for higher-level processing. Our
goal in this paper is to explore the role of visual attention
in understanding memorability of images. In particular, we
present an attention-driven spatial pooling strategy for im-
age memorability and show that the regions estimated by
bottom-up and object-level saliency maps are more effective
in predicting memorability than considering a fixed spatial
pyramid structure as in the previous studies.

1. Introduction
We humans have an astonishing ability to rapidly per-

ceive and understand complex visual scenes. When explor-

ing parts of a city that we have never visited before, glanc-

ing at the pages of a magazine or a newspaper, watching a

film on television or in a movie theatre, or the like, we are

constantly bombarded with a vast amount of visual informa-

tion, yet we are able to process this information and iden-

tify certain aspects of the scenes almost effortlessly [25, 27].

Humans also have an exceptional visual memory [29, 3] that

we can remember particular characteristics of the scenes

with ease even if we look at them only a few seconds [30].

Here, what is being remembered is considered nothing like

an identical representation of the scene itself but the gist of

it [33, 34]. Although there is no general agreement in the

literature about the contents of this “gist”, the most common

definitions include statistical properties of the scene such as

the distributions of basic features like color and orientation,

the structural information about the scene layout like the

spatial envelope of Torralba and Oliva [24], and the seman-

tic knowledge about the existing objects and their spatial

relationships.

It is intuitive that not all images are equally memorable.

We can recall some images surprisingly well whereas some

are lost in our minds. In [15], Isola et al. carried out the

first computational study about understanding the memora-

bility of images using computer vision and machine learn-

ing techniques. They quantified the memorability of 2222

photographs (See Figure 1) by performing experiments on

Amazon’s Mechanical Turk service to collect the rate at

which the workers detect a repeat presentation of the im-

ages. Then, they investigated the contributions of several

factors to memorability such as simple object statistics,

scene semantics and global image features, both of which

can be related to the aforementioned definitions of the ‘gist’

of a scene. The authors also showed that the memorability

of an image can be estimated reasonably well by a machine.

In a follow-up work [14], it was demonstrated that extend-

ing the previous framework to incorporate a set of human-

understandable visual attributes of scenes such as attractive-

ness, peacefulness, etc. further improves the predictions. In

a more recent study, Khosla et al. [20] proposed an algo-

rithm to estimate memorability of local image regions and

obtain memorability maps of images. They showed that

these local features, when combined with global features,

also increase the performance of memorability estimates.

As humans, we use attentional mechanisms to filter the

flow of sensory information and select only a small portion

of the visual stimuli in complex visual scenes for further

processing to perform higher level cognitive tasks in an ef-

ficient way. Despite the recent advances in understanding

image memorability from a computational viewpoint, the

available models do not make use of any such attentional

mechanism. In this study, we wanted to explore the role of

visual attention in understanding intrinsic memorability of

images. Specifically, we proposed a visual attention-driven

spatial pooling strategy and analyzed its contribution to pre-

dicting image memorability in detail. Our approach made

use of two complementary feature pooling schemes which

are both related to visual attention. First, we investigated se-

lecting features only from the most salient regions of the im-

ages determined according to a recently proposed bottom-
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Figure 1. Sample images from the MIT Image memorability dataset [15]. The images are sorted from more memorable (top left) to less

memorable (bottom right).

up visual saliency model [8]. Our second scheme, on the

other hand, considers a top-down definition of visual atten-

tion and employs an object-centric spatial pooling scheme.

Pooling strategies similar to ours have been recently sug-

gested for image and scene classification [26, 9]. Our ex-

perimental results demonstrated that memorability predic-

tions can be improved by integrating attentional mecha-

nisms. These results are also in line with a body of research

in cognitive sciences which argues that attention plays an

important role in understanding natural scenes and enhanc-

ing visual memory [34, 12, 11, 4, 13]. Here we should note

that the authors of [20] utilized a visual saliency model in

their model but they used saliency values as complementary

features not as a part of feature pooling.

The system diagram of the proposed pooling approach

is given in Figure 2. First, dense visual features such as

SIFT and HOG are extracted from the input image. These

features are then encoded into higher dimensions through

vector quantization using a bag of features approach. In

the meantime, bottom-up and object-level saliency maps are

estimated from the image and then thresholded to obtain

both the salient regions and those which possibly containing

foreground objects. Next, to form histogram-based visual

descriptors the encoded vectors are pooled together over

the extracted attention-driven spatial layouts. Finally, these

descriptors are concatenated together to generate the final

image-level representation for memorability prediction.

2. Related Work

In this section, we briefly review previous work on im-

age memorability [15, 14, 20] and give some details about

the bottom-up visual saliency model [8] and the generic ob-

jectness measure [1] that we made use of in our work.

2.1. Image Memorability

In a recent study [15], Isola et al. devised a “Vi-

sual Memory Game” experiment and utilized Amazon’s

Mechanical Turk service to quantify the memorability of

2222 natural images of scenes and objects from the SUN

dataset [35]. In the game, a total of 665 participants (the

workers) were shown a sequence of images, each of which

was displayed for 1 second with a 1.4 second gap in be-

tween image presentations, and asked to provide feedback

any time whenever he/she thinks an identical image is dis-

played. In the end, the memorability score of an image was

measured as the number of subjects who correctly reported

a repeated presentation of the image. The authors showed

that the Spearman’s rank correlation between two halves of

the subjects (averaged over 25 random split-half trials) was

found to be 0.75, that is the memorability of an image is

consistent across subjects and across a wide range of con-

texts. This suggests that image memorability is in fact an

intrinsic property of images which is shared across differ-

ent people.

In their pioneering work, Isola et al. also showed that

intrinsic memorability of images can be predicted by using

computer vision and machine learning techniques. Their

framework is based on support vector regression (SVR)

trained on simple image features, object and scene seman-

tics, and, popular image features such as SIFT and HOG.

Although measuring memorability of images is considered

a difficult problem, the proposed model predicted image

memorability significantly better than chance. In a follow-

up work [14], the authors investigated the role of visual at-

tributes to quantify memorability of images and the study

revealed that predicting and exploiting attributes greatly in-

creases the quality of the predictions. To understand which

attribute is a better indicator of memorability, they investi-

gated a greedy feature selection approach to select the rel-

evant set of attributes. More recently, Khosla et al. [20]

presented a probabilistic model to quantify memorability of

image regions, which can predict image memorability as

well as which regions are more likely to be remembered.

They used ranking SVM (SVM-Rank) framework and em-

ployed saliency maps and responses of a large number of

pre-trained generic object detectors from Object Bank [22]

as additional features.

2.2. Visual Saliency

In recent years, there has been an increasing interest

in computational models of visual saliency estimation and
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Figure 2. The proposed visual attention-driven spatial pooling pipeline for image memorability (See text for a detailed description).

their use for several computer vision tasks. Starting from

the seminal work by Itti, Koch, and Niebur [16], most of

the existing models consider a bottom-up strategy in which

center-surround differences of various features at multiple

scales are computed for each feature channel and then the

final saliency map is formed by linearly combining feature

maps after a normalization step. For a recent survey, please

refer to [2]. In this study, we employed a recently pro-

posed saliency model [8], which gives state-of-the-art re-

sults and differs from other models in that visual features

are non-linearly integrated using region covariances with-

out any need for intermediate steps. In our experiments,

we made use of the implementation of the authors1 which

examines only the second-order statistics of simple visual

features such as color, edge and spatial information.

2.3. Objectness Measure

In [1], Alexe et al. introduced a generic (category-

independent) “objectness” measure2 to quantify how likely

an image window contains an object. In more detail, the au-

thors first analyzed several image cues, namely multi-scale

saliency, color contrast, edge density (near window borders)

and superpixel straddling, each of which were shown to be

an indicator of objectness, but to a certain degree. Then they

proposed a Bayesian learning framework to combine these

four cues to distinguish object windows from background.

It was demonstrated that the approach is very general and

can detect objects of novel classes not seen during training.

As compared to the visual saliency model reviewed in the

previous section which solely depends on bottom-up visual

cues, the generic objectness measure can be used to esti-

mate object-level saliency of images and provide top-down

high-level information as will be described in Section 3.

1The source code is available at http://web.cs.hacettepe.
edu.tr/˜erkut/projects/CovSal/

2The code is publicly available at http://groups.inf.ed.ac.
uk/calvin/objectness/

3. Visual Attention-driven Spatial Pooling

The memorability work by Isola et al. [15] employs spa-

tial pyramid matching (SPM) based pooling [21]. Recently,

several papers have described ways to learn optimal spa-

tial layouts for feature pooling, e.g. [10, 17, 18, 26], instead

of considering a fixed pyramidal structure as in SPM. In

this study, we pursue a similar direction and propose an al-

ternative visual attention-driven spatial pooling scheme for

image memorability, which will be shown to be superior

to SPM approach. Our approach is in part motivated by

the pooling scheme proposed for scene classification [9],

which is based on Itti-Koch-Niebur saliency maps [16]. As

in [9], we obtain an image-specific spatial layout for fea-

ture pooling but by using a more recent bottom-up saliency

model [8]. Moreover, we derive another layout structure

from a complementary object-level saliency map which

captures information about foreground objects in the im-

ages. It is worth mentioning that a similar object-driven

pooling idea was recently presented for image classifica-

tion [26].

Consider Figure 3 where we present examples for

bottom-up and object-level saliency estimation. From

the saliency maps given in the second column, we ran-

domly sample a number of image patches (rightmost four

columns). Those sampled within the top 10% salient loca-

tions are given in the top two rows whereas the bottom two

rows show sample patches from the bottom 20% salient lo-

cations. As can be seen, the saliency values are strongly cor-

related with the interestingness of the regions [6, 7]. While

the most salient patches captures interesting objects, the

least salient ones mostly correspond to background or those

which have little importance when we consider the image

content.

As illustrated in Figure 2, the proposed spatial pooling

pipeline has four main stages, as we formally define below:
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(a) Bottom-up saliency

(b) Object-level saliency

Figure 3. Interesting and uninteresting patches extracted from two

natural images based on visual attention. From the images, 8 im-

age patches are sampled randomly from the top 10% salient loca-

tions (top 2 rows) and 8 others from the bottom 20% salient loca-

tions (bottom 2 rows) according to (a) a bottom-up visual saliency

map and (b) an object-level saliency map, respectively.

(1) Feature Extraction. For an image I, we obtain a global

description of I by extracting D-dimensional local features

such as SIFT [23], HOG [5], SSIM [28] at N different

locations, denoted with X = [x1, . . . ,xN ]
T ∈ R

N×D.

(2) Coding. Assuming that we have a learned codebook

of K visual words, denoted with B = [b1,b2, . . . ,bK ] ∈
R

D×K , each local feature xi ∈ X is encoded into a

code vector ci =
[
ci1, c

i
2, . . . , c

i
K ,

]T
by applying vec-

tor quantization. Alternative coding schemes include

sparse coding [37] and locality-constrained linear coding

(LLC) [32]. After the coding step, I is represented by a set

of codes C = [c1, c2, . . . , cN ] ∈ R
N×K .

(3) Bottom-up and object-level saliency maps. To obtain

the attention-driven spatial layouts for the proposed feature

pooling scheme, we make use of bottom-up and object-

level saliency maps. The bottom-up visual saliency map

of image I is computed by a recently proposed model [8],

which was shown to provide state-of-the-art performance

in predicting eye fixations. For the object-level saliency

map, we randomly sample a large number of windows

from I and measure the objectness of these image windows

by using the generic objectness measure proposed in [1].

To obtain the generic objectness map of I, we then compute

an objectness score for each pixel by averaging over all the

scores of the windows which contain that pixel.

(4) Pooling. In the pooling step, instead of considering a

fixed – image-independent – set of spatial regions, as em-

ployed in [15], here we propose to use image-specific spa-

tial regions for feature pooling. Specifically, we follow an

approach similar to the one in [9], in which regions of in-

terest are located by respectively segmenting the bottom-

up and object-level saliency maps into salient/non-salient

and object/non-object regions by thresholding. In our ex-

periments, we varied the threshold value to find the opti-

mum thresholds to determine salient and object regions in

the images for spatial pooling of features. We found out

that the mean works well for the bottom-up saliency maps

whereas the best performance for the object-level saliency

maps is achieved when the threshold is set to 0.25 times

the maximum objectness value. Figure 4 shows some ex-

amples of these attention-driven regions. For each region

of interest R, we then perform average-pooling, i.e. com-

pute a histogram (or take the average of) the codes over the

region R:

f(R) =
1

|R|
∑

i∈Rci (1)

where |R| denote the number of dense features in R. More-

over, the final feature vector f(R) is renormalized to have

L1-norm of 1.

4. Experimental Results
In this section, we demonstrate the effectiveness of the

proposed feature pooling strategy with a series of experi-

ments. We first give brief details about the experimental

setup and the memorability image dataset used in the ex-

periments. Then, we describe the global visual features that

were used in predicting the memorabilities. Finally, we dis-

(a) Bottom-up saliency-driven feature pooling

(b) Object-level saliency-driven feature pooling

Figure 4. Visual attention-driven feature pooling scheme. For a

given image, (a) a bottom-up saliency map and (b) an object-level

saliency map are estimated and then the feature vectors are pooled

together in the salient regions of the images (depicted as bright

areas in the images).
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cuss the results of our experiments.

4.1. Experimental Setup

Dataset. For memorability predictions we used the MIT

Image memorability dataset3 introduced by Isola et al. [15].

This dataset contains 2222 natural images from the SUN

dataset [35], which were cropped and resized to 256× 256
pixels. Each image has an associated memorability score

which was obtained via the Visual Memory Game discussed

in Section 2.1 and was defined as the percentage of correct

detections by participants of the game. Moreover, object

annotations and scene category label are also available for

all these images.

Evaluation. For the quantitative analysis we used Spear-

man’s rank correlation measure (ρ) and a precision-recall

measure. The performance was evaluated over 25 different

splits of the dataset containing 1111 training and 1111 test-

ing images (the same splits used in [15]). These train and

test splits were scored by different halves of the participants,

showing a human consistency of ρ = 0.75. Thus, the effec-

tiveness of a computational image memorability model can

be assessed by measuring how close the model’s Spearman

rank correlation to this score. In addition, for a precision-

recall analysis, test images can be ranked according to their

predicted memorability and then the cumulative average of

measured empirical memorability scores can be examined

for different sets of images. For instance, a good image

memorability model should have cumulative averages close

to 100% for the top most memorable images predicted by a

model.

4.2. Global Image Features

In the experiments, we considered a combination of

three groups of global image features which were also

used by Isola et al. in [15]. These are color histograms,

GIST [24] and a set of dense visual features including

SIFT [23], HOG [5] and SSIM [28]. We briefly discuss

these features in the subsequent sections. Note that we

perform attention-driven feature pooling only for the dense

visual features.

Color histograms. Color is an important attribute of visual

perception. Here, we considered simple color information

of images as a complementary cue to the other visual

features. We used the 3-dimensional pixel histograms

with 21 bins per channel in RGB color space to obtain a

63-dimensional color descriptor for each image.

GIST. We used the GIST scene descriptor [24] which pro-

duces a holistic low-dimensional view of the input image

3The dataset is publicly available at http://web.mit.edu/
phillipi/Public/WhatMakesAnImageMemorable/

by decomposing it by a multiscale oriented filterbank and

then taking filter responses over a grid or image regions.

We considered 8 orientations, 4 scales and a 4 × 4 grid,

which resulted in a 4× 8× 16 = 512 dimensional vector.

Dense visual features. We considered three different dense

visual features, SIFT [23], HOG [5] and SSIM [28], which

were pooled using the proposed attention-driven scheme.

The SIFT descriptor gives the local image structural in-

formation whereas the HOG descriptor provides rich local

orientation information that can be related to the receptive

fields found in early human vision areas. Lastly, the SSIM

descriptor captures the local layout of geometric patterns.

We densely sampled these features at the pixel level

and then pooled each feature together over two different

saliency maps, one from bottom-up visual saliency and

the other from generic objectness. The size of the used

codebook is 200 and thus we obtain a 400-dimensional

feature vector for each dense feature.

All global features. We combined the global image fea-

tures listed above and devised a single high-dimensional

feature vector by concatenating all the feature vectors re-

spectively. This process produced 63 + 512 + 3 × 400 =
1765 dimensional image-level representation for memora-

bility prediction. It is important to note that the final dimen-

sion is nearly half of that of Isola et al. [15] which depends

on a SPM based pooling on a 2× 2 + 1× 1 spatial tiling.

4.3. Results

We first examined the use of eight different attention-

driven spatial layouts in predicting image memorability. In

particular, we tested several combinations of salient/non-

salient and object/non-object regions as suggested by a

bottom-up saliency model [8] and a generic objectness mea-

sure [1] to determine the image-dependent layout structure

for pooling. In each case, the final image-level representa-

tion f was obtained by concatenating the related descriptors.

Consequently, we separately trained eight different SVRs to

map from the features pooled over these maps to memora-

bility scores.

Table 1 summarizes our results. The first four pooling

layouts are solely based on salient, non-salient, object and

non-object regions, respectively, and they all have the same

performance (ρ = 0.46), which is also equal to the score

of Isola et al. [15]. This is interesting because it illustrates

that excluding the corresponding regions from the predic-

tion estimation does not hurt the performance. The worst

performance is achieved (ρ = 0.41) when the features are

pooled over the combination of non-salient and non-object

regions. Here, what’s more interesting about our results

is that pooling the features over salient and object regions

together achieves a rank correlation of ρ = 0.47, provid-

959967974980



Predicted as highly memorable (89%) Predicted as typically memorable (67%) Predicted as least memorable (48%)

Figure 5. Memorability predictions by the proposed attention-driven feature pooling strategy. Out of all test images, the 8 images in (a)

are found to be the most memorable, the ones in (b) are predicted as typically memorable and the other 8 images in (c) are guessed as the

least memorable. The numbers denote the average prediction scores of the given image sets. The images predicted as highly memorable

contains highly distinctive visually salient elements as compared to other groups of images.

Table 1. Comparison of predictions via different combinations of attention-based feature pooling schemes (pooling over S: salient, ¬S: non-

salient, O: object, ¬O: non-object regions, with ‘+’ denoting concatenation) versus empirically measured memory scores. In example, the

first row indicates average empirical memorability over the images with the top 20 highest predicted memorabilities, and ρ is the Spearman

rank correlation between model predictions and empirical results.

S ¬S O ¬O S + ¬S O + ¬O ¬S + ¬O S +O
Top 20 83% 83% 83% 83% 84% 84% 83% 84%

Top 100 80% 80% 80% 80% 81% 80% 79% 81%

Bottom 100 56% 56% 56% 56% 56% 56% 57% 56%

Bottom 20 53% 53% 53% 53% 55% 55% 57% 55%

ρ 0.46 0.46 0.46 0.46 0.46 0.45 0.41 0.47

ing the best memorability prediction performance across the

set. That is, the top down information provided by object-

level saliency combined with the bottom up information

predicted by visual saliency gives better results than those of

using top down or bottom up information alone. This result

strongly supports our claim that the image regions which

retain in human memory is highly correlated with the areas

that attract our attention.

Figure 5 shows sample images from the memorability

predictions based on salient and object regions. In addi-

tion to these qualitative results, we also compare our results

with Isola et al. [15] and Khosla et al. [20]. In Figure 6,

we present the precision-recall performances of our model

together with Isola et al.’s global features model, predic-

tions based on annotated objects and scenes, and human

predictions [15]. For the topmost 300 images our model

gives slightly better predictions than Isola et al.’s global fea-

tures model. Table 2 summarizes the performances of our

model and other computational models in terms of Spear-

man’s rank correlation measure (ρ) and the precision-recall

measure. As it can be seen, we achieved a better perfor-

mance as compared to Isola et al. [15] even if we used the

same global features. Here, it is important to note that the

size of our image level descriptor is nearly half of the one

used by Isola et al. [15]. This demonstrates another benefit

of visual attention-based feature pooling for image memo-

rability. It should be noted that Khosla et al. [20]’s global

and full models provided predictions better than ours but

they employed semantically more complex features.

Figure 7 shows sample images on which the memora-

bility predictions based on our approach are incorrect as

compared to the empirical results. To argue about why our

model fails to capture the intrinsic memorabilities, in Fig-

ure 8, we provide the bottom-up and object-level saliency

maps of two of the images from Figure 7 together with their

memorability maps obtained from object annotations. In

the memorability maps, the red regions illustrate the ob-

jects that contribute positively to the predicted memorability

and the blue regions show the objects that contribute neg-

atively to the predicted memorability. For the “iceberg”

Figure 6. Comparison of regression results averaged across the 25

splits. Test images are ranked according to their predicted mem-

orability and plotted against the cumulative average of measured

memorability scores.
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image whose memorability rank was overshot by the pro-

posed prediction scheme (Figure 8(a)), our pooling did not

correctly identify the memorable image regions. For the

“street view” image whose memorability rank was under-

shot by the proposed scheme (Figure 8(b)) our pooling had

given more prominence to the object regions that affects the

memorability predictions negatively.

5. Conclusion
We have presented a novel feature pooling strategy for

image memorability based on visual attention. The new

strategy is derived from the observation that main memo-

Table 2. Test images are ranked by their predicted memorabilities

suggested by different models (denoted by column headings) and

as in Table 1, the average predicted memorabilities are reported

for different sets of images, together with the Spearman rank cor-

relation ρ between model predictions and empirical results.

Isola et al. [15] Khosla et al. [20] Our global

global local global full model

Top 20 83% 84% 83% 85% 84%

Top 100 80% 80% 80% 81% 81%

Bottom 100 57% 56% 57% 55% 56%

Bottom 20 55% 53% 54% 52% 55%

ρ 0.46 0.48 0.45 0.50 0.47

Predicted too high (+832/1111)

Predicted too low (-866/1111)

Figure 7. Sample images on which our proposed scheme failed to

capture the memorability. The memorability ranks are predicted

too high for the images in (a) and too low for the ones in (b), as

compared to their empirical memorability ranks. The numbers in

the parentheses show the mean rank error between the predicted

and the empirical ranks across each group.

rable areas of an image are the ones that attract the most

attention [34, 12, 11, 4, 13]. The proposed scheme is prac-

tically advantageous and effective than the traditional SPM

based pooling as it forms a lower dimensional image-level

representation while enhancing the memory prediction per-

formance further. Instead of considering a fixed pyrami-

dal structure as in [15, 20], our regression model learns

memorability scores of images by taking the concatena-

tion of pooled features over the saliency maps as input. In

the suggested scheme, we employed two saliency maps,

one by a bottom-up saliency model [8] and the other by

a generic objectness model [1]. These maps respectively

model bottom-up and top-down attentional influences that

affect memorability estimations. Experiments on the MIT

image memorability dataset demonstrated that the proposed

pooling scheme improves the prediction quality of the Isola

et al.’s model [15] by using the same set of global image

features but with lower dimensional descriptors. We expect

the proposed scheme would be quite effective also for other

global features such as the semantic ObjectBank features

used in [20].

In the context of this work, we investigated how attention

driven spatial pooling strategies, which are defined based

on bottom-up and object-level saliency, can help to improve

predicting image memorabilities. For future work, it would

be interesting to investigate the inverse problem, i.e. how

visual memorability affects visual saliency. A recent trend

in visual saliency estimation is to pose saliency estimation

as a supervised learning problem [31, 19, 38, 36]. Most of

these models with the exception of [31, 36] try to predict

where human look in the images under free-viewing con-

ditions. Motivated with these works, one can try to devise

a task-dependent model with the task being defined as to

memorize image content.

(a) Predicted too high

(b) Predicted too low

Figure 8. Memorability maps versus bottom-up saliency and

object-level saliency maps of two of the images from Figure 7 (See

text for details)
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