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Abstract

Estimating the position of a 3-dimensional world point

given its 2-dimensional projections in a set of images is a

key component in numerous computer vision systems. There

are several methods dealing with this problem, ranging

from sub-optimal, linear least square triangulation in two

views, to finding the world point that minimized the L2-

reprojection error in three views. This leads to the statis-

tically optimal estimate under the assumption of Gaussian

noise. In this paper we present a solution to the optimal

triangulation in three views.

The standard approach for solving the three-view trian-

gulation problem is to find a closed-form solution. In con-

trast to this, we propose a new method based on an iterative

scheme. The method is rigorously tested on both synthetic

and real image data with corresponding ground truth, on a

midrange desktop PC and a Raspberry Pi, a low-end mobile

platform.

We are able to improve the precision achieved by the

closed-form solvers and reach a speed-up of two orders of

magnitude compared to the current state-of-the-art solver.

In numbers, this amounts to around 300K triangulations

per second on the PC and 30K triangulations per second

on Raspberry Pi.

1. Introduction

Triangulation, i.e. finding the three-dimensional location

of a point observed from two or more viewpoints, is a funda-

mental problem in computer vision. Over the years, many

methods have been proposed, in particular for the case of

two views, where robust and fast methods have been devel-

oped [1, 2].

It is well known that adding one more view significantly

improves the estimate, but this also increases the complex-

ity of the problem [3]. Still, there is a closed-form analyti-

cal solution to the three-view triangulation problem, where

theory guarantees that a solution exits. In practice, how-

ever, this solver sometimes fails due to limitations in float-

ing point precision.

In this paper, we state the hypothesis that by replacing

the closed form solver with an iterative approach, we si-

multaneously reduce the failure rate and the computational

effort. We confirm this hypothesis in a number of experi-

ments, including testing it on the popular Raspberry Pi, a

small-form-factor computer based on a system-on-chip for

mobile applications.

2. Related work

Hartley and Sturm [4] presented a non-iterative solver

of the two view problem, guaranteed to find a global op-

timum named the polynomial method. Performing optimal

triangulation, it minimizes the L2 norm of the error between

observed and reprojected 2D points while additionally en-

forcing the epipolar constraint. This is more robust than

older methods such as the Linear-Least-Squares (LLS) but

comes with a cost of 7 - 15 times longer running time.

Kanatani et al. [5] found that the polynomial method has

singularities in the epipoles and propose an iterative ”opti-

mal correction” method that avoids the singularities by ap-

proaching the epipolar constraint, only satisfying it on the

last iteration. Their method returns identical results to those

of Hartley and Sturm [4] while being much faster.

However, Lindstrom [6] points out that Kanatani’s

method [5] may only find a local minimum and that the

number of iterations required is its main drawback. He de-

velops a pair of methods that take provably optimal steps

in each iteration such that the intermediate sub-optimal re-

sult always fulfils the epipolar constraint, permitting early

termination. For the vast majority of points, convergence

occurs in two iterations allowing the methods to be reformu-

lated as non-iterative. Lindstrom reports at least eight-digit

agreement with [4] of the reprojection errors on synthetic

datasets and between three and seven digits on real-world

datasets. In terms of speed, Lindstrom [6] is 50 times faster

than the polynomial method and 20 times faster than the

method of Kanatani et al..

Where the globally optimal polynomial method of Hart-

ley and Sturm [4] finds six roots of a polynomial equation

seeking to minimize the L2-reprojection error in two views,

there are a set of methods using the same error metric but
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in three views instead. Stewénius et al. [3] find 47 roots us-

ing the Gröbner basis method to locate the optimal solution

for three views. This method is however costly as a 128-bit

mantissa is needed for stability, resulting in long run times.

Byröd et al. [7] improve the numerical stability of Stewe-

nius method with what they call the ”relaxed ideal” and re-

move the need for high-precision floating point computa-

tions. On the real-world Oxford ”Dinosaur” turntable se-

quence, the method is 480 times faster (2.5 minutes vs 20

hours) while also exhibiting 10−5 of the error of Stewenius

method on synthetic data.

The same authors further improve the numerical stabil-

ity of this result by adapting the Gröbner solver to the spe-

cific problem at hand, by changing basis of the quotient

space, found through singular-value decomposition [8]. As

the SVD is computationally expensive and dominates the

algorithm, they further suggest to reduce the size of the

basis-finding problem using QR-factorization with column

pivoting [9]. This modification is found to be four times

faster than without QR factorization while maintaining ro-

bustness.

Kukelova et al. [2] propose using Lagrange multipliers

to search for the global optimum, generating a system of

eight polynomial equations with 31 roots, for which the au-

thors develop a specialized Gröbner basis solver. The re-

sulting method is more than five times faster than the QR

based method on real-world datasets, more robust and as

accurate on synthetic data.

Finally, Nordberg [1] develops a radically different ap-

proach by first finding the triangulation tensor K ∈ R
4×27

describing the spatial relationships between three cameras

and then generating a tensor product Y for each triplet

of homogeneous 2D points. The 3D coordinate is subse-

quently found directly from a matrix-vector multiplication

X = KY . This is fast, but constructing and optimizing K
from camera matrices adds a setup cost to the method.

In this paper we also address the three-view triangulation

problem. The problem formulation is the same as the one

solved in Byröd et al. and Kukelova et al., where the method

proposed by Kukelova et al. is the currently fastest solver.

Our contribution is a method that is two orders of magnitude

faster than the current state-of-the-art solver by Kukelova et

al. [2].

3. Method

3.1. Problem Formulation

The problem is stated as follows; given three projection

matrices P1,P2,P3 ∈ R
3×4, and three image projections

x1,x2,x3 ∈ R
2 of a scene point w ∈ R

3 and with wh ∈
R

4 being the homogenous representation of w. The image

residual for one re-projection i is defined as

ri = xi − proj(Piw
h) (1)

where the projection mapping proj() ∈ R
3 → R

2 is defined

as

proj(y) = [
y1
y3

y2
y3

]T . (2)

We want to find the position of the 3D point w such that

f = ||r||22, r = [r1x r1y ... r3x r3y]
T

(3)

is minimized. When the error metric is defined as the L2

error in the image plane, as in this case, the triangulation

method is known as an optimal method [4]

3.2. Non­linear optimization

Minimizing (3) is a non-linear least squares problem, and

can be solved by e.g. the Gauss-Newton (GN) method [10]

or the Levenberg-Marquart (LM) algorithm, which com-

bines GN and steepest descent (SD) using a damping fac-

tor. We have instead chosen to apply an alternative method

that combines GN and SD by explicitly using the radius of

a trust region, called Dog Leg (DL) [11], because ”The Dog

Leg method is presently considered as the best method for

solving systems of non-linear equations.” [12]. Lourakis

and Argyros [13] have shown that DL performs bundle-

adjustment 2 to 7.5 times faster than sparse LM while main-

taining equivalent quality.

The combination of GN and SD is determined by means

of the radius ∆ of a trust region. Within this trust region,

we assume that we can model r(w) ∈ R
3 → R

6 locally

using a linear model ℓℓℓ:

r(w + h) ≈ ℓℓℓ(h) , r(w) + J(w)h , (4)

where (J(w))ij = ∂ri
∂wj

(w) is the Jacobian. Each of the

three 2× 3 blocks (index i) in the Jacobian reads

∂ri(w)

∂w
= −

∂proj(y)

∂y

∂y(w)

∂w
, y(w) = Piw

h. (5)

Applying the chain rule in this way, does not only give the

simplest solution, but is also beneficial in terms of speed.

The GN update hGN is obtained by solving J(w)h =
−r(w) e.g. by Gaussian elimination with pivoting.

If the update is within the trust region (‖hGN‖2 ≤ ∆), it

is used to compute a new potential parameter vector

wnew = w + hGN . (6)

Otherwise, compute the gradient g = JT r and the steep-

est descent step hSD = −αg (for the computation of the

step length α, see [14]). If the SD step leads outside the

trust region (α‖g‖2 ≥ ∆), a step in the direction of steepest

descent with length ∆ is applied

wnew = w − (∆/‖g‖2)g . (7)
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If the SD step is shorter than ∆, β times hGN + αg is

added to produce a vector of length ∆:

wnew = w − αg + (hGN + αg)β . (8)

In all three cases, the new parameter vector is only used

in the next iteration (w = wnew) if the gain factor ρ is pos-

itive (for the computation of ρ see [14]). Depending on the

gain factor, the region of trust is growing or shrinking. The

iterations are stopped, if either of ‖g‖∞, ‖r‖∞, ‖h‖2, or ∆
is below a threshold or if a maximum number of iterations

is reached.

3.3. Initialization

As in all iterative solutions to non-linear optimization

problems, a good initialization is needed. For some prob-

lems e.g. a bundle adjustment problem [15], the initializa-

tion is non-trivial and usually requires a number of methods,

in order to have a good chance of convergence. Fortunately,

in the case of initialization of our solver, there are very fast

and quite robust two-view methods that are perfectly suited.

The mid-point two-view triangulation method falls into this

category and provides us with a good initial guess. Due

to the simplicity of the mid-point method, it is numerically

stable, and even if the result is not satisfactory for a final

triangulation, it is useful for initialization.

We will thoroughly demonstrate this by showing that

the proposed non-linear optimization approach finds the so-

lution for significantly more cases than the non-iterative

method of Byröd et al.

4. Evaluation

In order to prove our hypotheses we have evaluated the

method of Hartley and Sturm, Byröd et al., and the pro-

posed, on 6 datasets, three of which are synthetic and three

of which are from real image data. The synthetic datasets

are used to illustrate that for fairly well conditioned data all

methods show good performance, while for data that is less

well behaved, e.g. for a forward moving camera, errors are

introduced.

4.1. Synthetic Dataset

Synthetic data was generated as follows: A 4000-point

3D point cloud uniformly distributed in the shape of a cube,

with the size of [−0.5, 0.5]
3
, was projected into a set of 40

pinhole cameras. The field of view angle is 46 ◦ and the

image size is 1280 × 720. These 2D projections were then

perturbed with noise distributed as N (0, σ), σ = 1 pixel.

Camera trajectories created in three ways: (1) ”orbital” -

a circle motion around the center of the point cloud, at a dis-

tance of 2. The trajectory ranges from −0.5 to 0.5 radians.

(2) ”lateral” - positioned on a straight line, facing the point

could, and with a distance of 2 from the center. The lateral

range is [−0.5, 0.5]. (3) ”forward” - camera moves along

a line towards the center of the point cloud. The camera

is facing forwards and the trajectory range is [−1.5,−0.5].
The camera trajectories are slightly perturbed with a uni-

form distribution, U(0, 0.01) for the position and U(0, 0.01)
radians for the rotation. 3D visualizations of the respective

datasets are shown in the left column, first three rows, in

figure 2.

4.2. Real Dataset

The real world datasets used are (1) the Oxford ”di-

nosaur” [16], (2) the photo-tourism [17] ”Notre Dame” and

(3) the Oxford ”corridor” [16]. All datasets, except for the

dinosaur, had an associated point cloud that was refined us-

ing bundle adjustment. The refined point cloud was used

as ground truth. In accordance with the rest of the real

datasets, the ground truth for the dinosaur dataset was cre-

ated by a bundle adjustment refinement. The three differ-

ent datasets are visualized in the left column, three bottom

rows, in figure 2.

4.3. Experimental Setup

We test three methods: The Polynomial method of Hart-

ley and Sturm, the QR-method by Byröd et al. and the one

presented here. The original code for the method of Byröd

et al. is available online. We were not able to compare pre-

cision between our method and the method of Kukelova et

al. because their code is currently not available. However

we can compare the speed as it is stated in their paper. For

the proposed method we have limited the number of itera-

tions to 10, this gave us convergence in almost all cases.

To reconstruct a 3D point, the triangulation function re-

ceives a triplet of matching 2D points and corresponding

cameras. The 2D point correspondences were chosen as the

first, middle, and last point of its respective trajectory. This

will not result in the widest baseline for all points, however

as our intent is to compare the performance of the methods

with one another and not absolutely, the exact choice is not

crucial. Note that in the evaluation we have chosen the same

set of point correspondences for all three methods.

Accuracy is evaluated by computing the distributions of

two error measures; the 3D estimation error ‖ŵ −w‖
2

and

the re-projection error ‖x̂− x‖
2
, where w are ground truth

points and x̂ are the reprojected points of ŵ The results are

summarized in figure 2.

5. Results

5.1. Comparative Experiment

As expected, the three-point methods have lower errors

than the two-point Polynomial method. Furthermore, ours

shows good agreement with Byröd’s method, in some cases

to the point where it is hard to separate the two graphs from
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each other. Interestingly, Byröd’s method fails to correctly

triangulate some points that both our and the Polynomial

method can deal with. This is apparent in the 3D error his-

togram of the Notre Dame dataset as a small bump around

100 and similarly in the Forward and Dinosaur sets. In

the corresponding reprojection error histograms, these in-

correctly triangulated points gather in the rightmost bin. It

is possible that these errors are a product of the elimination

of base vectors in the method.

5.2. Numerical Stability

All methods were run on a noise free version of the syn-

thetic forward dataset, in order to evaluate the numerical

stability for each of the methods. The result is shown in

figure 1. Here we can see that the stability of the proposed

method is significantly better than of the competing non-

iterative thee-view method. The two-view optimal method

is expected to perform well here due to the absence of

noise and the lower computational complexity of the solver.

When noise is introduced to the data both three-view solvers

will surpass it, as can be seen in figure 2.

In the paper by Kukelova et al [2] there are similar graphs

as in figure 1 showing that their method has better accuracy

than Byröd et al[9]. However they do not show such a large

difference in the precision as can bee seen in figure 1.

5.3. Speedup

The table below shows the average runtime per triangu-

lation on each of the datasets, when executed on a Xeon

W3550 @ 3.07 GHz.

Dataset PC

Orbital 3.0 µs
Lateral 2.9 µs
Forward 3.8 µs
Dinosaur 2.9 µs
Notre Dame 2.6 µs
Corridor 3.4 µs

Our method is implemented in C++ while the QR-

method is written in Matlab’s interpreted code. To as-

sess and reduce the impact of this difference, some extra

steps had to be taken. Using Matlab’s profiler it was de-

termined that a small set of built-in linear algebra functions

(eig,qr,triu and lu,found on lines 94, 97 and 132

in tvt_solve_qr.m,matlab source code released with

[9]) account for 72.4% of the total runtime.

Matlab’s computational backend for linear algebra oper-

ations is the Math Kernel Library1, designed by Intel to be

very fast[18]. It is therefore likely that these Matlab func-

tions are as fast as any equivalent C++ implementation.

1This can be verified by typing as ”version -blas” or ”version -lapack”

on the Matlab command line.
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Figure 1. Triangulation errors for the Forward dataset without

noise. Top: 3D reconstruction error histograms, bottom: reprojec-

tion error histograms.

The execution time for Byröds method was thus conser-

vatively defined as the total execution time of these three

lines of code, amounting to 5.14 ms.

The method of Kukelova et al. could not be timed, as the

code is unavailable. However [2] states a runtime of 1 ms.

On the PC, the mean execution time per triangulation for

the proposed method is 3.1 µs, 320 times faster than the

three-view solver of Kukelova et al and 1600 times faster

than the method of Byröd et al.

On the Raspberry Pi we run the Notre dame data set and

had a execution time of 31 us per triangulation. This makes

a Raspberry Pi, utilizing the proposed method, triangulate

30 times faster than a modern PC running the method of

Kukelova et al.

6. Conclusion

We have presented a solver for the three-view triangu-

lation problem, based on the Dog Leg iterative non-linear

least squares solver. The method is over 300 times faster

than the fastest state-of-the-art non-iterative method on a

PC, and more than 30 times faster on a Raspberry Pi, while

still achieving better precision. The Notre Dame data set of

127431 points is triangulated in 0.26 seconds on the PC and

in 3.7 seconds on the Pi.
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Figure 2. Triangulation errors. Rows (top to bottom): Orbital, Lateral, Forward, Dinosaur, Corridor, and Notre Dame datasets. Columns

(left to right): Point cloud visualization (with cameras only shown in synthetic sets), 3D reconstruction error histograms, and reprojection

error histograms. Preferably viewed in color.
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