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Abstract

Local image features, such as blobs and corners, have
proven to be very useful for several computer vision ap-
plications. However, for enabling applications such as vi-
sual search and augmented reality with near-realtime la-
tency, blob detection can be quite computationally expen-
sive due to numerous convolution operations. In this paper,
we present a sparse convex formulation to determine a min-
imal set of box filters for fast yet robust approximation to
the Gaussian kernels used for blob detection. We call our
feature detector as CABOX (CAscade of BOX) detector. Al-
though box approximations to a filter have been studied in
the literature, previous approaches suffer from one or more
of the following problems: 1) ad hoc box filter design, 2)
non-elegant trade-off between filter reconstruction quality
and speed and, 3) limited experimental evaluation consid-
ering very small datasets. This paper, on the other hand,
contributes: 1) an elegant optimization approach to deter-
mine an optimal sparse set of box filters, and 2) a com-
prehensive experimental evaluation including a large scale
image matching experiment with about 16 K matching and
170 K non-matching image pairs. Our experimental re-
sults show a substantial overlap (89%) between the fea-
tures detected with our proposed method and the popular
Difference-of-Gaussian (DoG) approach. And yet CABOX
is 44% faster. Moreover, the large scale experiment shows
that CABOX closely reproduces DoG’s performance in an
end-to-end feature detection and matching pipeline.

1. Introduction
Local image features are at the heart of several ap-

plications in computer vision such as augmented real-
ity [4], structure from motion [6], and image search and
retrieval [11]. Various feature detectors identifying lo-
cal image patterns like corners and blobs, have been pro-
posed [3, 5, 10, 14] and successfully used in these appli-
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Figure 1: (Top) CABOX approximation to a Gaussian filter. (Bot-
tom) The box filters bσ used to compute Gaussian Scale Space.

cations. The widely used SIFT [10] combines blob feature
detector and gradient histogram descriptor to generate ro-
bust keypoint representation for an image.

Blobs have proven to be effective in terms of repeata-
bility across several imaging conditions as well as rotation
and scale covariance [3, 7, 10]. Blob detection is typically
performed using a multi-scale scheme whereby a series of
Laplacian-of-Gaussian (LoG) filters at different scales de-
tect several features of different sizes. Due to the com-
putational overhead of LoG , Lowe [10] proposed to ap-
proximate the LoG filter by Difference-of-Gaussian (DoG),
which can be implemented efficiently due to the separability
property of the Gaussians. In the recent years, speed opti-
mizations to the local feature detection have been proposed
through the use of box filters (e.g. CenSurE [3], SURF [5],
fast approximated SIFT [8]).

These approaches, although efficient, lack optimality in
the set of box filters used for approximating the LoG or
Gaussian filters. The size, height and number of box fil-
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ters are usually hand-crafted. There is no principled ele-
gant way of determining a minimal set of box filters that
result in a desirable trade-off between the filter reconstruc-
tion error and the speed of operation. Moreover, the ex-
perimental evaluations are usually limited to small image
datasets. One most commonly used dataset in such evalua-
tions is Oxford dataset [2] which contains only 48 images.
From a practical standpoint, it is imperative to evaluate new
detector schemes on large scale datasets for real-world ap-
plications such as visual search and image retrieval. A per-
formance evaluation on an end-to-end system is necessary
where: 1) first, keypoints are detected using a new method,
2) then descriptors are computed for these keypoints, 3) lo-
cal and global representations are created for an image us-
ing these descriptors, and 4) finally, two images are matched
using such local and global descriptors. The MPEG (Mov-
ing Picture Experts Group) is currently working on creating
the CDVS (Compact Descriptors for Visual Search) stan-
dard [11] that aims at standardizing different aspects of this
pipeline. They have created a large benchmark dataset [1]
of about 16K matching image pairs, 170K non-matching
image pairs, and 1 million distracter images to evaluate dif-
ferent algorithms for feature detection, description, global
descriptor aggregation and image matching and retrieval.

In order to address the above mentioned issues, this pa-
per proposes an elegant optimization approach to determine
an optimal set of box filters for approximation. The pro-
posed sparse convex formulation finds fewest number of
box filters while still maintaining good quality filter recon-
struction. We investigate two different box filter dictionar-
ies for sparse approximation and show that for Gaussian
kernel approximation, the dictionary with concentric box
filters is more suitable for obtaining fewer box filters and
maintaining a low filter reconstruction error. In Fig. 1 we
illustrate the approximation of a Gaussian kernel as well
as the Gaussian scale space computation. Another unique
contribution is the large scale extensive evaluation of the
detector performance on the CDVS dataset. The experimen-
tal results suggest that CABOX can approximate the Gaus-
sian scale space accurately while reducing the blob detec-
tion time by 44 % compared to the popular DoG approach.
Moreover, our pairwise matching experiment shows that
CABOX detects features that can reproduce SIFT’s perfor-
mance in the end-to-end image matching pipeline.

2. Related work
Bay et al. [5] proposed the SURF feature detector based

on an approximation of second order Gaussian derivatives
using box filters. In contrast to other multi-scale detectors
(e.g. SIFT [10]) where the image is downsampled, they
upscaled the approximated filter, leveraging the fast con-
volution of box filters using integral images. They used 3-4
boxes for the approximation and the box filter heights are
hand-selected with no justification provided. They used a

dataset of 216 images to demonstrate the practical applica-
bility of the detector for object recognition experiment.

Agrawal et al. [3] introduced CenSurE, a fast feature de-
tector that approximates LoG filter using bi-level center-
surround filters. They proposed different approximated ver-
sions including octagonal filter for more accuracy and box
filters for higher speed. The box filter approximation used 2
boxes, which amounts to using only one box to approximate
a Gaussian. This certainly is a non-optimal approximation
and the filter heights require choosing an initial parameter
whose details are not provided as to how it is chosen.

The closest work to ours is by Grabner et al. [8], where
the LoG filtering operation is replaced by a Difference-of-
Mean (DoM) filter which approximates a Gaussian with a
single box filter. Their evaluations are conducted on only
17 images. Another similar work is by Pires et al. [13]
who proposed an iterative but quite elaborated method to
find box filter approximation for a given kernel. Hussein et
al. [9] describe an interesting approach to non-uniform filter
approximation using kernel integral images.

In contrast, CABOX selects multiple box filters whose
heights are determined by solving a convex optimization
problem with sparsity constraint on the number of box fil-
ters. This not only helps in providing a good approximation
but also using fewest box filters.

3. CABOX
In this section we first describe the optimization prob-

lem whose solution determines which box filters to use for
approximating a given filter (e.g. Gaussian or LoG). Sub-
sequently, we describe the approximation of the Gaussian
scale space using box filters for blob detection.
3.1. Filter approximation

We propose to approximate a given 2D-filter g as a linear
combination of several box filters bi. Thus, we need to find
the coefficients to minimize some approximation error. We
solve the following constrained optimization problem:

minimize
h

1

2
‖g −Bh‖22 + λ‖h‖1

subject to 1TBh = α
(1)

where g ∈ Rd is the 2D-filter reshaped as a column vector;
h ∈ Rk is the coefficient vector; B ∈ Rd×k is a matrix
whose columns hold the box filters reshaped as a column
vectors and which we call dictionary; and α is a scalar that
dictates the normalization of the filter. The equality con-
straint is useful to normalize the resultant filter, for exam-
ple, when approximating a LoG filter, the entries must sum
up to zero and then α = 0. For approximating Gaussian
kernel, we set α = 1.

Problem (1) without the equality constrained is known
as the L1 regularized least-squares and can be solved via
LASSO [15]. Adding the equality constrain, which is an

2127



. . .g�1
g�2

g�3

�

I�1
I�2

I�3

I g�l

I�l

Figure 2: Gaussian scale space computation.

affine function, does not affect the convexity property of
the problem and can be solved numerically. It is well known
that LASSO tends to provide sparse solutions, which means
that only few box filters are used for the approximation.
This property is beneficial for our goal as the computational
complexity depends on the number of box filters to use.

The choice of dictionary influences the solution consid-
erably, as we must consider the trade-off between approx-
imation accuracy and the number of box filters, so that the
solution is computationally appealing. In Sec. 4.1 we dis-
cuss the effects of the dictionary and the trade-off.

3.2. Gaussian Scale Space approximation
We describe in this section the integration of our filter

approximation method described in Sec. 3.1 in the construc-
tion of the Gaussian scale space used for detecting blobs.

The Gaussian scale space is constructed by blurring the
input image with a series of Gaussian filters. In Fig. 2 we
illustrate the scale space construction: the input image is
convolved with the first filter in the series, subsequently, the
output is again convolved with another filter, and the pro-
cess is repeated l times. Once this process is completed,
which corresponds to the creation of an octave, the final
image is downsampled and passed again to the scale space
construction process. The reader is referred to [10, 16] for
a more detailed explanation of the scale space construction.

To reduce computational complexity of the required 2D
convolutions, separability of the Gaussian filters can be
used; this reduces the additions and multiplications for a
M ×N kernel from O(MN) to O(M +N) per pixel. To
reduce the complexity even further, we can approximate the
Gaussian kernel using k box filters, which requires 4 addi-
tions and 1 multiplication per box filter per pixel using an
integral image. Therefore, our approximation has to use as
few box filters as possible to be computationally attractive.

We approximate the bank of Gaussian filters used to con-
struct a single octave offline by solving the optimization
problem (1) and setting α = 1. We build the dictionary,
B, with box filters that are “concentric”; see Fig. 4a for an
illustration. This dictionary allows us to have a small num-
ber of boxes while keeping the approximation error small.
A larger dictionary provides a more accurate approximation
but it requires many more box filters (see Sec. 4.1). Subse-
quently, we take the difference between the blurred images
and detect blobs as proposed by Lowe [10] in SIFT.

4. Experiments

Figure 3: Sample images from the CDVS dataset.

Student Version of MATLAB

(a) Concentric squares dictionary visualization.

Student Version of MATLAB

Student Version of MATLAB

(b) Extended dictionary visualization.

Figure 4: Dictionary visualizations. Fig.4a: a concentric squares
dictionary for approximating a 13×13 filter. Fig. 4b: an extended
dictionary for approximating a 4× 4 filter.

We present four major experiments in this section : (1)
filter approximation evaluation (Sec. 4.1); (2) Gaussian
scale space approximation evaluation (Sec. 4.2); (3) feature
detection: a comparison between DoG and CABOX (Sec.
4.3); and (4) large scale pairwise image matching experi-
ment (Sec. 4.4).
Datasets. We used two different datasets for our experi-
ments. The first contains three images depicting buildings
with rich textures and images of different sizes (see Ta-
ble 2). The second is the CDVS dataset [1] (see Fig. 3
for a small sample), which is provided by multiple uni-
versities and companies participating in the MPEG CDVS
standardization. This dataset comprises of different image
categories, including paintings, buildings, commonly used
objects, {CD, DVD, book} covers, video frames and text
documents. It contains 30,256 images and has a total of
about 186 K labeled image pairs for benchmarking (16 K
matching pairs and 170 K non-matching pairs).

4.1. Filter approximation evaluation
This evaluation shows that our approach can approx-

imate the bank of Gaussian filters used to construct the
Gaussian scale space in VLFeat [16] with minimal error.
We tested two different dictionaries: 1) concentric squares
(Fig. 4a); and 2) an “extended” dictionary containing rect-
angles of different sizes and positions (see Fig. 4b). To build
the dictionary, we first calculate the kernel size using the
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Table 1: Gaussian filter approximations using concentric squares
dictionary and an extended dictionary. The influence of the used
dictionary determines not only the quality of the approximation
but also the number of boxes required.

Concentric Squares Extended
σ Num. of Residual Num. of Residual

Boxes Boxes
1.249000 3 0.0554 43 0.0068
1.226270 3 0.0578 21 0.0067
1.545008 4 0.0358 42 0.0146
1.946588 6 0.0248 36 0.0087
2.452547 5 0.0192 16 0.0169
3.090016 8 0.0142 18 0.0163

formula: s = 2d4σe+ 1 (see [16]).

Concentric squares dictionary construction. Given the
size of the Gaussian kernel s, we first build a squared box
filter of size s1 = 3, which is the smallest box filter of odd
size. Subsequently, we keep adding squared box filters of
size si = si−1 + 2 ∀i > 1 to the dictionary until si = s.
In Fig. 4a we illustrate a concentric squares dictionary con-
struction for a filter of size s = 13. This dictionary grows in
a linear manner as a function of s, which helps in maintain-
ing a low computational cost, but potentially increases the
approximation error due to fewer box filters to reconstruct
the Gaussian kernel.
Extended dictionary construction. Given the size of the
Gaussian kernel s, we first build all the possible rectangles,
including squares with minimal size si = 2 and which fit
within the area of the Gaussian kernel. Subsequently, we in-
crease the minimal size by one, i.e. si+1 = si+1, and build
all the possible rectangles in the same manner. In Fig. 4b
we show an example of the extended dictionary construc-
tion for a kernel size of s = 4. This dictionary grows in
an exponential manner as a function of s, which means that
more boxes can be used to approximate the Gaussian kernel
and lower the error but it increases the computational cost.

The results of the approximations of all the Gaussian ker-
nels used in VLFeat are shown in Table 1. Expectedly, the
extended dictionary provides a better approximation, as in-
dicated by the residual ‖gσ −Bh‖2, but requires more box
filters. On the other hand, the concentric squares dictio-
nary causes higher residual while requiring fewer box fil-
ters. The remarkable point to note is that the residuals pro-
duced by the two different dictionaries are quite small and
still the number of box filters with concentric squares dic-
tionary is an order of magnitude smaller than those resulting
with the extended dictionary. Therefore we chose the con-
centric squares dictionary for further experiments.

Fig. 5 shows a qualitative assessment of the approxima-
tions produced by using the different dictionaries. Top row
shows the original Gaussian filters, middle row shows the
approximation with extended dictionary and the bottom row

Table 2: The Root Mean Square Error (RMSE) of our approxima-
tion method across all octaves and scales is minimal, considering
that the pixel intensities are in the range of 0 to 1.

Colosseum Oxford Bldg. Zürich

RMSE 0.0671 0.0387 0.0794
Octaves 5 6 5
Scales 6 6 6

shows the approximation with the concentric squares dic-
tionary. The extended dictionary produces approximations
closely resembling original Gaussian filters while the con-
centric squares dictionary produces pyramid-like approxi-
mations.

4.2. Gaussian Scale Space evaluation
We present in this section, an assessment of the quality

of the scale space constructed by the box filter approxima-
tions, as well as the estimation of the computational sav-
ings. We implemented CABOX as a smoothing function
using our box filter approximations and an integral image
in VLFeat. This function was invoked from the code that
builds the scale space replacing the original VLFeat blur-
ring function. We compared the constructed scale space
against the scale space produced by the Gaussian filters at
every scale and per octave.

The comparison of these two scale spaces is in terms
of the Root Mean Squared Error (RMSE) between corre-
sponding images at every level of an octave and across all
octaves. Finally, all the RMSEs were averaged. The results
are shown in Table 2.

The average RMSE shows a small error in the construc-
tion of the scale space using Gaussian filters and our ap-
proximations, where the pixel intensities were in the range
[0, 1]. Thus, we can conclude that our proposed approxima-
tion is very close to the one built with Gaussian filters.

Timings To evaluate the scale space construction time, we
used 19 images (Fig. 3) chosen at random from the CDVS
dataset. These images have several dimensions and depict
various objects and natural scenes. For every image, we
measured the time involved in the construction of the scale
space per octave, including the computation of the required
integral images. Fig. 6 presents these time measurements.
From the figures and data we conclude that CABOX on av-
erage reduced the scale space construction time in approxi-
mately 44 %. The average time savings for the first, second,
third, fourth, and fifth octaves were approximately 22 %,
32 %, 54 %, 52 %, and 59 %, respectively. This confirms
that CABOX brings computational benefits.

4.3. Feature detection evaluation
We present an evaluation of blob detection, specifi-

cally a comparison of the features detected by VLFeat and
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(a) σ = 1.249000
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(b) σ = 1.226270
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(c) σ = 1.545008
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(d) σ = 1.946588
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(e) σ = 2.452547

Student Version of MATLAB

(f) σ = 3.090016

Figure 5: Gaussian filters and their box approximations computed with two different dictionaries. (Top row) Original Gaussian filters,
(Middle row) approximation with the extended dictionary, (Bottom row) approximation with the concentric squares dictionary.
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Figure 6: Gaussian scale-space construction times for several oc-
taves for 19 different images. CABOX on average tends to be
faster. In particular, the higher the octave, the faster CABOX is.

CABOX. More precisely, we are interested in evaluating
which features are detected by both methods (considering
location and scale) and how many new features are intro-
duced due to Gaussian approximation errors.

For this experiment, we used the same three images
as for evaluating the scale space construction (Sec. 4.2).
We ran both detectors (VLFeat and CABOX) with a peak
threshold of 0.04 and an edge threshold of 10 and stored
the location and scale of every feature detected. To mea-
sure the number of features detected by both, we searched
in the set of features detected by CABOX for the nearest
neighbor of every feature detected by VLFeat, and consid-
ered them as the “same” feature when the location differ-
ence < 5 pixels and the scale difference < 21.5. 89 % of
those features detected with CABOX are also detected by
the DoG approach (VLFeat), while introducing on average
11 % new features. We present in Fig. 7 a visualization

of VLFeat features (green) and CABOX features (red); the
center of the circle represents the location while the radius
represents the scale. This experiment shows that CABOX
detects a substantial amount of blobs detected by the DoG,
while introducing a small fraction of new features.
4.4. Pairwise image matching experiment

We also present the application of CABOX in an end-
to-end pairwise image matching system. The system deter-
mines whether two given images are related or not i.e. when
two images depict the same object or scene then both im-
ages are considered a ’match’ otherwise this pair is a ’non-
match’. We used the CDVS dataset [1] for this experiment.
We ran the system using both feature detectors i.e. CABOX
and VLFeat DoG detector, for comparing their matching
performance. Descriptors for both types of detected points
were generated using the same SIFT implementation.

We followed the pairwise matching procedure as de-
scribed by the Test Model document of the ongoing MPEG
CDVS standard [11], which produces a compact binary de-
scriptor for an image. This compact descriptor comprises
of: 1) a global descriptor based on the Fisher vector [12]; 2)
several local SIFT descriptors that are quantized and com-
pressed. For the pairwise matching task, given the CDVS
descriptors for two images, first the binary descriptors are
decoded. Then the global descriptors are compared using a
weighted Hamming distance and a matching score is com-
puted. Subsequently, the compressed SIFT descriptors are
matched using an L1 norm distance and an estimate of the
number of correct feature matches is calculated. Finally,
the system predicts that the image pair is a ’match’ or a
’non-match’ based on the matching score obtained from the
global descriptor comparison and the estimated number of
SIFT descriptor matches.

We show the true positive rates (tpr) for this experiment
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Figure 7: Blob detection using DoG implemented by VLFeat (green circles) and CABOX (red circles). Of those features detected with
CABOX, 89 % are also detected by VLFeat while the remaining 11 % correspond to new features.
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Figure 8: True positive rates (tpr) as a function of CDVS de-
scriptor size. False positive rate is approximately 1 %. CABOX
performs very competitively to DoG. Datasets: 8a Mixed text and
graphics; 8b Mixed text and graphics (VGA + heavy JPEG com-
pression); 8c Paintings; 8d Video frames; 8e Buildings and land-
marks; and 8f Common objects.

in Fig. 8, where a true positive means that the system cor-
rectly predicted a ’match’. The decision parameters for the
experiment were chosen in such a manner that fixes the false
positive rate< 1%. CABOX (red curve) achieves high a tpr
across all the datasets and performs competitively in com-
parison with the reference DoG method (blue curve). How-
ever, CABOX computed approximately 44 % faster due to
the fast scale space construction.

5. Conclusions and Future Work
We have introduced CABOX for approximating the

Gaussian scale space. The box filters are computed by solv-
ing a constrained regularized least-squares problem, provid-
ing a good approximation of the scale space and use very
few box filters to reduce computational complexity.

Our experiments showed that CABOX can reduce the
scale space construction time by approximately 44% while
maintaining a low average mean square error. Moreover,
our pairwise image matching experiment demonstrated that
CABOX performs competitively in comparison with the
DoG feature detector. We believe that CABOX can be used
for applications needing a fast yet robust feature detector.

We plan for future work a parallel implementation of
CABOX for mobile devices, as the convolution of every box
filter can be computed independently, thus speeding up the
scale space construction.
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