
 

 

Abstract 
 

Many automated driver monitoring technologies have 

been proposed to enhance vehicle and road safety. Most 

existing solutions involve the use of specialized embedded 

hardware, primarily in high-end automobiles. This paper 

explores driver assistance methods that can be 

implemented on mobile devices such as a consumer 

smartphone, thus offering a level of safety enhancement 

that is more widely accessible. Specifically, the paper 

focuses on estimating driver gaze direction as an indicator 

of driver attention. Input video frames from a smartphone 

camera facing the driver are first processed through a 

coarse head pose direction. Next, the locations and scales 

of face parts, namely mouth, eyes, and nose, define a 

feature descriptor that is supplied to an SVM gaze classifier 

which outputs one of 8 common driver gaze directions. A 

key novel aspect is an in-situ approach for gathering 

training data that improves generalization performance 

across drivers, vehicles, smartphones, and capture 

geometry. Experimental results show that a high accuracy 

of gaze direction estimation is achieved for four scenarios 

with different drivers, vehicles, smartphones and camera 

locations. 

1. Introduction 

The U.S. Department of Transportation’s National 

Highway Traffic Safety Administration (NHTSA) reports 

that over 3000 fatalities from automobile accidents are 

caused by driver drowsiness or distraction [1].  In response, 

there is an emerging body of research on the use of 

in-vehicle cameras and sensors coupled with computer 

vision techniques to monitor driver behavior for enhanced 

safety [2-4]. Most technologies in the market today are 

found primarily in high-end automobiles (e.g., Mercedes 

Benz, BMW, etc.) and rely upon sophisticated image 

capture and processing afforded by specialized hardware 

that interacts with built-in vehicle telematics.  

In this paper, we explore an approach for driver 

monitoring that can be executed on a mobile device such as 

a consumer smartphone. This approach has several 

advantages. First, consumer smartphones are widely used, 

and can offer certain simple and inexpensive forms of driver 

assistance accessible by the mainstream market.  Secondly, 

the mobile solution is associated closely with the user rather 

than the vehicle, and thus can potentially incorporate 

customized driver-specific context into the safety 

monitoring process. Thirdly, mobile technologies are 

rapidly advancing in terms of hardware and imaging 

capabilities, and can be adapted and upgraded at a much 

faster cadence than embedded solutions offered by 

automobile manufacturers. All said, we acknowledge that 

the processing capabilities of a consumer smartphone are 

not likely to match that of a dedicated embedded solution 

and that the two frameworks could be synergistically 

combined to leverage the advantages of both.  

 Specifically, this paper focuses on estimating driver gaze 

direction from smartphone video captured of the driver. The 

novel contributions of the paper are two-fold. First, the 3D 

gaze space is quantized into 8 common gaze directions in 

feature space, and gaze estimation is formulated as an 

efficient classification problem. The second and more 

significant contribution is an offline training method that 

gathers training data for the gaze classifier in-situ for a 

given driver/vehicle/camera setup. This step significantly 

improves generalization performance of the classifier. Data 

collection is designed with safety and convenience in mind.  

The rest of this paper is organized as follows. Section 2 

briefly describes related work on smartphone-based driver 

monitoring and human gaze estimation. Section 3 

introduces the proposed method of driver gaze estimation. 

Section 4 reports the experimental results, and concluding 

remarks are collected in Sec. 5. 

2. Related work 

Smartphone-based driver monitoring is a relatively 

nascent area offering rich potential for both research and 

application development. Eren et al. [5] proposed using the 

inertial sensors in a smartphone, namely the accelerometer, 

gyroscope, and magnetometer to measure position, speed, 

acceleration, and deflection angle, and relate the measured 

data to driver behavior. While this approach can monitor 

some aspects of driving behavior, it is unable to predict 

important events such as driver drowsiness or distraction 

that could lead to unsafe driving conditions. The iPhone app 

iOnRoad [6] requires the user to place the smartphone on 

the windshield with the rear camera facing the road. The app 

claims to monitor distance to nearby vehicles and lane 
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departure, as well as vehicle speed via GPS. It does not, 

however, capture any imagery or footage of the driver and 

thus cannot monitor driver attention or fatigue. To our 

knowledge, one of the more comprehensive smartphone 

apps for driver monitoring is the CarSafe App proposed by 

You et al. [7]. The authors propose dual video capture from 

the driver-facing and road-facing cameras of a smartphone. 

Monitored road-facing events include lane departure and 

tailgating. Driver facing events include drowsiness and 

attention, the latter being monitored via coarse estimates of 

frontal, left, and right gaze directions.  

There is a significant body of literature on human gaze 

estimation [8-13]. The approaches generally attempt to 

determine gaze either in terms of precise roll/pitch/yaw 

angle or in terms of coarse (e.g., left, front, right) directions. 

Some of the high-precision techniques are based on 3D 

geometric models of human pose and gaze.  

This paper presents a method for driver gaze estimation 

that is amenable to execution on mobile devices with limited 

computational resources. Gaze space is quantized into 8 

directions commonly encountered during driving. This 

approach thus falls in-between the two extremes of very fine 

and very coarse gaze estimation found in the literature.  The 

gaze estimation is accomplished via a rather standard choice 

of features and SVM classifier.  However, a key novelty is 

in the method of training the classifier to perform reliably 

across a wide range of conditions, as explained in Sec. 3. 

3. Gaze estimation algorithm 

Our approach requires that a smartphone be mounted on 

the windshield or dashboard of a vehicle with front-camera 

facing the driver. Since many state laws in the United States 

place restrictions on windshield mounts, our preference is 

for the dashboard mount, as shown in Fig. 1(a). Experiments 

have suggested that a mounting location near the center of 

the dashboard (i.e., below the rear view mirror) is 

convenient for user interaction and offers an acceptable 

view of the driver (see Fig 1(b)). In the proposed system, we 

specify 8 gaze directions commonly encountered during 

driving, as shown in Fig. 2. Gaze estimation thus boils down 

to gaze classification with respect to the 8 classes, which 

enables a computationally efficient implementation. Next 

we describe the online classification method, with the 

training method being described in Sec. 3.2. 

3.1. Gaze classification method 

Figure 3 is a block diagram of the online steps involved in 

estimated gaze direction from input video frames. Given the 

need for quasi-real-time performance on a smartphone, 

computational efficiency was a prime consideration when 

designing the features and selecting the classification 

technique. The steps of the method are as follows: 

i) Coarse head pose detection. Input video frames are 

first processed through frontal, left- and right-profile face 

detectors to determine coarse head pose direction. These 

face detectors comprise fast Adaboost cascade classifiers 

operating on Haar feature descriptors [14]. 

ii) Gaze feature descriptors. Next we process only those 

frames classified as containing frontal poses from the 

previous step. Facial regions are sent to modules that detect 

the location of left iris, right iris, mouth and nose (see Fig. 4). 

These are again Adaboost cascade classifiers trained 

specifically to detect the respective facial regions. A 

14-dimension feature vector comprising normalized face 

part locations and sizes is defined as follows.  
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where x and y are spatial locations, s denotes side length, 

and w and h denote width and height, respectively. 

Subscripts le, re, n, m denote respectively left eye, right eye, 

nose, and mouth. The position and size of each face part are 

normalized by the lengths of the axes of the “face coordinate 

system”. The latter is defined by the square surrounding the 

detected face, with the origin located at the top-left corner 

of the square. The normalization equations are: 
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Figure 2: Eight common gaze directions used to train the classifier. 
 

Figure 1: (a) Camera dashboard mount; (b) driver view in used 

camera geometry. 
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where index { , , , }p le re n m  denotes the face parts, and 

variables with subscript f are facial coordinates and sizes. 

The value of each component of the feature vector is thus 

normalized to the range [0,1] . This makes the feature 

descriptors invariant to facial translation and scaling, as 

well as to pixel resolution. Additionally, this intrinsic data 

normalization process ensures that decisions are not 

dominated by any particular feature. Lastly, the locations of 

the feature points are temporally smoothed using a Kalman 

filter tracker. 

iii) Gaze classifier. The extracted feature vector is input 

to a classifier that outputs an estimated gaze direction out of 

8 possible directions. In the proposed system, a multi-class 

linear support vector machine (SVM) classifier is employed 

with a one-versus-one scheme, wherein a binary decision 

function is learned between every pair of classes. 

iv) Temporal post-filtering. The final step ensures 

smoothness in gaze estimates over time, and enforces the 

assumption that transitions between different gazes occur 

smoothly relative to the acquisition frame rate. A sliding 

window history of class labels from the previous 5 frames is 

maintained, and a majority voting scheme is enforced to 

determine the final prediction of gaze in the current frame. 

3.2. Offline Classifier Training  

A crucial and novel aspect of the proposed system is the 
method by which the gaze classifier is trained. When 

deploying the application “in the wild”, we encountered 

wide variations across different drivers, vehicles, 

smartphones, and camera placements. Not surprisingly, we 

noted that the aforementioned classification method did not 

generalize well when trained on one group of 

driver/vehicle/camera combinations and tested on another. 

To address this problem, we propose an in-situ approach for 

gathering training data that is carried out just once for a 

given combination of driver, vehicle, and camera setup.  We 

must keep in mind, however, that gathering labeled data 

during the act of driving is unsafe, as it necessitates that the 

driver gaze in 8 directions in a controlled fashion while the 

vehicle is in motion. To ensure driver safety during training, 

we propose a two-stage procedure as follows.  

In the first stage, while the vehicle is stationary, the 

mobile app prompts the driver to gaze in the 8 directions for 

4-second intervals; video is recorded and training data 

automatically collected for each gaze class. This procedure 

improves generalization across driver/vehicle/camera; 

however, experiments revealed that a classifier built from 

this data still does not generalize satisfactorily from a 

stationary to a moving vehicle. Presumably this is due to 

effects such as camera jitter, driver movement, varying 

illumination, variability in driver pose while actually 

driving, etc. We observed, however, that classification 

performance can be significantly improved if we augment 

the training data from the stationary vehicle with data from a 

moving vehicle for the “road-gazing” class alone (gaze no. 3 

in Fig. 2, which is the dominant class). 

The second stage of unsupervised training data collection 

requires the driver to drive normally while the mobile app 

gathers video footage, usually for a short duration (e.g., 3-4 

minutes). Face-part features are extracted from each frame 

as outlined in Section 3.1. We hypothesize that the various 

gaze directions form clusters in feature space, and make a 

critical assumption that the “road-gazing” class will be the 

dominant cluster. An unsupervised clustering technique is 

applied in order to identify the dominant cluster. 

Specifically, we employ the well-known Expectation 

Maximization (EM) algorithm [15] to learn a Gaussian 

mixture model from the available samples. The EM 

algorithm assigns a K-dimensional membership vector 

Figure 4: Illustration of relative face part features in normalized 

face coordinates. 
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Figure 3: Block diagram of the online stage. 
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im  to each input feature vector , 1,...,ix i n , where 

K is the number of clusters (8 in our case), and each element 

( )i jm  of mi represents the likelihood that the i-th input 

sample belongs to the j-th cluster. Note that the elements of 

mi sum to one, i.e., 
1
( ) 1, 1,...,

K

i jj
m i n


  . It follows that 

the set of samples that belong to the dominant class 

(assumed to be road-facing) is given by: 
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where 
roadj  denotes the road class. Once the “road-gazing” 

class is identified, the input samples that are deemed most 

likely to belong to it based on the output of the EM 

algorithm (e.g., samples i for which jmm jiji road
 ,)()( ) are 

assigned to the road-gazing class.  

Training data for the 8 gaze classes from the first stage in 

the stationary vehicle is then combined with training data 

for the dominant (assumed road-facing) class from the 

second stage in the moving vehicle to form the overall 

training set. Finally, a linear SVM classifier is trained on 

data combined from the two stages.  

It is possible that in some instances (e.g., a driver coming 

out of a parking lot), the dominant data collected in the 

moving vehicle during the second stage will not correspond 

to the road gazing class. As a safeguard measure, the 

application could use additional logic that compares data 

from the moving vehicle to the clusters gathered in the 

stationary vehicle, to ensure that the dominant cluster 

indeed corresponds to road-gazing data. Furthermore route 

information from GPS could also be incorporated to ensure 

the training phase encompasses normal road driving. 

4. Experiments 

The aforementioned gaze classifier was implemented in 

C++ using a combination of OpenCV and custom libraries. 

The offline training data collection was performed by 

smartphone apps running on Android and iOS platforms. 

Online execution is currently implemented on a Windows 7 

laptop machine and is planned to be ported to a mobile 

platform shortly.    

Smartphone video datasets were collected in 4 different 

experimental scenarios to capture variations in vehicle, 

driver, smartphone, and mounting geometry, as shown in 

Fig. 5. Two vehicles were chosen with markedly different 

interior geometries, a sedan and sport-utility-vehicle (SUV). 

In the sedan, two mounting locations were chosen, the first 

directly beneath the rear-view-mirror, and the second 

midway between the first location and the center of the 

dashboard. An iPhone5 was used to record video with the 

front camera. In the SUV, video was recorded with both an 

iPhone5 and a Samsung Galaxy S4 Android phone. The 

mounting location was directly beneath the rear-view mirror. 

Video was captured in both the stationary and moving 

vehicle cases for each scenario for all 8 gaze classes. This 

combination of factors results in 8 different data sets. 

During the training phase, the gathered data set is 

randomly split into a training set (80%) and a testing set 

(20%). A 10-fold cross validation procedure is conducted 

within the training set to select the model parameters. The 

classifier is trained accordingly, and then evaluated with the 

testing set. 

4.1. Coarse-grained detection accuracy 

Table I shows the confusion matrices along with the 

overall accuracy of the coarse head pose detection (first 

stage in Fig. 3) for all four experimental scenarios. The 

scenario labels “Near” and “Far” refer to the two mounting 

locations with respect to driver position. Results indicate 

that high accuracy is achieved by the proposed coarse pose 

detection system. 

4.2. Fine-grained classification accuracy 

The frontal face instances detected by the coarse-grained 

stage are further classified as one of the 8 possible driver 

gaze classes defined in Fig. 2. The overall classification 

accuracy of different techniques across the 4 experimental 

scenarios is reported in Fig. 6. The training techniques are:  

 “Self”: a classifier trained on data extracted from video 

of a vehicle in motion, applied to test data gathered 

under the same conditions. This case serves as an upper 

bound in classifier performance. 

 “Static to Moving”: a classifier trained on data extracted 

from video in a static vehicle, applied to test data from 

the same vehicle/driver/camera in motion. 

Figure 5: Video dataset from different scenarios. 
 

Driver 1 

Driver 2 

Table I: Coarse-Grained Head Pose Detection Performance 

Scenario Accuracy (%) 

Sedan-iPhone-Near 94.3 

Sedan-iPhone-Far 99.6 

SUV-iPhone 98.9 

SUV-Android 98.4 
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 “Moving to Moving”: a classifier trained on data from 

one moving vehicle with a given driver/camera 

combination, applied to test data from a different 

moving vehicle and driver/camera combination. 

 “Proposed Method”: the proposed approach with a 

classifier trained in-vehicle applied to independent test 

data gathered from the same moving vehicle. 

 

It is observed that classifier generalization from static to 

moving conditions, and from one moving vehicle/driver 

camera to another are both poor. This is a common 

observation in a wide range of machine learning tasks and 

applications where the training data and testing data are 

drawn from different distributions. In this particular case, 

the performance gap can be attributed to the fact that the 

features being used are fairly sensitive to pose. On the other 

hand, the proposed method with on-site training comes 

fairly close to achieving the upper bound in accuracy (i.e., 

“Self” bars). Note that advances in feature design and 

classification technique will improve performance in all 

cases, provided the computations are mobile-amenable. 

To gain deeper insight into the performance of our 

proposed in-situ classifier, the confusion matrix for 

experimental scenario SUV-iPhone is shown in Fig. 7. As 

expected, most of the confusion lies between classes 

corresponding to similar gaze directions (e.g. road vs. 

dash-board). Figure 8 shows the classifier output plotted as 

a function of time (or frame number) with the proposed 

system. The output labels are the same as those in Fig 2. The 

results indicate that the proposed system outputs the correct 

label for a significant portion of time. Figure 9 shows video 

snapshots in the scenario Sedan-iPhone-Near. The final 

results of face detection, facial part localization and gaze 

direction class are labeled on the video frame. Clearly the 

proposed system succeeds at categorizing driver gazes into 

semantically meaningful directions. 

4.3. “Safe vs. Unsafe” classification  

A variant of the proposed method can be used to provide 

coarse-scale monitoring of safe vs. unsafe driver behavior. 

We define two broad, albeit meaningful, categories as 

follows: Safe = {“road”, “left mirror”, “right mirror”, “top 

mirror”}, and Unsafe = {“dashboard”, “phone/text”, “music 

console”}. Table II reports the accuracy achieved by the 

fine-grained classifiers for the same four scenarios when 

analyzed at this broad level of classification. It is shown that 

classification accuracy is very high at this broad granularity, 

and may suffice for many applications.  

4.4. Computational performance 

On a Windows laptop PC powered by an Intel Core i5 

2.5GHz processor with 4 GB of RAM, without optimization 

in the implementation, the gaze estimation time was 50-60 

milliseconds per frame, which amounts to 15-20 frames per 

second. This includes the steps of coarse face direction 

detection, object tracking, feature extraction, gaze 

classification and temporal filtering. 

Although the online gaze estimation system is yet to be 

ported to mobile platform, an expected computational 

performance is argued as follows. We select Samsung 

Galaxy S4 as a benchmark of modern smartphone, for its 

largest market share in the U.S. at the time of this work. 

Powered by a 4-core 1.6-GHz CPU, its computational speed 

is approximately 64% of the Windows PC used in 

simulations. One can infer that the processing rate of at least 

9.6 frames per second (fps) is achieved by a modern 

smartphone. This is acceptable for real-time processing, 

since temporal subsampling can be used to keep up with 

acquisition frame rate. The computational cost can be 

further reduced by applying algorithmic optimization. As 

shown in Fig. 2, most steps involve only linear operations in 

a 14-dimensional space: Kalman filtering, linear SVM and 

Figure 6: Fine-grained gaze classification accuracy vs. training 

techniques. Each color represents one method for offline training. 
Figure 7: Confusion matrix (in percentage) for the proposed 

method. Rows are classifier output and columns are ground truth.  
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169



 

temporal averaging. The heaviest step is object detection, 

which can be optimized to achieve 15-fps processing rate by 

a 600-MHz ARM processor [16]. This shows the capability 

of real-time processing on a modern smartphone even for 

detecting face and multiple facial parts. 

5. Conclusion and future directions 

We propose a driver gaze direction estimation technique 

from smartphone video using computer vision methods.  

Categorizing the gaze space into 8 common driving gaze 

directions enables fast extraction of relevant gaze 

information. Fast feature descriptors and a linear SVM 

classifier are chosen to contain computational cost. A novel 

in-situ data collection procedure significantly improves 

generalization performance of the classifier across different 

driver/vehicle/camera settings without compromising driver 

safety or convenience.  

Immediate future efforts include: i) porting the real-time 

gaze classification onto the mobile platform; ii) additional 

experimental validation across a wider gamut of drivers, 

vehicles and mobile devices. Longer term directions include: 

i) investigating more efficient and effective features and 

machine learning approaches for gaze classification; ii) 

integrating the gaze monitoring module into a larger driver 

monitoring system that incorporates road-facing video 

capture along with input from other smartphone sensors 

(e.g., GPS, accelerometer, etc.) to place gaze direction in 

context with the state of the vehicle and its environment; iii) 

incorporating warning mechanisms, e.g.  visual, audio, or 

haptic feedback, that can positively affect driving behavior. 
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Figure 8: Time plot of gaze direction estimates by the proposed 

method (red) comparing with the ground truth (blue). 

Figure 9: Video snapshots for driver gaze direction estimation 

in scenario Sedan-iPhone-Near. Red labels are gaze estimates. 

Table II: Accuracy of “Safe vs. Unsafe” classification 

Scenario Accuracy (%) 

Sedan-iPhone-Near 86.4 

Sedan-iPhone-Far 91.2 

SUV-iPhone 97.4 

SUV-Android 96.0 
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