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Abstract—While body movement patterns recorded by a
smartphone accelerometer are now well understood to be
discriminative enough to separate users, little work has been
done to address the question of if or how the position in
which the phone is held affects user authentication. In this
work, we show through a combination of supervised learning
methods and statistical tests, that there are certain users for
whom exploitation of information of how a phone is held
drastically improves classification performance. We propose a
two-stage authentication framework that identifies the location
of the phone before performing authentication, and show its
benefits based on a dataset of 30 users. Our work represents
a first step towards bridging the gap between accelerometer-
based authentication systems analyzed from the context of
a laboratory environment and a real accelerometer-based
authentication system in the wild where phone positioning
cannot be assumed.

Keywords-gait recognition; context awareness; accelerome-
ters; authentication;

I. INTRODUCTION

The identification of humans or their activities based

on body movement patterns has recently attracted a lot of

research (e.g., see [1], [2], [3]). The increased interest in this

area is largely due to two factors: (1) The proliferation of

ubiquitous computing devices (e.g., smartphones) that users

carry with them all the time, and (2) the abundance of sen-

sors (e.g., magnetometers, gyroscopes, accelerometers, GPS

sensors, audio sensors) built into these devices nowadays.

Given a phone that a user carries around while undertaking

their daily routine, output from the multitude of sensors can

be mined to extract patterns that drive applications spanning

domains such as security (e.g., authentication [4]), marketing

(e.g., targeted advertisement [5]), and health (e.g., fitness

tracking [6]), to mention but a few.

Out of this multitude of new exciting applications, the

security-related applications have particularly attracted a lot

of interest since they could help provide a second layer of de-

fense to the very widely breached PIN lock mechanism [7].

DARPA’s Active Authentication program [8] is perhaps the

best evidence of this new wave of interest in sensor-driven

smart-phone security. In this paper, we revisit the problem

of user authentication based on body movement patterns (as

recorded by the accelerometer) and propose a context-aware

authentication scheme in which the authentication system

first estimates the way in which a phone is held, so as to

render a fine-tuned authentication decision that takes into

consideration information about the position of the phone.

The vast majority of past research on this type of au-

thentication has used a very restrictive experimental setup

where performance evaluation was conducted based on a

phone being held in a certain way (e.g.[9], [10]). This

kind of experimental design helped illustrate the potential of

this type of authentication. However, as these technologies

advance towards being deployed in the wild (e.g., see

DARPA’s anticipated biometric platform [8]), there is need

for investigations into how they would perform in a more

realistic setting.

In practice, a phone could be held in a variety of ways,

raising questions as to whether research findings based

on a static user template (i.e., a template built from data

collected by a phone held in a single preset position) could

be indicative of how a real system would perform. This

paper takes some steps towards tackling this question as we

study the impact of variations in the position of the phone

on the performance of a continuous authentication system

that uses accelerometer measurements to characterize human

body movements. We focus on four of the most common

ways in which people carry their phones while they walk:

— (1)The phone held in the right hand , (2) The phone

held in the left hand, (3) The phone inserted in the left front

pocket (of say, the pants or skirt), and (4) The phone inserted

in the right front pocket. While there are several other ways

in which a phone could be held in practice (e.g., in a bag,

shirt pocket, etc.), we believe that an investigation based on

these four most common ways of holding a phone will go a

long way towards answering the question of how the phone

handling method affects classification.

Through a combination of supervised learning methods

and statistical tests of significance, we show that there are

users for whom the position in which a phone is held signif-

icantly affects classification performance for a system using

accelerometer sensor readings as a basis for authentication.

We argue that a practical Active Authentication system using

accelerometer measurements should have mechanisms to

determine the way in which a user holds the phone and
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present our initial results on how such mechanisms could

improve classification performance.

The contributions of this paper are summarized below:

1) We analyze the impact of the position of the phone on

the performance of an accelerometer-based authentica-

tion system on a smartphone and provide empirical

evidence of how variations in the locations of the

phone affect classification.

2) We propose the notion of context-aware authentication

in which the classification system infers and uses

information on the location of the phone during au-

thentication. We show that compared to the traditional

methods which do not take the phone position into

consideration, the classification accuracy of the pro-

posed context-aware system can be over 19% higher.

3) We perform an analysis of how different features per-

form at recognizing users, the limb on which the phone

is located, and the side (left or right) on which the

phone is held. This analysis should provide a starting

point for future work which will further explore the

context-aware methodology proposed in this paper.

The rest of the paper is organized as follows: We discuss

related work in Section II, our data collection experiments

and feature analysis in Section III and the framework of

the proposed context-aware design and its performance in

Section IV.

II. RELATED WORK

Until recently, research on the use of accelerometer mea-

surements to characterize human body movement pattern-

s was mostly undertaken based on wearable stand-alone

accelerometers. With recent advancements in smartphone

technologies, accelerometers are now part and parcel of

almost all smartphone models being manufactured today.

These smartphone-based accelerometers are easily integrated

into custom mobile applications, and have paved the way

for the emergence of new application areas such as the

continuous (or active) authentication of smartphone users.

As of today, an increasing number of researchers are us-

ing smartphone-based accelerometers to characterize body

movement patterns for different applications. To clearly

delineate between the two categories of works (i.e., wearable

vs smartphone-based accelerometers), we discuss them as

two separate sections.

A. Wearable Accelerometers

A good number of studies that used wearable accelerome-

ters focused on medical applications; such as predicting falls

[11], estimating energy expenditure [12] and assessing limb

surgery recovery [13], among other applications. While this

body of work did not focus on user authentication, there are

several papers which used multiple accelerometers in a way

which could be compared to our usage of smartphones in

multiple (i.e., 4 different) positions. We discuss these works

here.

First amongst these is the work in [1] where six ac-

celerometers were used with the aim of determining the ideal

sensor location for the identification of daily living activities

such as eating, walking, wiping tables, cooking, vacuuming

and lying down. For each subject, a single accelerometer

was worn on the chest, arm, wrist, knee, waist and ankle.

Using a k-NN and Naı̈ve Bayes classifier on data collected

from 11 users, different activities were mapped to their ideal

sensor positions, although the authors ultimately concluded

that one required as many sensors as possible to have the

ability to track subtle changes in body posture.

Kupryjanow et al. [14] used four accelerometers, with

a sensor located at each of the left and right wrists, left

and right ankles and on the chest. The aim of the study

was to investigate how the number of sensors and the

method of data filtering affects activity recognition accuracy.

Based on results obtained when a neural network and k-NN

classifier were run on data collected from 16 subjects, the

authors concluded that the number of accelerometers and

the frequency band used for data filtering had a significant

impact on activity recognition.

Clearly, the focus of these two papers differs from our

work since we study user authentication and particularly a

context-aware method that augments the traditional classifi-

cation approach by leveraging information on how the phone

is handled. The two papers use a known position of the

accelerometer as input and attempt to determine how these

positions correlate with different activity recognition tasks.

Our method, on the other hand, uses supervised learning

to discover the position of the phone, so as to use this

information in the authentication process.

Away from the works which were motivated by medical

applications, a number of past works on gait authentication

(e.g., see [15], [16]) also used wearable accelerometers.

Despite not using a phone-based accelerometer for data

collection, the investigations performed in these papers were

motivated by smartphone-based authentication. Examples of

these works are the papers by Mantyjarvi et al. [16] and

Gafurov et al. [15] [17] where a stand-alone accelerometer

was used for user authentication/identification based on gait

patterns.

Mantyjarvi et al. [16] used readings from an accelerometer

device attached to a belt on 36 subjects (19 males and

17 females) for identification. The accelerometer device

was composed of 2 perpendicularly oriented accelerometer

sensors. Participants were asked to walk at varied paces

and the data was analyzed with several methods including a

frequency domain method and a signal correlation method.

They found that a signal correlation method worked best

with an EER of 7 percent. The results of this work showed

that gait recognition from sensors was comparable to gait

recognition from video.
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In [15], data from normal walking and walking with a

backpack was studied. An accelerometer sensor was placed

in the right pocket for authentication and identification.

Participants of the study were asked to walk 20 meters.

The results of this paper showed that from 50 subjects, it

is possible to achieve a recognition rate of 86.3 percent

from accelerometer sensor for gait based authentication.

Meanwhile in [17], arm swing was proposed as a soft

biometric for authentication, with a 10 percent EER obtained

using frequency domain analysis.

The main difference between these works and our paper is

again the fact that the notion of using phone usage contexts

is not seen in any of these works. This raises questions as

to how the results from these studies apply to a real life

setting where a phone cannot be expected to be held in a

fixed position.

B. Smart-phone Accelerometers

One work that used phones with an accelerometer was

[18]. They used a data fusion model which fused voice

recognition data with hand holding data to produce a con-

tinuous identification system. In this study, 31 participants

were asked to hold the phone in the hand, hip pocket, and

breast pocket. Each participant was asked to walk normally

and then quickly for 20 meters. Data was collected in two

sessions, each a month apart. Their phone speech recognition

model with gait recognition performed better than the speech

recognition model alone. The EER ranged from 2 to 12

percent.

A second work that used phones with an accelerometer for

authentication was [9]. The phone was placed in a horizontal

position on the hips during the data collection experiment.

Participants were asked to walk normally for 37 meters

(indoors) twice on 2 different days. There were 10 females in

this experiment. They proposed a feature extraction method

that used time interpolation to find the average cycle of a

subject for authentication. The results of this study was an

EER of 20.1 percent.

Another work that used phones with an accelerometer

for authentication was [2]. In this work the phone was

placed in the front pants pocket of 36 subjects. Subjects

were asked to perform multiple activities such as walking,

jogging, going up stairs, and going down stairs. Data was

collected from subjects as they performed the activity in real-

life. Using J48 and Neural Net classifiers, they were able to

identify a person walking with 84 and 90 percent accuracy

respectively.

In [4], focus was on building a feature extraction model

based on Fourier transform features. They showed that

using these features resulted in improved phone-based gait

identification with an accuracy between 45 and 50 percent.

The data used in this study came from 58 subjects who held

the phone in a hand while walking.

In [10], the aim was to identify a subject irrespective of

the pace at which he or she walked. Towards this end, data

for this study was collected from 36 subjects (28 males and

8 females). Each subject walked normally and fast for 166

feet. Three experiments were performed using SVM, a time

frequency spectrogram model and a cyclo-stationary model.

The best results were 99.4 percent verification rate with

normal walking and 96.8 percent verification rate with fast

walking. This work used both accelerometer and gyroscope

data.

In [19], the relationship between gait authentication and

soft biometrics was analyzed. The soft biometrics considered

were gender, age, surface, sensor type, and sensor location.

The devices were placed at the waist of 744 subjects where

389 were male and 355 were female. These subjects ranged

from ages 2 to 78. They concluded that the performance of

gait authentication decreased with age. They also conclud-

ed that a sensor located at the waist impacted gyroscope

authentication more than accelerometer authentication.

Although these studies increase our understanding of the

potential of gait-based authentication on smartphones, they

differ from our objective, which is to initiate a new paradigm

of gait-based authentication that uses information on the

position of the phone during the authentication process.

III. EXPERIMENT DESIGN

A. Data Collection

After getting IRB approval from our university, we col-

lected data from 30 users who were either faculty, staff

or students of the university. Each user participated in two

data collection sessions that were at least one day apart.

We will refer to these sessions as Session I and Session

II. The reason for collecting data over two sessions that

were on different days was to ensure that our training and

testing datasets were collected at different points in time.

Otherwise an experiment in which all data is collected on

the same day may not realistically represent the natural

variations in walking patterns that an authentication in a

practical setting might encounter. Each session comprised

two separate experiments. In the first experiment, every

participant placed a Google Nexus phone in each of the

right and left hand pockets and walked for approximately

2 minutes in a long corridor outside our research lab. In

the second experiment, every participant held two Google

Nexus S phones (one in each hand) and again walked

for approximately 2 minutes in the same corridor. As the

participants walked, an application on the phone recorded

accelerometer measurements.

B. Data Pre-processing and Feature Extraction

Accelerometer measurements are of the form (X, Y,

Z) where X, Y and Z are respectively the X, Y and Z

components of the acceleration relative to the phone. We

removed the gravity component from each of the X, Y and
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Z measurements and converted them to the Earth’s frame

of reference using the rotation matrix [20]. For each point,

we then computed the magnitude M =
√

(X2 + Y 2 + Z2)
that we refer to as the fourth component in the rest of

the paper for simplicity. Raw accelerometer measurements

are quite noisy, since even a phone in a fixed position

could return accelerometer measurements depicting bursts

of acceleration. To minimize the effect of noise, we used

a simple moving average based on a window of 3 points

for each of the X, Y, Z and M components. For each

component, the smoothed time series after this step was

broken into windows, each containing 100 points and having

an overlap of 50 points with the next window. From each of

these windows, we then computed the 55 features shown in

Table I. The table assigns numeric identifiers to each of the

Feature
Name

Feature Id (F.Id) for
Accelerometer Component

X Y Z M

Minimum 1 15 29 43

Maximum 2 16 30 44

Mean 3 17 31 45

Standard deviation 4 18 32 46

First Quartile 5 19 33 47

Second Quartile 6 20 34 48

Third Quartile 7 21 35 49

Power 8 22 36 50

Energy 9 23 37 51

# of Peaks 10 24 38 52

# of Zero Crossings 11 25 39 -

Skewness 12 26 40 53

Kurtosis 13 27 41 54

Avg peak Interval 14 28 42 55

Table I
LIST OF FEATURES EXTRACTED FOR X, Y, Z AND M (55 IN TOTAL)

FROM EACH WINDOW

features since it will be more convenient to refer to these

features by their F.Ids (than by their longer names) in the

proceeding sections of the paper. For example, the feature

with F.Id 1 is the minimum of X, the feature with the F.Id

15 is the minimum value of Y while the F.Ids 29 and 43

are respectively the minimum values of Z and M . Observe

that the number of zero crossings for M is not defined since

the magnitude feature is always positive and hence does not

cross the zero line.

C. Could Changes in the Position of the Phone Significantly

Change a User’s Features?

Before discussing the framework and performance of

our context-aware authentication system, we first examine

the impact that the position of the phone has on a user’s

features. We specifically address two questions: (1) Does

the position of the phone (i.e., hands or pockets) cause

significant changes in a user’s features — e.g., would an

arbitrary feature (such as the mean value of X in Table I)

change significantly depending on whether it is computed
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(a) Features extracted when the phone was held in the pocket in
Session 1 (PS1) compared using the K-S test to those extracted
when (i) the phone was held in the pocket in Session 2 (PS2), and
(ii) when the phone was held in the hands in Session 2 (AS2).
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(b) Features extracted when the phone was held in the hands in
Session 1 (AS1) compared using the K-S test to those extracted
when (i) the phone was held in the hands in Session 2 (AS2), and
(ii) when the phone was held in the pocket in Session 2 (PS2).
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(c) Features extracted when the phone was held in the left pocket in
Session 1 (LPS1) compared using the K-S test to those extracted
when (i) the phone was held in the left pocket in Session 2 (LPS2),
and (ii) when the phone was held in the right pocket in Session 2
(RPS2).

Figure 1. Results of the two-sample Kolmogorov-Smirnov test on the
effect of the position of the phone on a user’s feature values.
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User Identification

Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F.Id 29 32 37 36 50 51 18 16 46 30 15 44 49 19 33

Score .057 .056 .056 .053 .053 .053 .053 .052 .052 .052 .052 .051 .049 .048 .047

Ranks 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F.Id 42 22 23 4 2 1 21 45 35 48 7 28 8 9 55

Score .047 .047 .047 .047 .047 .047 .046 .046 .044 .044 .042 .040 .040 .040 .040

Table II
BEST 30 RANKED FEATURES FOR USER CLASSIFICATION

Feature Ranking for Limb Classification

Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F. Id 25 29 11 33 32 31 43 47 50 51 45 34 48 38 49

Score .258 .256 .236 .218 .193 .185 .179 .170 .168 .166 .157 .155 .147 .146 .143

Ranks 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F.Id 40 37 36 39 55 30 44 18 19 42 15 8 27 41 9

Score .143 .132 .120 .112 .105 .100 .100 .088 .087 .087 .082 .080 .079 .079 .077

Table III
BEST 30 RANKED FEATURES FOR CLASSIFICATION OF THE POSITION OF THE PHONE

based on a phone in the hands or the pocket?, (2) Does the

side of the body (i.e., left or right) on which the phone is held

significantly affect a user’s feature values? There are several

ways in which these kinds of questions could be addressed.

Here we use a hypothesis testing approach, comparing each

user’s features for the two positions (e.g., hands or pockets)

to determine if significant differences exist.

However, before performing this testing, we first carry

out a feature selection step so as to run our tests with

a compact but informative feature-set that is in tune with

the well known resource constraints of mobile devices1.

While we did not run our classification system on the phone,

we still minimize the feature numbers because our design

recommendations ought to be suitable for a live smartphone

application. We used the correlation based attribute evaluator

[21] to rank the 55 features in Table I and selected the

top 30 of these features. This method uses a heuristic that

assigns a high score to a subset of attributes which have high

correlation with the class, yet have low correlation with each

other.

Table II shows the top ranked features from this analy-

sis. Working with these features, we used the two-sample

Kolmogorov-Smirnov (or K-S) test [22] with α= 0.05 to

compare each user’s features across different phone posi-

tions. Consider a user who has 50 feature vectors each of

which containing 30 features numbered # 1 through # 30.

Each feature has 50 instances, i.e., each feature can be used

to create a 50 dimensional vector. For a feature such as

Feature # 1, we use the K-S test to compare the user’s 50

dimensional vector when the phone was held in the hands to

1A continuous authentication system is expected to run all the time on
the smartphone; minimizing the dimensionality of feature vectors is one
sure way to reduce resource consumption.

a similar vector when the phone was in the pocket. The null

hypothesis Ho of the test is that the two feature vectors

compared follow the same distribution. Rejection of the

hypothesis implies a significant difference in Feature #1 for

the two phone locations, which in turn suggests that changes

in the phone location could affect classification performance

if a good number of features depict this trait.

For each user, we carried out this analysis for each of

the top 30 selected features and registered the number of

features for which Ho was rejected. Figures 1(a) through

1(c) summarize the results from these tests in the form of

a CDF plot expressing the number of features for which

Ho was rejected across the full user population. In Figure

1(a), the features extracted when the phone was held in the

pocket in Session 1 (PS1) were compared using the K-S test

to those extracted when the phone was held in the pocket in

Session 2 (PS2), and when the phone was held in the hands

in Session 2 (AS2) (Review Section III-A for description of

data collection sessions).

Observe that 80% of the user population had over 15

rejections of Ho for the case PS1 vs AS2 while less

than 50% had the same number of rejections for PS1 vs

PS2. Similarly, almost 100% of the population had over

10 rejections of Ho for the case PS1 vs AS2 compared to

about 80% for the case PS1 vs PS2. This trait means that

whenever data collected with the phone in the pockets during

a given session was compared with data collected with the

phone held in the pocket during another session (i.e., PS1

vs PS2), a good number of users were more likely to have

many of their features matching than when data collected

with the phone held in the hands was compared to data

collected when the phone was in the pocket. This same trait

is also seen in Figure 1(b) as users again see more features
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exhibiting variations between Session 1 and Session 2 when

two different phone holding positions are compared (AS1

vs PS2) than when the phone is in the same position (AS1

vs AS2).

When comparisons were made between different sides

(left or right — Figure 1(c)) the difference was not as

dramatic as when comparison was between the hands and

the pocket. Further analysis indicated minimal impact of

the side on which the phone was held, so we focused on

the comparison between the hands and the pocket for the

rest of the paper. Overall, the results of the significance

tests (Figures 1(a) and 1(b)) suggested that information

on the location of the phone could significantly impact

classification performance. In the following section we

present our context-aware classification system and show the

performance benefits that it attains as a result of leveraging

information about the phone position during classification.

IV. PERFORMANCE AND DESIGN OF CONTEXT-AWARE

AUTHENTICATION SYSTEM

Given a biometric sample that is to be assigned a class

label, our context-aware authentication system first checks

whether the sample is from a phone held in the hands or

a phone in the pockets2. Based on the result from this test,

user authentication is then carried out based on a comparison

with the appropriate template.

Algorithm 1 summarizes this process; the function

identifyLimbs() checks whether samples are from the

hands, and uses the stored template associated with the hands

for authentication if samples are found to be from the hands,

or a template associated with the pockets if otherwise.

While the algorithm itself is quite straightforward, its

performance is very heavily reliant on two critical design

decisions, namely, the criteria by which a sample can be

classified to belong to one of the two phone positions, and

the features which are best suited for classifying phone

positions (as opposed to classifying users). We next discuss

these issues and how we address them:

A. Features for Determining Phone Positions

A feature that is good at separating users is not necessarily

as good if used to discriminate between a different category

of classes, say, phone positions. To determine which features

to be used to separate between phone positions, we again

applied the correlation-based feature selection approach that

was used in Section III-C. The only difference this time was

that the class label was the position of the phone, as opposed

to the user Id. Table III shows the features that were selected

through this criteria. Again, we only take the top 30 features

to minimize the load on the system.

2As we discussed earlier, we believe it is reasonable to assume that a
person who is walking will more than likely have the phone in the pockets
or the hands. That said, ours is a generic framework that can be easily
extended to accommodate new phone positions if needed.

Algorithm 1: Multi-stage Authentication Framework

Input: AccReadings(X[],Y[],Z[],M[])

//Phone’s Linear Accelerations (X,Y,Z)

Transformed to the Earth Coordinate

System, and the Resultant M

Input: TemplatePockets

//Classifier Template Built from

Phone-in-Pocket Readings

Input: TemplateHands

//Classifier Template Built from

Phone-in-Hand Readings

Output: ADecision

//Authentication Decision

AuthenticateUser()

begin

if IdentifyLimbs() == Hands then
ADecision ← Authenticate(TemplateHands,

AccReadings[]);

end if

else if IdentifyLimbs() == Pockets then
ADecision ← Authenticate(TemplatePockets,

AccReadings[]);

end if

end

Observe that a good proportion of the features that were

part of the top 30 in Table II are not seen in Table III. This

points to the importance of choosing a specialized feature-

set for the phone position classification problem.

B. Mechanism for Determining Phone Positions

A simple way to address the question of how to map

vectors to phone positions is by using a purely supervised

approach, where the authentication system is explicitly

trained based on data collected from the phone owner for the

two phone positions. In practice though, such an approach

would mean that an individual who acquires a new phone

would have to go through a dedicated process of inputting

labeled samples to the phone; an intrusive process that is

unlikely to be embraced by the common user.

We propose a semi-supervised approach, where the phone

is shipped with labeled samples of these two classes from

the population. By comparing a users data to multiple

population samples associated with either kind of activity,

a classifier can assign the sample to either of the classes.

After an individual has used the phone (i.e., successfully

authenticated) for sometime, the users own samples can then

be used as reference templates for future classification of

the phone position. Using a Logistic Regression classifier,

we were able to classify a phone position correctly 85% of
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the times when we used population data for training.

It is noteworthy that the full benefits of the multi-stage

authentication mechanism can only be reaped if the phone

position classification accuracy is as close to 100% as

possible. We are currently investigating methods that could

guarantee a higher classification accuracy than reported here.

C. User Classification Results

We use the Logistic Regression implementation in Weka

[23] to test the performance of our user authentication

model. We compute the classification accuracy when data

from a phone kept in the pocket (we call this pocket data)

was used to train and when data from a phone held in the

hands (we call this hand data) was used for training. In both

cases we performed tests with both hand data and pocket

data. Table IV summarizes the classification results. Observe

Training Pocket Data Hand Data

Testing Hand Pocket Hand Pocket

Classification

Accuracy
61.76% 72.58% 82.30% 62.55%

Table IV
ILLUSTRATING PERFORMANCE IMPROVEMENT ARISING OUT OF

LEVERAGING PHONE POSITION INFORMATION DURING

CLASSIFICATION.

that the classification accuracy increased from 61.76 percent

to 72.58 percent when pocket data was used for both training

and testing. Also observe that the classification accuracy

increased from 62.55 percent to 82.30 percent when hand

data was used from both training and testing. While we

continue to fine-tune the design of our system, these initial

results show the promise that our methodology has.

V. CONCLUSION

In this paper, we have proposed an accelerometer-based

gait authentication model that leverages information about

the phone position to improve classification performance.

Based on a combination of statistical tests and authentication

results, we have shown the need for this model and the

performance benefits it offers. As gait-based authentication

technologies edge closer towards being deployed as a securi-

ty layer in smartphones, our findings represent an important

step towards improving the performance of these systems.
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