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Abstract

Many automated driver monitoring technologies have
been proposed to enhance vehicle and road safety. Most
existing solutions involve the use of specialized embedded
hardware, primarily in high-end automobiles. This paper
explores driver assistance methods that can be
implemented on mobile devices such as a consumer
smartphone, thus offering a level of safety enhancement
that is more widely accessible. Specifically, the paper
focuses on estimating driver gaze direction as an indicator
of driver attention. Input video frames from a smartphone
camera facing the driver are first processed through a
coarse head pose direction. Next, the locations and scales
of face parts, namely mouth, eyes, and nose, define a
feature descriptor that is supplied to an SVM gaze classifier
which outputs one of 8 common driver gaze directions. A
key novel aspect is an in-situ approach for gathering
training data that improves generalization performance
across drivers, vehicles, smartphones, and capture
geometry. Experimental results show that a high accuracy
of gaze direction estimation is achieved for four scenarios
with different drivers, vehicles, smartphones and camera
locations.

1. Introduction

The U.S. Department of Transportation’s National
Highway Traffic Safety Administration (NHTSA) reports
that over 3000 fatalities from automobile accidents are
caused by driver drowsiness or distraction [1]. In response,
there is an emerging body of research on the use of
in-vehicle cameras and sensors coupled with computer
vision techniques to monitor driver behavior for enhanced
safety [2-4]. Most technologies in the market today are
found primarily in high-end automobiles (e.g., Mercedes
Benz, BMW, etc.) and rely upon sophisticated image
capture and processing afforded by specialized hardware
that interacts with built-in vehicle telematics.

In this paper, we explore an approach for driver
monitoring that can be executed on a mobile device such as
a consumer smartphone. This approach has several
advantages. First, consumer smartphones are widely used,
and can offer certain simple and inexpensive forms of driver
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assistance accessible by the mainstream market. Secondly,
the mobile solution is associated closely with the user rather
than the vehicle, and thus can potentially incorporate
customized driver-specific context into the safety
monitoring process. Thirdly, mobile technologies are
rapidly advancing in terms of hardware and imaging
capabilities, and can be adapted and upgraded at a much
faster cadence than embedded solutions offered by
automobile manufacturers. All said, we acknowledge that
the processing capabilities of a consumer smartphone are
not likely to match that of a dedicated embedded solution
and that the two frameworks could be synergistically
combined to leverage the advantages of both.

Specifically, this paper focuses on estimating driver gaze
direction from smartphone video captured of the driver. The
novel contributions of the paper are two-fold. First, the 3D
gaze space is quantized into 8 common gaze directions in
feature space, and gaze estimation is formulated as an
efficient classification problem. The second and more
significant contribution is an offline training method that
gathers training data for the gaze classifier in-situ for a
given driver/vehicle/camera setup. This step significantly
improves generalization performance of the classifier. Data
collection is designed with safety and convenience in mind.

The rest of this paper is organized as follows. Section 2
briefly describes related work on smartphone-based driver
monitoring and human gaze estimation. Section 3
introduces the proposed method of driver gaze estimation.
Section 4 reports the experimental results, and concluding
remarks are collected in Sec. 5.

2. Related work

Smartphone-based driver monitoring is a relatively
nascent area offering rich potential for both research and
application development. Eren et al. [5] proposed using the
inertial sensors in a smartphone, namely the accelerometer,
gyroscope, and magnetometer to measure position, speed,
acceleration, and deflection angle, and relate the measured
data to driver behavior. While this approach can monitor
some aspects of driving behavior, it is unable to predict
important events such as driver drowsiness or distraction
that could lead to unsafe driving conditions. The iPhone app
iOnRoad [6] requires the user to place the smartphone on
the windshield with the rear camera facing the road. The app
claims to monitor distance to nearby vehicles and lane
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Figure 1: (a) Camera dashboard mount; (b) driver view in used

camera geometry.

departure, as well as vehicle speed via GPS. It does not,
however, capture any imagery or footage of the driver and
thus cannot monitor driver attention or fatigue. To our
knowledge, one of the more comprehensive smartphone
apps for driver monitoring is the CarSafe App proposed by
You et al. [7]. The authors propose dual video capture from
the driver-facing and road-facing cameras of a smartphone.
Monitored road-facing events include lane departure and
tailgating. Driver facing events include drowsiness and
attention, the latter being monitored via coarse estimates of
frontal, left, and right gaze directions.

There is a significant body of literature on human gaze
estimation [8-13]. The approaches generally attempt to
determine gaze either in terms of precise roll/pitch/yaw
angle or in terms of coarse (e.g., left, front, right) directions.
Some of the high-precision techniques are based on 3D
geometric models of human pose and gaze.

This paper presents a method for driver gaze estimation
that is amenable to execution on mobile devices with limited
computational resources. Gaze space is quantized into 8§
directions commonly encountered during driving. This
approach thus falls in-between the two extremes of very fine
and very coarse gaze estimation found in the literature. The
gaze estimation is accomplished via a rather standard choice
of features and SVM classifier. However, a key novelty is
in the method of training the classifier to perform reliably
across a wide range of conditions, as explained in Sec. 3.

3. Gaze estimation algorithm

Our approach requires that a smartphone be mounted on
the windshield or dashboard of a vehicle with front-camera
facing the driver. Since many state laws in the United States
place restrictions on windshield mounts, our preference is
for the dashboard mount, as shown in Fig. 1(a). Experiments
have suggested that a mounting location near the center of
the dashboard (i.e., below the rear view mirror) is
convenient for user interaction and offers an acceptable
view of the driver (see Fig 1(b)). In the proposed system, we
specify 8 gaze directions commonly encountered during
driving, as shown in Fig. 2. Gaze estimation thus boils down
to gaze classification with respect to the 8 classes, which
enables a computationally efficient implementation. Next
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Figure 2: Eight common gaze directions used to train the classifier.

we describe the online classification method, with the
training method being described in Sec. 3.2.

3.1. Gaze classification method

Figure 3 is a block diagram of the online steps involved in
estimated gaze direction from input video frames. Given the
need for quasi-real-time performance on a smartphone,
computational efficiency was a prime consideration when
designing the features and selecting the classification
technique. The steps of the method are as follows:

i) Coarse head pose detection. Input video frames are
first processed through frontal, left- and right-profile face
detectors to determine coarse head pose direction. These
face detectors comprise fast Adaboost cascade classifiers
operating on Haar feature descriptors [14].

ii) Gaze feature descriptors. Next we process only those
frames classified as containing frontal poses from the
previous step. Facial regions are sent to modules that detect
the location of left iris, right iris, mouth and nose (see Fig. 4).
These are again Adaboost cascade classifiers trained
specifically to detect the respective facial regions. A
14-dimension feature vector comprising normalized face
part locations and sizes is defined as follows.

X = (xle’yle’Sle’xre’yre’sre’

'xn’yn’wn’hn’xm’ym’wm7hm)

(1

where x and y are spatial locations, s denotes side length,
and w and & denote width and height, respectively.
Subscripts le, re, n, m denote respectively left eye, right eye,
nose, and mouth. The position and size of each face part are
normalized by the lengths of the axes of the “face coordinate
system”. The latter is defined by the square surrounding the
detected face, with the origin located at the top-left corner
of the square. The normalization equations are:
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Figure 3: Block diagram of the online stage.
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where index p e {le,re,n,m} denotes the face parts, and

variables with subscript f are facial coordinates and sizes.
The value of each component of the feature vector is thus
normalized to the range [0,1] . This makes the feature

descriptors invariant to facial translation and scaling, as
well as to pixel resolution. Additionally, this intrinsic data
normalization process ensures that decisions are not
dominated by any particular feature. Lastly, the locations of
the feature points are temporally smoothed using a Kalman
filter tracker.

iii) Gaze classifier. The extracted feature vector is input
to a classifier that outputs an estimated gaze direction out of
8 possible directions. In the proposed system, a multi-class
linear support vector machine (SVM) classifier is employed
with a one-versus-one scheme, wherein a binary decision
function is learned between every pair of classes.

iv) Temporal post-filtering. The final step ensures
smoothness in gaze estimates over time, and enforces the
assumption that transitions between different gazes occur
smoothly relative to the acquisition frame rate. A sliding
window history of class labels from the previous 5 frames is
maintained, and a majority voting scheme is enforced to
determine the final prediction of gaze in the current frame.

3.2. Offline Classifier Training

A crucial and novel aspect of the proposed system is the
method by which the gaze classifier is trained. When
deploying the application “in the wild”, we encountered
wide variations across different drivers, vehicles,
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Figure 4: Illustration of relative face part features in normalized
face coordinates.

smartphones, and camera placements. Not surprisingly, we
noted that the aforementioned classification method did not
generalize well when trained on one group of
driver/vehicle/camera combinations and tested on another.
To address this problem, we propose an in-situ approach for
gathering training data that is carried out just once for a
given combination of driver, vehicle, and camera setup. We
must keep in mind, however, that gathering labeled data
during the act of driving is unsafe, as it necessitates that the
driver gaze in 8 directions in a controlled fashion while the
vehicle is in motion. To ensure driver safety during training,
we propose a two-stage procedure as follows.

In the first stage, while the vehicle is stationary, the
mobile app prompts the driver to gaze in the 8 directions for
4-second intervals; video is recorded and training data
automatically collected for each gaze class. This procedure
improves generalization across driver/vehicle/camera;
however, experiments revealed that a classifier built from
this data still does not generalize satisfactorily from a
stationary to a moving vehicle. Presumably this is due to
effects such as camera jitter, driver movement, varying
illumination, variability in driver pose while actually
driving, etc. We observed, however, that classification
performance can be significantly improved if we augment
the training data from the stationary vehicle with data from a
moving vehicle for the “road-gazing” class alone (gaze no. 3
in Fig. 2, which is the dominant class).

The second stage of unsupervised training data collection
requires the driver to drive normally while the mobile app
gathers video footage, usually for a short duration (e.g., 3-4
minutes). Face-part features are extracted from each frame
as outlined in Section 3.1. We hypothesize that the various
gaze directions form clusters in feature space, and make a
critical assumption that the “road-gazing” class will be the
dominant cluster. An unsupervised clustering technique is
applied in order to identify the dominant -cluster.
Specifically, we employ the well-known Expectation
Maximization (EM) algorithm [15] to learn a Gaussian
mixture model from the available samples. The EM
algorithm assigns a K-dimensional membership vector
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Figure 5: Video dataset from different scenarios.

m, €[0,1]" to each input feature vector x,,i =1,...,n , where
K is the number of clusters (8 in our case), and each element
(m;), of m; represents the likelihood that the i-th input

sample belongs to the j-th cluster. Note that the elements of
m; sum to one, i.¢., z:; (m); =1i=1,..,n.It follows that

the set of samples that belong to the dominant class
(assumed to be road-facing) is given by:

X[jmnd = {xi | arg jmax (mi ) J = j road } > (5)

=1,...K

where j . denotes the road class. Once the “road-gazing”

class is identified, the input samples that are deemed most
likely to belong to it based on the output of the EM
algorithm (e.g., samples i for which (ml.)j‘ , Z(mi)/,Vj) are

assigned to the road-gazing class.

Training data for the 8 gaze classes from the first stage in
the stationary vehicle is then combined with training data
for the dominant (assumed road-facing) class from the
second stage in the moving vehicle to form the overall
training set. Finally, a linear SVM classifier is trained on
data combined from the two stages.

It is possible that in some instances (e.g., a driver coming
out of a parking lot), the dominant data collected in the
moving vehicle during the second stage will not correspond
to the road gazing class. As a safeguard measure, the
application could use additional logic that compares data
from the moving vehicle to the clusters gathered in the
stationary vehicle, to ensure that the dominant cluster
indeed corresponds to road-gazing data. Furthermore route
information from GPS could also be incorporated to ensure
the training phase encompasses normal road driving.

4. Experiments

The aforementioned gaze classifier was implemented in
C++ using a combination of OpenCV and custom libraries.
The offline training data collection was performed by
smartphone apps running on Android and iOS platforms.
Online execution is currently implemented on a Windows 7
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Table I: Coarse-Grained Head Pose Detection Performance

Scenario Accuracy (%)
Sedan-iPhone-Near 943
Sedan-iPhone-Far 99.6
SUV-iPhone 98.9
SUV-Android 98.4

laptop machine and is planned to be ported to a mobile
platform shortly.

Smartphone video datasets were collected in 4 different
experimental scenarios to capture variations in vehicle,
driver, smartphone, and mounting geometry, as shown in
Fig. 5. Two vehicles were chosen with markedly different
interior geometries, a sedan and sport-utility-vehicle (SUV).
In the sedan, two mounting locations were chosen, the first
directly beneath the rear-view-mirror, and the second
midway between the first location and the center of the
dashboard. An iPhone5 was used to record video with the
front camera. In the SUV, video was recorded with both an
iPhone5 and a Samsung Galaxy S4 Android phone. The
mounting location was directly beneath the rear-view mirror.
Video was captured in both the stationary and moving
vehicle cases for each scenario for all 8 gaze classes. This
combination of factors results in 8 different data sets.

During the training phase, the gathered data set is
randomly split into a training set (80%) and a testing set
(20%). A 10-fold cross validation procedure is conducted
within the training set to select the model parameters. The
classifier is trained accordingly, and then evaluated with the
testing set.

4.1. Coarse-grained detection accuracy

Table I shows the confusion matrices along with the
overall accuracy of the coarse head pose detection (first
stage in Fig. 3) for all four experimental scenarios. The
scenario labels “Near” and “Far” refer to the two mounting
locations with respect to driver position. Results indicate
that high accuracy is achieved by the proposed coarse pose
detection system.

4.2. Fine-grained classification accuracy

The frontal face instances detected by the coarse-grained
stage are further classified as one of the 8 possible driver
gaze classes defined in Fig. 2. The overall classification
accuracy of different techniques across the 4 experimental
scenarios is reported in Fig. 6. The training techniques are:

* “Self’: a classifier trained on data extracted from video

of a vehicle in motion, applied to test data gathered
under the same conditions. This case serves as an upper
bound in classifier performance.

* “Static to Moving”: a classifier trained on data extracted

from video in a static vehicle, applied to test data from
the same vehicle/driver/camera in motion.
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Figure 6: Fine-grained gaze classification accuracy vs. training Figure 7: Confusion matrix (in percentage) for the proposed

techniques. Each color represents one method for offline training.

* “Moving to Moving”: a classifier trained on data from
one moving vehicle with a given driver/camera
combination, applied to test data from a different
moving vehicle and driver/camera combination.

* “Proposed Method”: the proposed approach with a
classifier trained in-vehicle applied to independent test
data gathered from the same moving vehicle.

It is observed that classifier generalization from static to
moving conditions, and from one moving vehicle/driver
camera to another are both poor. This is a common
observation in a wide range of machine learning tasks and
applications where the training data and testing data are
drawn from different distributions. In this particular case,
the performance gap can be attributed to the fact that the
features being used are fairly sensitive to pose. On the other
hand, the proposed method with on-site training comes
fairly close to achieving the upper bound in accuracy (i.e.,
“Self” bars). Note that advances in feature design and
classification technique will improve performance in all
cases, provided the computations are mobile-amenable.

To gain deeper insight into the performance of our
proposed in-situ classifier, the confusion matrix for
experimental scenario SUV-iPhone is shown in Fig. 7. As
expected, most of the confusion lies between classes
corresponding to similar gaze directions (e.g. road vs.
dash-board). Figure 8 shows the classifier output plotted as
a function of time (or frame number) with the proposed
system. The output labels are the same as those in Fig 2. The
results indicate that the proposed system outputs the correct
label for a significant portion of time. Figure 9 shows video
snapshots in the scenario Sedan-iPhone-Near. The final
results of face detection, facial part localization and gaze
direction class are labeled on the video frame. Clearly the
proposed system succeeds at categorizing driver gazes into
semantically meaningful directions.
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method. Rows are classifier output and columns are ground truth.

4.3. “Safe vs. Unsafe” classification

A variant of the proposed method can be used to provide
coarse-scale monitoring of safe vs. unsafe driver behavior.
We define two broad, albeit meaningful, categories as
follows: Safe = {“road”, “left mirror”, “right mirror”, “top
mirror”}, and Unsafe = {“dashboard”, “phone/text”, “music
console”}. Table II reports the accuracy achieved by the
fine-grained classifiers for the same four scenarios when
analyzed at this broad level of classification. It is shown that
classification accuracy is very high at this broad granularity,
and may suffice for many applications.

4.4. Computational performance

On a Windows laptop PC powered by an Intel Core i5
2.5GHz processor with 4 GB of RAM, without optimization
in the implementation, the gaze estimation time was 50-60
milliseconds per frame, which amounts to 15-20 frames per
second. This includes the steps of coarse face direction
detection, object tracking, feature extraction, gaze
classification and temporal filtering.

Although the online gaze estimation system is yet to be
ported to mobile platform, an expected computational
performance is argued as follows. We select Samsung
Galaxy S4 as a benchmark of modern smartphone, for its
largest market share in the U.S. at the time of this work.
Powered by a 4-core 1.6-GHz CPU, its computational speed
is approximately 64% of the Windows PC used in
simulations. One can infer that the processing rate of at least
9.6 frames per second (fps) is achieved by a modern
smartphone. This is acceptable for real-time processing,
since temporal subsampling can be used to keep up with
acquisition frame rate. The computational cost can be
further reduced by applying algorithmic optimization. As
shown in Fig. 2, most steps involve only linear operations in
a l4-dimensional space: Kalman filtering, linear SVM and



Table II: Accuracy of “Safe vs. Unsafe” classification

Scenario Accuracy (%)
Sedan-iPhone-Near 86.4
Sedan-iPhone-Far 91.2
SUV-iPhone 97.4
SUV-Android 96.0
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Figure 8: Time plot of gaze direction estimates by the proposed
method (red) comparing with the ground truth (blue).

temporal averaging. The heaviest step is object detection,
which can be optimized to achieve 15-fps processing rate by
a 600-MHz ARM processor [16]. This shows the capability
of real-time processing on a modern smartphone even for
detecting face and multiple facial parts.

5. Conclusion and future directions

We propose a driver gaze direction estimation technique
from smartphone video using computer vision methods.
Categorizing the gaze space into 8 common driving gaze
directions enables fast extraction of relevant gaze
information. Fast feature descriptors and a linear SVM
classifier are chosen to contain computational cost. A novel
in-situ data collection procedure significantly improves
generalization performance of the classifier across different
driver/vehicle/camera settings without compromising driver
safety or convenience.

Immediate future efforts include: i) porting the real-time
gaze classification onto the mobile platform; ii) additional
experimental validation across a wider gamut of drivers,
vehicles and mobile devices. Longer term directions include:
i) investigating more efficient and effective features and
machine learning approaches for gaze classification; ii)
integrating the gaze monitoring module into a larger driver
monitoring system that incorporates road-facing video
capture along with input from other smartphone sensors
(e.g., GPS, accelerometer, etc.) to place gaze direction in
context with the state of the vehicle and its environment; iii)
incorporating warning mechanisms, e.g. visual, audio, or
haptic feedback, that can positively affect driving behavior.
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