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Abstract

Representation of fingerprints is one of the key factors

that limits the accuracy and efficiency of matching algo-

rithms. Most popular methods represent each fingerprint

as an unordered set of minutiae with variable cardinality

and the matching algorithms are left with the task of find-

ing the best correspondence between the two sets of minu-

tiae. While this makes the representation more flexible and

matching more accurate, the task becomes computationally

intensive. Fixed length representations with aligned fea-

tures are highly efficient to match. However, creating an

aligned representation without the knowledge of the sample

to which it is to be matched, makes the problem of repre-

sentation more complex. Some of the fixed-length repre-

sentations only provide partial alignment, leaving the rest

to the matching stage. In this paper, we propose a fixed

length representation for fingerprints that provides exact

alignment between the features, thus enabling high-speed

matching with minimal computational effort. The represen-

tation extends the idea of object representation using bag

of words into a bag of minutiae neighborhoods. The rep-

resentation is provably invariant to affine transformations

(rotation, translation and uniform scaling), and is shown to

be highly discriminative for the task of verification. Experi-

mental results on FVC 2002 and 2004 datasets clearly show

the superiority of the representation with competing meth-

ods. As the proposed representation can be computed from

the standard minutiae templates, the method is applicable

to existing datasets, where the original fingerprint images

are not available.

1. Introduction

The identification of people by measuring some physio-

logical or behavioral traits has led to the emergence of bio-

metrics as a prominent research field in recent years. Sev-

eral biometric technologies have been developed and suc-

cessfully deployed around the world : fingerprints, face,

iris, signature etc. Out of all biometric traits, fingerprints

are the most popular because of their ease of capture, dis-

tinctiveness and persistence over time[1], as well as cost and

maturity of products. As fingerprint sensors are becoming

cheaper and smaller, in addition to military applications, a

wide range of civilian applications such as passport control,

border crossings, national identity projects, driver licences,

fingerprint based smart cards etc. are using fingerprints as a

primary trait for identifying people.

Although what we get from a fingerprint sensor is usu-

ally a grayscale image of some resolution, only a few finger-

print recognition algorithms work directly on the grayscale

image. Before the matching stage, most of the algorithms

have a pre-processing or a feature extraction stage where

useful information is extracted from the fingerprint. This

information is then stored in databases and is known as

the representation for fingerprints. A good quality finger-

print representation should be robust to distortions, have

small storage size, should be able to handle noisy images,

should be easy to extract automatically from images and

it should be easy to match two representations. Most of

the above fingerprint authentication systems would benefit

from a fixed-length binary representation of a fingerprint

that has the above qualities. Many effective representations

have been proposed in the literature. Based on features ex-

tracted and stored, the traditional fingerprint representation

schemes can be classified as :

• Global Features based Representation : These rep-

resentations include global ridge-line frequency, core

points, orientation images, singular points etc. These

features represent the global pattern of the ridges in

the fingerprint. One disadvantage of these representa-

tions is that they cannot be easily extracted from poor

quality fingerprints. Also, these representations do not

offer good individual discrimination and are not good

at handling distortions. Further, such representations

cannot handle small local non-linear distortions and
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there is no standard definition for most of these fea-

tures leading to compatibility issues with most of the

existing fingerprint databases.

• Local Features based Representation : The local

approach refers to representing the fingerprint in the

terms of minutiae sets, local ridge orientations and lo-

cal ridge frequency. These local representations are

quite distinctive and generally outperform their global

counterparts. Ross in his work [2], uses representa-

tive local fingerprint patterns to construct a feature vec-

tor. Tuyls in his work [3] proposed a novel quantiza-

tion algorithm to get fixed length representation based

on local orientation of ridges. Minutiae based repre-

sentations are the most popular as they are compli-

ant with most of the existing fingerprint suppliers and

databases and have small template size. As per the

ISO/IEC 19794-2 minutiae template [4], each minu-

tia m is a triplet m={xm,ym,θm} where xm and ym
are the minutia location, θm is the minutia direction

(in the range [0,2π]). A fingerprint is stored as Fp

= {m1,m2,m3....mn} a collection of minutiae points.

The basic disadvantage is that two impressions from

the same finger can have different number of minutiae

leading to a variable length descriptions. Another dis-

advantage is that the representation suffers from mis-

alignment problem and require a preliminary registra-

tion step. Typical approach is to align the unregistered

minutiae sets (having different sizes) of the two finger-

prints and then find the overlap and similarity. Also, a

minutiae based representation due to its variable size is

not suitable for recently proposed template protection

schemes such as [3] and [5]. Bringer in his work [6],

transforms a minutiae set into a fixed-length quantized

feature vector by matching small minutiae vicinities

(or neighborhoods) with a set of representative vicini-

ties.

• Combination of Local and Global : These schemes

combine the local and global information present in a

fingerprint. Fingercode proposed by Jain[7] , utilizes

both local and global ridge descriptors and texture in-

formation. It is a fixed 640 byte representation that

is extracted by tessellating the image around the core

point. The feature vector consists of an ordered collec-

tion of texture descriptors from various sectors of the

tessellation. The disadvantage of fingercode is that it

requires the core point to be accurately located which

in itself is a difficult problem. Sha [8] proposed an

improved version of fingercode but the same problem

still persists. Benhammadi [9] also proposed a new

representation called oriented minutiae codes based on

minutiae texture maps. They use the response of eight

gabor filters to generate the codes. However, represen-

tations based on textures and gabor response are not

discriminative enough and are not robust to small local

non-linear distortions.

• Transform based representations : Tico [10] pro-

posed a 48 byte length representation using Digital

Wavelet Transform (DWT) features. Amornraksa [11]

proposed a 24 byte representation using the Digital Co-

sine Transform (DCT) features. However, drawback of

transform-based representations is that they are not ro-

tation invariant and rotation has to be handled explic-

itly. This was handled by Xu in his work [12], in which

he proposed a spectral minutiae representation based

on Fourier-Melin transform. By representing minutiae

as a magnitude spectrum, he transforms a minutiae set

into a fixed length feature vector. But still the scheme

is not very robust to non-linear distortions.

Most of the representations described above either can-

not handle global transformations like rotation etc. or are

not tolerant towards small local non-linear distortions or are

variable in size. This implies that the accuracy of match-

ing using the quantized feature vector representations still

is very low as compared to classical minutiae based match-

ing. We need a fixed length (binary prefered) representation

that is tolerant towards these distortions, can handle miss-

ing/spurious minutiae, is suitable for template protection

schemes, small enough to be stored on smart cards and has

a minutiae-only construction so that it can be applied to ex-

isting databases. In the next section we propose a new local

minutiae structure called an arrangement structure that cap-

tures the complete geometry of neighboring points around a

central minutia. Given a fingerprint database, we extract all

the arrangement structures to populate the high-dimensional

structure space. We then use k-means clustering to clus-

ter this high dimensional space of arrangement structures.

From this we get k cluster centers, which correspond to the

k most prominent neighborhood structures learned from the

fingerprint database. Then every fingerprint in the database

is expressed as a collection of these cluster centers to get a

fixed-length (of length k) representation for a fingerprint.

2. Representing Local Neighborhoods

We need an affine invariant method of representing all

the information in the locality of a minutia point. We be-

lieve that there is sufficient information present in the local-

ity of a point that can help us get an aligned representation

without any knowledge of the sample to which it is to be

matched. Bhanu [13] proved that relative geometric fea-

tures around the locality of a minutia point are invariant to

affine distortions (rotation, translation and uniform scaling).

We try to use such local features to come up with an affine

invariant representation of each minutia that allows us to
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Figure 1. The process of creating an arrangement structure for minutia X. In step1, we find the nearest n minutiae of X. In subsequent

steps, we take two points A,B and calculate invariants a,b,c,d,e (see Section 4.3). abcde is the required structure that describes the local

neighborhood of central minutia X.

Figure 2. The geometric features computed from ∆AXB. Rela-

tive distances AX and BX, Relative Orientations φA and φB and

angles ∠B and ∠A

compare two minutiae points and determine their similarity

irrespective of the global alignment.

2.1. The Arrangement Structure

Our local structure, called the arrangement structure, is a

fixed-length descriptor for a minutia that captures the geom-

etry formed by its neighboring points around that minutia.

This distinctive representation of each minutiae allows us to

compare two minutiae points and determine their similarity.

The process of calculating the arrangement structure for

a minutia (X), shown in Figure 1, is as follows:

• We calculate the nearest n neighbors of minutia X

based on their euclidean distances from X. In Figure

1, let n = 5, and the nearest minutiae are p1,p2,p3,p5

and p6.

• Starting with the nearest point, we arrange the n points

in clockwise order. This is because the clockwise or-

der of minutiae points remains unchanged even when

the fingerprint image is rotated, translated, scaled or

sheared.

• Now, we describe the local geometry of these n points

around the minutia X. As shown in Figure 1, let n=5,

and let p3, p2, p1, p6 and p5 be the n minutiae arranged

in clockwise order. Now starting with the nearest point

and with two points marked as A, B we calculate the

following geometric features from∆AXB as shown in

Figure 2:

– Relative Distances : We calculate the euclidean

distances between points X and A,B. The first

feature is the ratio of these relative distances.

– Relative Orientation : We calculate the orien-

tations of points A,B with respect to the central

minutia X (relative orientation of A is the φA -

φX , where φA is the orientation of minutia A).

The second feature is the ratio of these relative

orientations.

– Angles of ∆AXB : The next features we use the

angles ∠XBA and ∠XAB of the ∆AXB. The

third feature is the ratio of these angles.

• These features are provably invariant to geometric dis-

tortions [13] and remain unchanged even when the fin-

gerprint is translated, rotated, scaled or sheared.
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Figure 3. Populating the n ∗ 3-dimensional structure space. The

arrangement structures are extracted from each fingerprint in the

database. Then the structure space is partitioned into K clusters

via the k-means algorithm.

We concatenate these three features to form a set of car-

dinality three (a = [a1,a2,a3] as shown in figure 1) that de-

scribes contribution of ∆AXB in the arrangement of these

n points around the minutia X. By sliding the points A, B

in clockwise rotation, n such invariant sets are calculated

(i.e a[a1,a2,a3], b[b1,b2,b3], c[c1,c2,c3], d[d1,d2,d3] and

e[e1,e2,e3] in Figure 1). Thus abcde is the arrangement

structure of length n*3 that describes the geometric layout

of these n points around our central minutia X. The structure

abcde depends upon the initial choice of points A, B and is

not invariant to rotations. To achieve rotation invariance,

we use cyclic permutations of this structure. All n cyclic

permutations of abcde (i.e bcdea, cdeab, deabc, eabcd and

abcde) are calculated and stored in a list as shown in Fig-

ure 3. So we generate many n ∗ 3 dimensional arrangement

structures in the learning phase as shown in Algorithm 1,

where each structure represents a minutiae neighborhood.

Now we use k-means to cluster this n∗3-dimensional space

as shown in Figure 3.

3. Representing a Fingerprint

Fingerprints can be seen as non-linearly distorted ar-

rangement of neighborhoods. Our goal is to create an

aligned fixed length representation for a fingerprint that

is invariant to affine deformations. We use unsupervized

clustering to achieve that. K-means results in K clusters

c1,c2,c3......cK where each cluster represents set of similar

neighborhoods. The centroid of each cluster cj , represented
by mj can be seen as the mean representative neighbor-

hood for that set of neighborhoods that map to cj . So, in

essence,m1,m2,m3.......mK are the most prominent neigh-

borhoods learned by our algorithm. Any fingerprint now

can be represented in terms of these representative neigh-

borhoods. When a new fingerprint comes, we extract all the

Algorithm 1 Learning Phase

INPUT → Entire Training Database db, n, k

OUTPUT → k-representative neighborhoods

L→ list of all arrangement structures

L→ NULL

for all fingerprint template fp in db do

for all minutia p in fp do

N → nearest n neighbors of minutia p

find arrangement structure abcde

L.Append(all cyclic permutations of abcde)

end for

end for

K → K-means(k,L)

K → cluster centers returned by standard k-means Algo-

rithm

Figure 4. A fingerprint image represented in terms of represen-

tative neighborhoods. Given a image, we extract all the neigh-

borhoods and map them to the nearest cluster. fp is the K length

binary representation of the fingerprint.

neighborhoods from that and map each neighborhood fea-

ture vector to its nearest cluster center as shown in Figure

4. So, now each fingerprint is a binary feature vector fp of

length K where fpi tells whether a neighborhood similar

to mi is present in the fingerprint or not as shown in Algo-

rithm 2. So, we now visualize fingerprints as a collection of

neighborhoods rather than a grayscale image or a minutiae

set.

4. Fingerprint Similarity Measure

Now given two binary vectors fp1 and fp2, representing

the two fingerprints, a formula based on simple bitwise op-

erations on the two vectors will give a measure of number
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Algorithm 2 Fixed Length Representation

INPUT → Entire Database db, List of clusters K from

learning phase, n

OUTPUT→Binary Vectors for each fingerprint template

fp in db

for all fingerprint template fp in db do

B→ Binary vector of length K initialized with zeros

for all minutia p in fp do

N → nearest n neighbors of minutia p

find arrangement structure abcde

Let mi → nearest cluster center for abcde

Set Bi → 1

end for

end for

of similar neighborhoods present in them. Thus, simple bit-

oriented coding can now be used as a measure for finger-

print similarity. Similarity s between two binary vectors,

fp1 and fp2 is calculated by using the L2-norm of the XOR

of the two vectors . L2-norm is the square root of the num-

ber of one bits in the vector.

s(fp1, fp2) = 1− (‖fp1 XOR fp2‖)/(‖fp1‖+ ‖fp2‖)
(1)

5. Experiments and Results

Experiments were conducted on FVC 2002 db1, db2,

db3 and FVC 2004 db1 and db2 databases. Each database

consists of 800 impressions from 100 different fingers, 8

impressions per finger. The minutiae were extracted using

the standard NIST MINDTCT algorithm[14]. First six im-

pressions per finger were used for learning the cluster cen-

ters. Then all templates in the databases were converted

to their correspondening fixed length representations. The

performance evaluation protocol used in FVC 2002 (same

as in [15]) has been adopted. Experiments were done for

different values of k and n. The best results were obtained

for cluster size of 1000 (i.e k=1000) and neighborhood size

of 5 (i.e n=5). A total of 14,000 genuine matches (2800 per

database) and 24,750 imposter matches (4950 per database)

were done. The ROC curves with different number of clus-

ters have been plotted below. It was observed that the accu-

racy increased with increase in number of clusters upto an

extend and then it started decreasing gradually after 1000

clusters as shown in Figure 8. If the number of clusters

is less then the probablity of two different neighborhoods

mapping to the same cluster increases lowering the accu-

racy. On the other hand, if the number of clusters are too

high, then two similar neighborhoods can map to different

clusters which again will lower the accuracy. So, there has

to be an optimal value for number of clusters for which the

accuracy is maximized, in our experiments we observed that

the accuracy was maximum for 1000 clusters. The results

have been compared (see Figure 7) with spectral minutiae

representation [12] and binary representation through minu-

tiae vicinities [6]. These are the two major fixed-length

quantized fingerprint representations in the literature. The

ROC curves showing the accuracy on FVC 2002 databases

(see Figure 6) and FVC 2004 databases (see Figure 5) have

been plotted. To genuine-imposter class distribution for

FVC 2002 db2 is shown in Figure 9.
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6. Conclusion

We proposed a novel binary fixed-length representation

for a fingerprint constructed from minutiae-only features.

We captured the local geometry around a minutia point into

our local arrangement structure. We then applied unsuper-

vised learning to learn prominent minutiae neighborhoods

from the database. A fingerprint was then represented as a

collection of neighborhoods resulting in a fixed 1000-length

binary representation. The matching of two fingerprints is

then reduced to a sequence of bitwise operation which is

very quick. Experiments conducted of FVC 2002 and 2004

databases showed the effectiveness of our representation as

compared with the major fingerprint representations exist-
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Figure 7. Comparison of the proposed approach with spectral

representation[12] and minutiae vicinities [6]. The comparison is

done with proposed representation based on 1000 clusters on FVC

2002 db2.
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ing in the literature. Our representation is tolerant towards

distortions, can be stored easily on light architectures such

as smart cards and is suitable for biometric template protec-

tion schemes.
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