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Abstract

Identifying a suspect wearing a mask (where only the
suspect’s periocular region is visible) is one of the tough-
est real-world challenges in biometrics that exist. In this
paper, we present a practical method to hallucinate the full
frontal face given only the periocular region of a face. This
is an important problem faced in many law-enforcement ap-
plications on almost a daily basis. In such real-world situa-
tions, we only have access to the periocular region of a per-
son’s face. Unfortunately commercial matchers are unable
to process these images successfully. We propose in this pa-
per, an approach that will reconstruct the entire frontal face
using just the periocular region. We empirically show that
our reconstruction technique, based on a modified sparsi-
fying dictionary learning algorithm, can effectively recon-
struct faces which we show are actually very similar to the
original ground-truth faces. Further, our method is open
set, thus can reconstruct any face not seen in training. We
show the real-world applicability of method by benchmark-
ing face verification results using the reconstructed faces
to show that they still match competitively compared to the
original faces when evaluated under a large-scale face veri-
fication protocol such as NIST’s FRGC protocol where over
256 million face matches are made.

1. Introduction

Over the past decades, biometric identification and ver-
ification using facial features has gained a lot of promi-
nence both in traditional video surveillance/access control
systems and in hand-held devices for daily use. Most of
these approaches work under the implicit assumption that
we are able to capture the entire face of the subject with de-
cent quality. However, there are many real-world scenarios
where only a partial face is captured or instances when only
the eye region of a face is visible, especially for the cases of
uncooperative and non-cooperative subjects. Therefore, the

problem of looking into the capabilities of matching sub-
jects using only the periocular region has developed con-
siderable interest. Specifically, we consider the periocular
region of the face, which is rich in textural information -
eyebrows, eye folds, eyelid contours, etc., which could all
vary in shape, size and color. Biologically and genetically
speaking, more complex structure means more “coding pro-
cessing" going on during fetal development, and therefore
more proteins and genes involved in the determination of
appearance. One can speculate that this is why the peri-
ocular region should be the most important facial area for
distinguishing people. Robust periocular based biometric
recognition can lead to very useful applications, for exam-
ple, identifying criminals wearing masks, where only the
eye region is exposed, or in videos containing many oc-
cluded faces with the eye region un-occluded, or in other
cases as shown in Figure 1.

In addition, commercial matchers, and law enforcement
agencies who rely on commercial matchers to perform face
matching for identification will run into problems in the
case where only the periocular region is available. This is
due to the fact that commercial matching algorithms are de-
veloped using the entire human face and typically simply
cannot deal with partial faces.

In this work, we develop a novel approach that hallu-
cinates the full face from just the periocular region of a
subject with high fidelity devoted to the known periocular
region. The approach is based on the modification of the
problem formulated for sparsely coded dictionary learning.
It explicitly focuses on reconstructing the periocular region
faithfully while providing a good visual approximation of
facial features that can be used for further processing. In
hallucinating the rest of the face, our method capitalizes on
weak correlations between periocular features and other fa-
cial features. These correlations might exist due to specific
gender, ethnicity or age, which are soft-biometric in nature.
Our approach finds these relations in an unsupervised man-
ner from a large corpus of frontal training images.

Rest of this paper is organized as follows: Section 2 lists
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Figure 1. Examples of scenarios where only periocular region
is accessible. (a1) A suspect in an ATM robbery wearing a mask,
(a2) A masked Taliban militant, and (a3) a masked bank robber.
(b1)-(b3) Many people in crowds only have their eyes visible from
the camera’s perspective. (c1) Veiled women, (c2) masked doctors
and nurses, and (c3-c4) masked fire fighter and policeman.

several prior work on periocular region recognition. Sec-
tion 3 details related algorithms and the proposed method.
Section 4 discusses in detail the experimental setup and re-
sults. Finally we conclude our work in Section 5. Through-
out the paper, the term “hallucination" and “reconstruction"
are used interchangeably.

2. Related Work

In 2009, Park et al. [17] has carried out one of the ear-
liest studies on periocular biometrics identification where
the feasibility of using periocular region of an individual as
a biometric trait were claimed. They showed 77% rank-1
identification rate on a rather small database (958 images
from 30 subjects). In the following year, more studies were
carried out on periocular region. Juefei-Xu et al. [5] eval-
uated the performance of periocular biometrics on a large
scale FRGC ver2.0 database. They proposed various lo-
cal feature sets and showed that even without any subspace
training, periocular region with their proposed feature sets
can still outperform NIST’s baseline using PCA on full face
on the FRGC Experiment 4 protocol. More detailed anal-
ysis were shown in [6, 11]. Also the discriminability of
eyebrow was also looked into [8]. Lyle et al. [14] stud-
ied gender and ethnicity classification based on the perioc-
ular features. They used a subset of FRGC and obtained a
high classification accuracy for gender and ethnicity. The
effect of the quality of the periocular images on recogni-
tion performance was studies in [15] where they analyzed
the uniqueness of texture between different color channels,
and texture information present in different color channels.
Woodard et al. [19] utilized periocular region appearance
cues for biometric identification both on images captured in
visible and NIR spectrum while Park et al. [16] studied pe-
riocular biometrics in the visible spectrum. Hollingsworth
et al. [3] used NIR periocular images to identify useful fea-
tures for recognition, while others fused periocular with iris
images for recognition [18]. Some more recent work us-
ing periocular region include age invariant face recognition

[7] and expression tolerance [9] based on periocular region
and twin identification using periocular region [10]. To the
best of our knowledge, the problem of hallucinating the en-
tire face using only the periocular region has not been ap-
proached yet.

3. Algorithmic Approach

In this section we describe our proposed approach to the
problem of hallucinating a complete face based on purely
the periocular region. However, before we introduce our
method, it would helpful to briefly look at the PCA based re-
construction in the context of this problem. Throughout the
paper, the data matrix Y ∈ Rd×n is assumed with dimen-
sion d. All matrices have their elements arranged column-
wise.

3.1. PCA Based Hallucination

PCA has proved to be a hugely popular subspace learn-
ing method over the years. It has also found many appli-
cations in denoising. In our application, to hallucinate the
entire face based on the periocular region, PCA can be ap-
plied in a straight forward way. Assume that D is the global
PCA basis of the full face data. We now assume that the
periocular region can be obtained by using a mask Λ which
is the set of particular dimensions from an image belong-
ing to that region. Given an unseen periocular image of a
subject yΛ, our goal is to obtain y. We obtain the PCA pro-
jection coefficients x = (DT

ΛDΛ)−1DΛyΛ. Here, DΛ is
the dictionary restricted to dimensions or rows of the ma-
trix in the set Λ. Finally we obtain the reconstruction y
using y = Dx. Note that during reconstruction, we use
all dimensions of D. Even though PCA provides a simple
approach to this problem, since it learns a single global sub-
space, each testing sample would tend to have a very sim-
ilar reconstruction. Thus, very little biometric information
is preserved in the reconstruction rendering the problem un-
solved.

3.2. K-SVD Based Hallucination

Dictionary learning methods have gained much popular-
ity in the recent decade. One relatively recent such algo-
rithm is the K-SVD [1]. K-SVD aims to be a natural exten-
sion of K-means with the analogy that the cluster centers are
the elements of the learned dictionary and the memberships
are defined by the sparse approximations of the signals in
that dictionary. Formally, it provides a solution to the prob-
lem minimizeD,X ‖Y −DX‖2F such that ∀i, ‖xi‖0 < K,
where Y, D and X are the data, the learned dictionary and
the sparse approximation matrix respectively. Here ‖.‖0 is
the pseudo-norm measuring sparsity. The sparse approxi-
mations of the data elements are allowed to have some max-
imum sparsity ‖x‖0 ≤ K.
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K-SVD has found multiple practical applications such
as image denoising [2] and inpainting [12]. However, these
applications are ones in which the number of missing or
corrupted pixels is not significant and does not contain any
explicit spatial structure. In such a scenario, patch based re-
constructions using the learned dictionary would be useful.
In our application however, where majority of the pixels are
missing in a structured manner, patch-based reconstruction
does not make sense. Rather, we would have to apply an
approach similar in spirit to the PCA based reconstruction.

One method for hallucination using K-SVD is to train a
generative dictionary D using a large number of full faces.
Each of the dictionary elements is now the first eigenface of
its member training samples. Unlike PCA, K-SVD avoids
learning a global subspace and in turn approximates using
multiple local subspaces. Given a novel periocular image of
an unseen subject yΛ , we would obtain the sparse coding x
in the dimensionally restricted DΛ using any sparse coding
algorithm such as OMP (Orthogonal Matching Pursuit). For
reconstruction, we simply use x with the original dictionary
D to obtain y = Dx.

However, one assumes a critical fact in this method that
the sparse representation of the periocular region alone in
DΛ is very similar to the representation of the entire face
in D. This is a questionable assumption since the dictio-
nary learning procedure K-SVD does not explicit optimize
in that regard. Indeed, faces can be considered as an ensem-
ble of features, with multiple individuals sharing a particu-
lar feature. The assumption of common approximation co-
efficients between the periocular region and the entire face
in a dictionary learning full faces would imply that there ex-
ists a one-to-one relationship between the eye features and
the other features of a face. Even though the algorithm for
our hallucination problem would have to find weak corre-
lations between periocular and facial features, a one-to-one
correspondence is too strong an assumption and is unrea-
sonable.

Recall that our problem is to hallucinate, for the sake of
visual and practical purposes, the entire face from only the
periocular region. Thus, the only true biometric that we ob-
serve is the given cropped periocular image. In this light,
it is vital that our reconstructed face be faithful in the pe-
riocular region. However, standard methods of generating
dictionaries, such as the typical use of K-SVD, do not focus
on representing particular dimensions or parts of the signal
better. A method which weighs errors due to the periocular
region more than the rest of the face would tend to generate
a reconstruction more faithful (higher PSNR) to that region.

Here one might argue that a simple get-around to this
problem would be to train two dictionaries separately, one
representing the full face Df and the other trained specifi-
cally for the periocular region Dp. Thereby, we can specif-
ically optimize for a low reconstruction error in the perioc-

ular region. We could then follow a similar protocol for re-
construction by obtaining the sparse representation x of yΛ

in Dp and then reconstruct using y = Dfx. However, since
the training of the two dictionaries is independent, there is
no reason to hope that the K-sparse representation x of yΛ

in Dp is close to the that of y in Df . This is the same prob-
lem that we highlighted previously. Reconstruction using
such a procedure is not expected to give good and visually
appealing results.

This problem can be addressed by designing a dictionary
learning procedure which tries to have a consistent sparse
representation across the two dictionaries Dp and Df while
weighting errors in Dp more. Such a method would also
address the problems that have been brought to light in pre-
vious paragraphs. In the next section, we present a simple
reformulation of the objective function to arrive at one such
procedure.

3.3. Dimensionally Weighted K-SVD Based Hallu-
cination

Our goal is to reconstruct or hallucinate the rest of the
face given the periocular region. Keeping in mind the is-
sues related to the dictionary learning, we arrive at the prob-
lem of jointly optimizing the learning procedure for the two
goals. The first is to learn a dictionary of whole faces so as
to include prior knowledge about the spatial relationships
between the facial features and the periocular features. The
second is to obtain a dictionary in which the reconstruction
error for the periocular region is penalized more than the en-
tire face and both are jointly minimized for the same sparse
coefficients.

We propose a simple approach which promotes the ap-
proximation coefficients to be jointly shared for the perioc-
ular region and the entire face. Our first objective is to learn
a dictionary by solving

minimize
D,X

‖Y −DX‖2F such that ∀i, ‖xi‖0 < K (1)

However, we would also like to have a low reconstruc-
tion error using the same sparse coefficients restricted to the
periocular region set Λ. Thus we also desire to solve

minimize
DΛ,X

‖YΛ −DΛX‖2F such that ∀i, ‖xi‖0 < K (2)

Combining the two objectives to solve them jointly al-
lows us to force a common K-sparse representation and
also provides a trade-off between errors with an efficient
algorithmic solution. Our primary problem is therefore

arg min
D,X,DΛ

‖Y −DX‖2F + β‖YΛ −DΛX‖2F (3)

such that ∀i, ‖xi‖0 < K

Here β provides a trade-off between the reconstruction
error of the periocular dimensions versus the entire face.
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Obtaining a consistent sparse encoding between the two sets
of dimensions allows for a more meaningful reconstruction.
This is apparent if one considers the reconstruction proce-
dure. Given a novel periocular image, we would first obtain
the sparse representation x in DΛ. We then obtain the re-
construction using Dx. Using the original K-SVD training
method, there was no reason to expect a low reconstruction
error in obtaining the entire face. Thus, relationships be-
tween periocular and other facial features are not explicitly
learned. However, by forcing consistent sparse representa-
tions x during training, we optimize for a low reconstruc-
tion error for both regions jointly and simultaneously.

Solving the formulation is achieved by a simple rear-
rangement before using the standard K-SVD as previously
observed [4]:

arg min
D,DΛ,X

∥∥∥∥( Y√
βYΛ

)
−
(

D√
βDΛ

)
X

∥∥∥∥2

F

(4)

such that ∀i, ‖xi‖0 ≤ K

This translates to the standard K-SVD problem where
we minimizeD′,X′ ‖Y′ −D′X‖2 under ‖xi‖0 ≤ K. with
Y′ = (YT ,YT

Λ)T and D′ = (DT ,DT
Λ)T . In effect the

formulation is equivalent to re-weighting dimensions be-
longing to Λ by (1 +

√
β). Note that one can easily gen-

eralize this framework to include multiple subsets of other
dimensions with different weights. Further, this method
along with PCA based and K-SVD based methods, is open
set thereby enabling reconstruction of any face that is not
present in the training set. For convenience, we call this
method Dimensionally Weighted K-SVD or DW-KSVD.

4. Experimental Results
4.1. Database

All test experiments were performed on the NIST’s Face
Recognition Grand Challenge (FRGC) ver2.0 database. It
has three components, the first is the generic training set
which contains both controlled and uncontrolled images of
222 subjects, and a total of 12, 776 images. Second, the
target set containing 466 different subjects with a total of
16, 028 images. Lastly, the probe set containing the same
466 subjects as in target set, with half as many images for
each person as in the target set, bringing the total number
of probe images to 8, 014. Image examples from the FRGC
database are shown in Figure 2.

4.2. Dictionary Learning and Reconstruction

To learn the dictionary used for reconstruction, we
trained using Dimensionally Weighted K-SVD (DW-
KSVD) on 500, 000 frontal mugshot images resized to 32
by 32 pixels. A large number of images are necessary to
obtain a comprehensive dictionary of weak periocular-to-
facial feature relationships. For all experiments, we set the

(a1) (b1) (a2) (b2)

Figure 2. Example image from the FRGC database: (a1,a2)
controlled and uncontrolled still of the same subject, (b1,b2)
cropped full face and periocular region. [11]

number of dictionary elements to 5, 000 and the maximum
allowed sparsity K as 10 to force the dictionary elements
to span a smaller local subspace to account for high vari-
ation between subjects. We set β = 100 to strongly em-
phasize periocular reconstruction. The dictionary was ini-
tialized using randomly chosen data elements and K-SVD
was run for 20 iterations for learning all dictionaries. We
define the periocular region in 32 by 32 images as the top
13 by 32 part of the image. In order to focus our efforts on
the reconstruction performance itself, we restrict ourselves
from exploring other templates. Our method can handle in
a straight-forward way, cases in which the periocular region
varies from our defined template.

For reconstruction using DW-KSVD, we first obtain
the sparse representation of the periocular image using
OMP in the periocular component of the DW-KSVD dic-
tionary. We then reconstruct using the face component
of the DW-KSVD dictionary and the same sparse coeffi-
cients. Note that we would have a trade-off in choosing
sparsity K while using OMP for sparse representation dur-
ing reconstruction. The reason is that as we increase K,
we would keep achieving a lower periocular reconstruction
error, however, the full face reconstruction error might in-
crease after a point. This is because OMP is only opti-
mizing for the periocular representation error and not the
full face reconstruction error. To learn the optimal recon-
struction sparsity for the task, we conduct a pilot experi-
ment in which we measure the PSNR between the unseen
original face and the reconstructed face while increasing
sparsity. We adopt the peak signal-to-noise ratio (PSNR)
as the measurement of reconstruction fidelity between im-
ages I and I ′ as follows: PSNR = 10 log10

(
2552

MSE

)
=

10 log10

(
2552

1
mn

∑m−1
i=0

∑n−1
j=0 [I(i,j)−I′(i,j)]2

)
.

For the experiment we use 1000 randomly chosen faces
from FRGC and compute the PSNR of the reconstruction
error for each using DW-KSVD. Figure 3 shows the mean
PSNR varying with sparsity. We find that the best full face
reconstruction occurs at using K = 40 which is what we
use for all further experiments. It is also worth noted that the
more training samples presented to the dictionary learning
algorithm, the higher PSNR it can achieve in hallucinating
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Figure 3. Mean PSNR versus reconstruction sparsity K using DW-
KSVD trained dictionaries.

Figure 4. Left: K-SVD dictionary. Right: PCA dictionary. Only
the first 200 dictionary elements are shown.

the full face from the periocular region. Figure 4 showcases
the first 200 dictionary elements of the K-SVD and PCA
dictionaries. In the PCA dictionary, after the first 40 eigen-
faces, the dictionary elements start to lose facial structures
and shift to capture higher frequency components. While in
the K-SVD dictionary, visual appearances of the elements
are close to the top eigenfaces where facial structures are
well-preserved. This might explain why K-SVD and DW-
KSVD leads to hallucinations with higher fidelity as we
would see in the next section. Figure 5 shows a part of the
full face component as well as the periocular component of
a dictionary trained using the proposed DW-KSVD algo-
rithm. For display, the intensities for the two components
are both normalized.

4.3. Reconstruction Fidelity

Our primary goal is to provide a practical method for
hallucinating a full face from the periocular region to aid
further processing such as commercial face matching. How-

Figure 5. Top: Full face component of the DW-KSVD dictionary
trained using 500,000 training samples. Bottom: Periocular com-
ponent of the DW-KSVD dictionary. Only the first 400 dictionary
elements are shown.

ever, a natural metric to evaluate methods for reconstruction
would be to compare the reconstructed images to the origi-
nal images using the PSNR metric. In this experiment, we
reconstruct the entire target set in the FRGC ver2.0 database
(16, 028 images from 466 subjects) using the three methods
and compute the corresponding PSNR for each pair. For all
experiments using PCA, we restrict ourselves to the first 40
eigenvectors (same number of dictionary elements that K-
SVD and DW-KSVD would use) which can represent over
93.9% of the total energy.

Figure 6 shows the overall mean PSNR computed for
each subject (multiple images per subject) using DW-
KSVD, K-SVD and PCA reconstruction (bold line) along
with the mean PSNR for each individual subject for the
three methods (markers). In FRGC ver2.0 target set, each
individual has on an average 34 images. Figure 7 shows the
corresponding histograms. We find that DW-KSVD on av-
erage clearly outperforms both K-SVD and PCA by a large
margin in PSNR. Table 1 shows the mean and the standard
deviation of the distribution of the PSNR values. A few ran-
domly chosen samples and their reconstructions are shown
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Figure 7. Overall distribution of the PSNR values for the three
methods along with the corresponding fitted Gaussian curve.

in Figure 8. It is worth noting that most of the reconstructed
faces are neutral in expression. This is because our dictio-
naries are trained on mugshot images, which typically have
neutral expression. This, however, works in our favor be-
cause commercial matchers perform better under neutral ex-
pressions. Our proposed method actually eliminates expres-
sion variations and will be an asset for real-world matching.

We find that DW-KSVD not only provides reconstruc-
tions with higher PSNR values on average but the recon-
structions are in fact much more visually appealing and
similar to the original images than either PCA or K-SVD
based reconstructions. This suggests that DW-KSVD and
the combined formulation is able to extract the weak corre-
lations and dependencies between the periocular and other
facial features. Hence, explicitly penalising reconstruction
error in the periocular region more seems to be favorable.

4.4. Face Verification

We now provide a few results which explore face match-
ing using the reconstructed faces. We carry out a large-scale

Table 1. Mean and standard deviations for the distributions of the
PSNR values for reconstruction.

Methods Mean Standard Deviation
PCA Recon. 12.7439 2.1288

KSVD Recon. 14.0720 2.0532
DW-KSVD Recon. 17.6402 2.3757

face verification experiment to evaluate whether the halluci-
nated faces can practically replace the ground-truth full face
in face verification.

4.4.1 Reconstructed Face vs. Reconstructed Face

In our first verification experiment, we strictly follow
NIST’s FRGC Experiment 1 protocol which involves 1-to-1
matching of the 16, 028 controlled target images to them-
selves (∼ 256 million pair-wise face match comparisons).
For this experiment, we adopt the normalized cosine dis-
tance (NCD) to compute the similarities between images:
d(x,y) = 1− x·y

‖x‖‖y‖ .
The result of each algorithm is a similarity matrix with

the size of 16, 028 × 16, 028 whose entry SimMij is the
NCD between the feature vector of query image i and
gallery image j. In the case of FRGC Experiment 1, the
query set and gallery set are the same. The performance
is analyzed using verification rate (VR) at 1% (0.01) false
accept rate (FAR), equal error rate (EER) and the receiver
operating characteristic (ROC) curves. Table 2 shows the
VR at 1% FAR and EER for the FRGC Experiment 1 evalu-
ation. Figure 9 shows the corresponding ROC curves. It can
be noted from the table as well as the plot that DW-KSVD
can achieve comparable results as the full face evaluation,
which, from another angle, shows the fidelity of the hal-
lucination. Further, it clearly outperforms both PCA and
K-SVD based reconstructions. We also observe that the pe-
riocular region crop performs slightly better than the full
face. This is because in the FRGC target set, two facial
expressions are presented by each subject, neural and smil-
ing. The periocular region, however, is less affected by such
expression variations, thus gives rise to slightly better per-
formance than the full face. This observation brings a valid
point that one may focus on periocular region which has
higher tolerance for expression variations when matching
faces with unconstrained expressions.

Since this protocol matches the reconstructions to them-
selves, it only goes to show that the reconstructed images
preserve biometric and identity information amongst them-
selves almost as well as the original images. The perfor-
mance is not expected to drop too much if the entire system
is trained on reconstructed images. This however is imprac-
tical. It is very hard to retrain commercial matchers, and our
original problem was to evaluate the reconstructions using
recognition systems trained on original images. To evaluate
this, we run a second verification experiment in which we
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Figure 8. Original full faces and periocular region crops along with the corresponding reconstructed or hallucinated images using exclu-
sively the periocular crops for various samples from FRGC.

match the original images with the reconstructed images for
all methods i.e. the targets are the original images and the
probes are the reconstructed images.

4.4.2 Original Face vs. Reconstructed Face

For this experiment, we use a face verification algorithm
that had good performance in the NIST’s FRGC evaluation:
the kernel class-dependence feature analysis (KCFA) [13].
In our experiment, KCFA was trained on the original im-
ages of the 222 subjects belonging to FRGC ver2.0 training
set. We match the original face images of FRGC ver2.0 tar-
get set to the corresponding reconstructed images using the
KCFA feature vectors extracted. Thus, we simulate a real-
world situation, i.e. matching the reconstructed images to
the original ones with a verification algorithm that has been
trained on unseen original images. Our hope is to find that
reconstructed images using DW-KSVD perform competi-
tively as compared to matching the original images them-
selves. Indeed, this is what we observe. Figure 10 shows
the ROC curves corresponding to this experiment. We find
that among the three methods, DW-KSVD clearly outper-
forms both PCA and K-SVD reconstructions and in fact the
ROC curve shows that the evaluation is indeed competitive
to the one using the original full faces. Thus, we see that the
periocular based full face reconstruction using DW-KSVD
seems to be a practical solution in cases where the face ver-
ification system cannot adapt to partial faces. Moreover,
it clearly outperforms both PCA and K-SVD based recon-

structions in all evaluations. One reason that PCA’s VR is
lower than KSVD in this protocol but higher in the previ-
ous one might be that the truncated PCA reconstruction pro-
duces faces that lack details and tend towards the mean face.
Thus, for matching reconstruction to reconstruction images,
PCA actually gains by looking alike each other. However,
such a lack of detail hurts PCA in the second protocol when
matching reconstructed faces to the original ones. Thus for
face hallucination, this provides another reason to favor the
sparse representation in an overcomplete basis framework.
Note that for this experiment, we essentially arrived at the
same problem that motivated this study. We were unable to
match only the periocular region to the original face given
the trained KCFA based matcher, which is why no periocu-
lar ROC curve exists in Figure 10.

5. Conclusion

We present a practical and effective method to halluci-
nate a full face image using only the periocular region. Such
a method would have applications in areas such as commer-
cial face matching and law enforcement where currently al-
gorithms are not adaptive to having only the periocular re-
gion. Our algorithm DW-KSVD is a modification of the K-
SVD dictionary learning paradigm tailored so as to empha-
size on more accurate reconstruction of a subset of dimen-
sions, in this case the periocular region. Our experiments
demonstrate that reconstruction using DW-KSVD can be
practically used to hallucinate faces from the periocular re-
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Table 2. VR at 1% FAR and EER for the FRGC Experiment 1
evaluation. The last three rows are matching reconstructed faces
to the reconstructed faces.

Methods VR at 1% FAR EER
Original Full Face 0.524 0.170
Periocular Region 0.561 0.161
DW-KSVD Recon. 0.475 0.188

KSVD Recon. 0.285 0.248
PCA Recon. 0.329 0.236
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Figure 9. ROC curves obtained by following FRGC experiment
1 protocol (matching all sets to themselves) using raw pixels
matched under the NCD metric.

gion without sacrificing face verification performance too
much. Further, our method is open set and can hallucinate
faces not present in training. It also outperforms standard
K-SVD and PCA based reconstruction schemes in the same
tasks. Our method is general in that one can try to recon-
struct an entire signal given a part of it, given that weak
correlations exist between that part and the rest of the sig-
nal. In future work, it would be interesting to explore the
method based reconstructions being evaluated using other
dictionary and subspace learning techniques and various
commercial matchers.
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