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Abstract

This paper proposes a person tracking framework us-
ing a scanning low-resolution thermal infrared (IR) sensor
colocated with a wide-angle RGB camera. The low tempo-
ral and spatial resolution of the low-cost IR sensor make
it unable to track moving people and prone to false detec-
tions of stationary people. Thus, IR-only tracking using
only this sensor would be quite problematic. We demon-
strate that despite the limited capabilities of this low-cost
IR sensor, it can be used effectively to correct the errors of
a real-time RGB camera-based tracker. We align the signals
from the two sensors both spatially (by computing a pixel-
to-pixel geometric correspondence between the two modal-
ities) and temporally (by modeling the temporal dynamics
of the scanning IR sensor), which enables multi-modal im-
provements based on judicious application of elementary
reasoning. Our combined RGB+IR system improves upon
the RGB camera-only tracking by: rejecting false positives,
improving segmentation of tracked objects, and correcting
false negatives (starting new tracks for people that were
missed by the camera-only tracker). Since we combine RGB
and thermal information at the level of RGB camera-based
tracks, our method is not limited to the particular camera-
based tracker that we used in our experiments. Our method
could improve the results of any tracker that uses RGB cam-
era input alone. We collect a new dataset and demonstrate
the superiority of our method over RGB camera-only track-
ing.

1. Introduction
Person tracking is one of the fundamental problems in

computer vision, and there has been extensive work on ob-
ject tracking using RGB cameras. Despite much progress,
human tracking remains a largely unsolved problem due
to factors such as changing appearance, occlusions, mo-
tion of the camera and object, illumination variation, and
background clutter [21, 22]. To deal with appearance ambi-
guities, a variety of methods have been proposed based on
sparse representation [2], template selection and update [1],

subspace-based tracking [17], and feature descriptors [16].
A fundamentally different approach to appearance am-

biguities is based on using different modalities of sensing.
One attractive option that has been proposed for multimodal
person tracking is to use a thermal infrared (IR) camera in
concert with an RGB camera1 [10]. However, widespread
adoption of thermal imaging has been hampered by the pro-
hibitively high cost of thermal infrared cameras [18].

In this paper, we demonstrate that even a very low-cost
thermal sensor can significantly improve person tracking
when used in conjunction with a low-cost RGB video cam-
era. Our thermal sensor consists of an array of 32 thermal
IR receivers arranged in a vertical line, which is rotated by
a motor in 94 discrete steps to produce a 140◦ field-of-view
IR image over a time duration of 1 minute. Hence, our sen-
sor produces a 32 × 94 infrared image at a rate of 1 frame
per minute (0.0166 fps).

Using expensive IR cameras, tracking can be done using
only thermal IR imagery [5, 19, 9]. In this paper, however,
we consider what can be done with a very low-cost ther-
mal infrared sensor, whose low resolution and extremely
low frame rate preclude the possibility of tracking using IR
information alone. In this paper, we will focus on person
tracking in indoor scenes, in which in addition to people,
there can be many heated inanimate objects such as comput-
ers, monitors and TV screens, hot drinks, and room heaters.
Given the low spatial, temporal, and thermal resolution of
our low-cost IR sensor, as well as variation in the temper-
ature profile of a person due to clothing, we cannot simply
use background subtraction in IR images as in [9] to deter-
mine the locations of people. Figure 1 shows an example
image from our IR sensor, along with a corresponding im-
age from the RGB camera. Only one of the four prominent
blobs in the IR image corresponds to a person.

Information fusion across different modalities can be
performed at various levels [3]. For example, a low-level
fusion approach might combine RGB and IR information at

1Throughout this paper, we use the term infrared and the abbreviation
IR to refer solely to thermal infrared signals, not to near-infrared (NIR)
signals. We use the term RGB camera to refer to a video camera that
operates in the visible range of the electromagnetic spectrum.
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Figure 1: An image from our low-cost IR sensor (left) and
a corresponding image from the RGB camera. The four
blobs in the IR image correspond to (left to right): a laptop
computer, a person, a CPU tower, and a cup of tea

the pixel level, before features are computed. In our case,
the large gap in both spatial and temporal resolution be-
tween the RGB camera and the thermal IR sensor preclude
such low-level information fusion. In a high-level fusion
approach, a global decision might be reached after apply-
ing completely independent tracking algorithms in the two
modalities. In this paper, we use mid-level features from
the IR images to inform high-level decisions in the RGB
stream.

Our system combines a real-time tracking algorithm
using an RGB camera (referred to more briefly as our
RGB tracker) with information from our IR sensor to cap-
italize on the strengths of both modalities, while minimiz-
ing their disadvantages. Our RGB tracker combines back-
ground modeling with template tracking. The RGB tracker
is excellent at detecting moving people, but it exhibits occa-
sional false negatives (missed detections) for stationary peo-
ple and occasional false positives for inanimate objects that
are moved. Due to its extremely low frame rate, our IR sen-
sor is not useful for detecting or tracking people when they
are moving about the room, and due to its low spatial res-
olution it cannot easily distinguish stationary people from
other stationary heated objects. However, the IR sensor is
extremely reliable in that it will always register stationary
people as heated blobs.

By judiciously combining the low-frequency informa-
tion from the thermal IR sensor with the high-level tracks
from the RGB tracker, our system improves upon the RGB
camera-only tracker in many situations, eliminating a vari-
ety of false positives and false negatives, and improving the
region boundaries of true detections. Furthermore, the in-
clusion of IR information helps but does not hurt—on all of
our test sequences, the incorporation of IR information does
not generate any new false positives.

2. Previous Work
Here we present a brief review of tracking using three

types of setup: an RGB camera alone (RGB camera-only
tracking), an IR camera alone, or a combination of both IR

and RGB cameras (RGB+IR).

RGB camera-only tracking We first describe three ba-
sic approaches to RGB camera-only tracking. In the first
paradigm, known as visual tracking [21], a single object to
be tracked is manually marked in the first frame of a (usu-
ally short) video sequence, then the appearance of the ob-
ject and background in the first frame (along with the sub-
sequent video frames) is used to track the object over the
course of the sequence. Because visual tracking methods
do not include automatic initialization of tracks, they are
not complete solutions to our problem. Furthermore, visual
tracking methods typically track only one object at a time,
and they tend to drift over long sequences.

A second common paradigm for RGB camera-only
tracking, the “tracking-by-detection” approach, provides
a more complete solution for multi-person tracking.
Tracking-by-detection methods rely on a person detector to
find people in images, then use appearance and other cues
to stitch together these detections into tracks. Such methods
often use a relatively slow (not real-time) person detector
and stitch together the tracks in an offline process [15].

An alternative paradigm for RGB camera-only tracking
integrates detection and tracking more tightly with an on-
line algorithm. Examples of this third paradigm include
the “detect-and-track” approach of [20], which uses a back-
ground model to find candidates for tracking and couples
detection and tracking in a feedback loop. In this paper, we
will focus on the latter approach, as the applications we are
interested in require online, real-time tracking. For a review
of research related to tracking in RGB cameras, see [21, 22].

IR-only tracking Thermal IR imaging offers a tremen-
dous advantage in differentiating people from background
by virtue of temperature difference. The simplest approach,
which is widely adopted, uses intensity thresholding and
shape analysis to detect and track people [5]. Features tradi-
tionally used in RGB images, such as histograms of oriented
gradients and other invariant features, have been adapted to
IR images for person detection [14]. Recently, [9] com-
bined background modeling in infrared with grouping anal-
ysis to perform long-term occupancy analysis.

Tracking using RGB+IR Previous approaches differ in
the level at which information from the IR and RGB streams
is combined. Low-level (pixel-level) combination of IR and
RGB information was used by the person tracker of [13]
to build a combined background model, and by [10] to im-
prove contrast and aid in region-of-interest (ROI) segmen-
tation by background subtraction. The system of Davis et
al. [6] merges information at mid-level by first identifying
ROIs in the IR domain, then obtaining contour fragments
in both IR and RGB by combining gradient information. In
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contrast, Zhao et al. [24] first track blobs in each modality
independently, then merge the information at a high level to
obtain a combined tracker.

3. Spatio-Temporal Alignment
Previous work in RGB+IR tracking uses setups in which

a relatively expensive IR camera has a frame rate that is
comparable to (or identical to) the frame rate of an RGB
camera. Thus, previous work in this area considers only
spatial alignment and does not consider temporal alignment
(other than perhaps a simple matching of RGB frames to
corresponding IR frames). In our setup, however, the very
low-cost IR sensor is about 1800 times slower than the RGB
camera, making temporal alignment of the two sensors crit-
ical. Furthermore, our IR sensor scans very slowly from
side to side, capturing a single column of the IR image in
the same amount of time that the camera captures multiple
frames. As a result, our temporal alignment actually aligns
every individual column of each IR image with correspond-
ing columns of multiple RGB frames. (See Figure 3.)

3.1. Spatial Alignment

First it is necessary to spatially align the two cameras.
For a comprehensive review of multimodal (RGB+IR) spa-
tial image registration, we refer the interested reader to Kro-
tosky et al. [12]. In most of the previous work on RGB+IR
tracking, the outputs of the RGB and IR cameras are well
approximated by a linear camera model, so they can be spa-
tially aligned using a homography (a 3 × 3 linear projec-
tive transformation) between the two images [6, 24]. In our
setup, both the RGB camera and IR sensor are wide-angle
sensors with significant radial distortion. For this reason,
a simple homography does not suffice for registering im-
ages from the two cameras. To minimize alignment prob-
lems due to depth disparities, we approximately colocated
the RGB and IR cameras—that is, the two cameras were
placed as close together as physically possible.

To make a calibration board for use in images from both
the RGB camera and the IR sensor, we constructed a 5 × 3
grid of incandescent lights. (They heat up when they are
left on, making them easily visible even to our low-cost,
low-resolution thermal sensor.) The centers of the lights
are found automatically in both the RGB and IR images by
a simple blob finding algorithm constrained by the known
spatial arrangement of the lights. Using the 15 correspond-
ing points from the calibration board, we first calibrate the
RGB camera and IR sensor individually and estimate their
radial and tangential distortion parameters [23]. This yields
nonlinear mappings, drgb and dir, that map a pixel of the raw
RGB or IR image into a pixel location in the corresponding
undistorted image. Next, we warp the images using the es-
timated distortion parameters to create IR and RGB images
that are undistorted (each undistorted image obeys a linear

Figure 2: Spatial correspondence between images from the
RGB camera and IR sensor.

Figure 3: (a) Model of IR sensor. Over the course of a
minute, the IR sensor makes a full pass from left to right,
collecting 94 columns of an IR image. Two of the columns
(t = 0 and t = 80) are highlighted in color. (b) Corre-
sponding RGB images captured at t = 0 (top) and t = 80
(bottom). The IR information captured at time t = 0 (the
leftmost column of the IR image) corresponds to the verti-
cal stripe of the top RGB image that is highlighted in red.
The IR information captured at t = 80 corresponds to the
vertical stripe of the bottom RGB image that is highlighted
in green. [Please see in color.]

camera model). The 15 correspondences between the undis-
torted RGB and IR images are then used to learn an infinite
homography matrix,H , using Direct Linear Transformation
(DLT) with isotropic scaling [11]. The registration process
is illustrated in Figure 2. We represent the forward mapping
from IR image to RGB image as F such that

xrgb = d−1
rgb (Hdir(xir)) = F(xir), (1)

where xrgb is the pixel location in the RGB image corre-
sponding to pixel location xir in the IR image.

3.2. Temporal Alignment

There has been very limited work on temporal alignment
of data from IR and RGB imaging modalities, probably be-
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cause the sensors in different modalities typically have sim-
ilar frame rates. Conaire et al. [4] use the gen-lock input to
allow two camera frame clocks to be synchronized. How-
ever, such hardware methods cannot be applied to our sys-
tem because of the very low frame rate of our IR sensor. Our
IR sensor uses a single column of 32 IR sensors that scan the
scene in discrete steps moving from left to right to get one
140◦ field-of-view image, followed by a right-to-left scan to
get a second 140◦ image. Rather than sending each column
of the IR image as it is sensed, our interface to the sensor
requires waiting until the end of an entire minute-long scan
(a full IR image), at which time the entire IR image is trans-
mitted. Figure 3 illustrates our model of the IR sensor. We
model the dynamic motion of the IR sensor with a uniform
velocity profile and use timestamps of the IR and RGB im-
ages, along with the spatial alignment described in Section
3.1, to map each column of each RGB image to a corre-
sponding vertical stripe of the corresponding RGB frames.

This accurate spatio-temporal correspondence between
the RGB camera and IR sensor is critical to our approach.
For example, suppose a person walks into the scene and
sits down, represented by the RGB tracker as a static track.
As described in Section 5.1, when the next IR image ar-
rives, the system verifies any static RGB track using the
corresponding region in the IR image: if it corresponds to a
warm blob in IR, then it is in fact a stationary person, oth-
erwise it is a false positive. But when the IR image arrives,
our system should only perform this check if the IR sensor
scanned the static track’s location after the track arrived at
that location. This type of reasoning requires precise spatio-
temporal correspondence.

4. RGB Tracker
Our system integrates high-level information from an

RGB camera-based tracker with mid-level information
(blobs) from the IR stream. Because the information from
the RGB tracker is integrated at a high level (the track level),
the details of the particular RGB tracker that we use are not
that important. Our method for RGB+IR fusion is not re-
stricted to the particular RGB tracker that we use—it could
work with a variety of real-time, online RGB trackers. Thus
in this paper, we do not give an exhaustive description of
the particular RGB tracker that we use. However, in order
to give a basic understanding of our RGB tracker, we briefly
describe it here.

Our RGB tracker was originally developed as a stand-
alone real-time tracking system intended for use on long
video sequences of indoor living spaces. Such environ-
ments pose particular challenges that are not present in stan-
dard datasets for tracking nor for person detection, such as
people in unusual poses (such as sitting down or lying on
a couch), people who are stationary for a long period of
time (e.g., watching TV or sleeping), people filmed from

unusual perspectives (e.g., from a wide-angle camera high
up in the back of a room), and lighting that is inadequate
and/or changes quickly. Such video sequences cause many
existing trackers and person detectors to fail. In experiments
on long video sequences taken in living environments, we
have found that our RGB tracker outperforms all existing
tracking systems we have tested for which code is available.

We use a Gaussian-per-pixel background model to de-
tect foreground objects in the RGB image. Detected fore-
ground objects are tracked using a template tracker. The
background model is updated at every frame, but only for
pixels that are not within person tracks. Foreground detec-
tions are associated with template tracks based on overlap.
Any foreground detections that do not match an existing
track are treated as new detections. In order to distinguish
people (which are the foreground objects that we want to
track) from other foreground objects (such as new objects
brought into the room, moved furniture, etc.) that we do not
want to track, we use a set of visual cues. The main visual
cue is motion. If an object initially moves around the room
(as opposed to moving in place such as a fan or fluttering
curtain), then it is assumed to be a person.

All foreground objects that are classified as people have
an identity descriptor (such as a color histogram) defined
for them. Matches to previous identity descriptors are an-
other visual cue. If a newly detected foreground object is
not moving around the room, then it must match a stored
identity descriptor in order to be classified as a person and to
continue being tracked. This visual cue handles the case in
which a person walks into the room, stops moving, and re-
mains stationary while she is occluded and then unoccluded
by another person walking in front of her. Right after she
is unoccluded by the person who walked in front, the sta-
tionary person is newly detected as foreground because she
does not match the background model. Because her track
is not moving around the room, it is required to match a
stored identity descriptor in order to be classified as person.
In contrast, newly detected static foreground objects that do
not match a stored identity descriptor are classified as non-
people and are not tracked.

These are the main visual cues that our tracker uses, al-
though there are a few others that are of lesser importance
which we do not have space to describe. Using these vi-
sual cues, our RGB tracker is able to reliably track people
in indoor environments most of the time. Furthermore, us-
ing these cues helps to make our system more robust and
much more computationally efficient than a state-of-the-art
person detector [8].

5. Incorporating IR to Improve RGB Tracking
Although our RGB tracker works well in most cases,

there are cases in which it tracks a non-person object (false
positive) and cases in which the bounding box for the track
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does not fit tightly around the person. Also, in certain cases
our tracker may fail to track a person. For each of these fail-
ure modes, information from the low-cost IR sensor can be
used to correct the problem. In general, our system tracks
in real time using the RGB camera. When a new IR image
becomes available (once per minute), we use warm blobs
detected in the IR image to verify and improve the bound-
aries of static tracks and, in certain situations, to create new
tracks. Because the IR sensor has such a low frame rate, it
can only be applied to static tracks. The IR images cannot
be used to verify or improve tracks of moving objects, since
these either will not be captured by the slow IR sensor or
will produce severe temporal aliasing in the IR images.

Let tr denote a particular track, and let

bbtr(i) =
[
xtr(i) ytr(i) wtr(i) htr(i)

]T
(2)

represent the bounding box for track tr in frame i, where
(x, y), w, and h respectively represent the bounding box’s
center, width, and height. We define the motion of a track,
tr, over the last p frames as

motion(tr) =
1

p

f−1∑
i=f−p

∥∥bbtr(i)− bbtr(i+ 1)
∥∥
1
, (3)

where ‖ · ‖1 denotes the L1 norm, and f is the index of
the current frame. (In our experiments, we set p equal to
one half of the ratio of the frame rates of the RGB and IR
cameras.) Every track whose motion is below a threshold is
considered to be a static track.

5.1. Non-Person Track Rejection

Each time a new IR image is obtained from the sensor,
every static track that is currently present in the RGB stream
is verified using the IR image, by checking that a warm blob
is detected at the corresponding region in the IR image. To
find warm blobs in the IR image, we simply threshold the IR
image and find connected components of the set of above-
threshold (warm) pixels. For each warm blob, we find the
minimum enclosing bounding box, bbir, in the IR image.
This is mapped to the corresponding bounding box in the
RGB image, bbrgb, by the spatial mapping, F , described in
Section 3.1. (The circumscribing rectangular bounding box
of the transformed IR bounding box is used.)

To find which IR blob (if any) is associated with each
static RGB track, we determine which IR blob’s corre-
sponding bounding box in the RGB frame has the greatest
overlap ratio with the track’s bounding box bbtr. For each
track tr, the corresponding IR blob j∗ from the set of n IR
blobs in the current IR image is given by:

j∗ = arg max
j=1,..,n

ov(bbtr, bb
j
rgb), (4)

Where ov is the bounding-box overlap ratio [7] :

ov(bb1, bb2) =
area

(
bb1

⋂
bb2
)

area
(
bb1

⋃
bb2
) . (5)

Figure 4: Flowchart summarizing how we use IR informa-
tion to reject non-person tracks and to improve track bound-
ing boxes.

If the best blob j∗ has ov
(
bbtr, bb

j∗

rgb

)
< τ1, then we reject

track tr. (In our experiments, this threshold is τ1 = 0.1.)

5.2. Better Bounding Boxes

IR information can also be used to obtain better seg-
mentation of tracked people from the background. Since
the RGB tracker uses background subtraction, it can have
inaccurate bounding boxes due to issues such as some fore-
ground regions having very similar color to the local back-
ground, lighting changes, and motion blur. To improve
inaccurate track bounding boxes, we replace the bounding
box from the RGB tracker with the bounding box of the
corrresponding IR blob if the overlap ratio (4) is greater
than a threshold τ2 (set to 0.3 in our experiments). Fig-
ure 4 shows a flowchart summary of our method for re-
jecting non-person tracks and improving tracks’ bounding
boxes.

5.3. Adding new tracks

IR information can also be used to generate new tracks.
This is particularly necessary in indoor situations in which
two or more people enter together such that their foreground
regions overlap or touch (as in Figure 7 (a) and (b)). Since
track boundaries in our RGB tracker come from background
subtraction, groups of people who occlude each other when
they enter the scene will be tracked as a single bounding box
(since there is no appearance-based person detector to de-
tect multiple people in a foreground blob). Such situations
can commonly arise in indoor environments. An example is
shown in Figure 7, in which two people enter together and
sit on a couch, after which one of the people departs while
the second person remains stationary on the couch. The
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RGB tracker cannot infer that the remaining foreground ob-
ject is actually a person, because it might be a left-behind
object. (For instance, the RGB tracker cannot distinguish
this situation from one in which a single person carried in a
suitcase, sat down, and then departed but left his suitcase in
the scene.) The remaining person is not moving, and there
has been no opportunity to learn an identity descriptor for
him because he has never been tracked individually.

The signature of such cases is that a track splits into two
(or more) parts, and one of the parts is static and does not
match any stored identity descriptors. In these cases, our
RGB+IR system flags the location of the static part and
stores its bounding box. When the next IR image arrives,
the system checks whether there is an IR blob that inter-
sects (overlaps with) the stored bounding box. If so, the
system concludes that it must be a person and starts a new
track at that location. This may seem like an unlikely sce-
nario, but it is actually a fairly common occurrence in living
environments.

6. Experiments
We tested our method by taking video sequences using

colocated IR and RGB cameras. The IR camera has a reso-
lution of 32 × 94 pixels and generates 1 frame per minute.
The RGB camera we use is a Genius WideCam F100 which
has a resolution of 480×640 and runs at 10 frames per sec-
ond with the RGB tracking algorithm running. We perform
spatio-temporal calibration of our setup as explained in Sec-
tion 3. With the arrival of each new IR image (once per
minute), the IR information is incorporated into the track-
ing process as explained in Section 5.

The goal of this research is to estimate the locations of
people in the image frame. We are not primarily concerned
with having an accurate count of the number of people or
with maintaining track identities. As explained above, our
system tracks multiple people as a single entity when the
foreground regions corresponding to the people intersect.
For this reason, we allow a tracked bounding box to count
as a match to more than one ground truth box to cover cases
in which two or more overlapping people are covered by the
same tracked box. To accept a tracked bounding box as true
positive, we require the overlap ratio (Equation 5) between
the track’s bounding box and ground truth bounding box to
be greater than a threshold, which we set to 0.3. We measure
tracking performance in terms of two measures: detection
rate (which measures the percentage of ground truth boxes
tracked), and the number of false positives in each frame.

6.1. Non-Person Track Rejection

As discussed earlier, background-model-based tracking
methods occasionally have false positives resulting from
motion of non-person objects, such as a rolling chair. Fig-
ure 5 shows an example in which a moving object (an empty

(a) RGB tracker (b) RGB+IR tracker

Figure 5: False positive RGB track on the left is corrected
by RGB+IR tracker on the right based on the absence of an
IR blob overlapping with the RGB track bounding box.

chair that is rolled into the scene and then comes to a halt)
is tracked by the RGB tracker. When the next IR frame ar-
rives, the RGB+IR system rejects that track as a non-person
object (false positive) because there is no corresponding IR
blob.

6.2. Better Bounding Boxes

Background subtraction in RGB is not always accurate
due to such issues as similar colors in both foreground and
background pixels, motion blur, and occlusion (which may
split a single person into two foreground regions). How-
ever, as explained in Section 5.2, track boundaries can be
improved by detecting IR blobs and nonlinearly transform-
ing their bounding boxes into the space of the RGB images
(see Equation 1). Figure 6 shows tracking results on a test
video sequence. The graphs in (e) and (g) show detection
rates per frame for the RGB tracker and RGB+IR tracker,
respectively. The numbers of false positives per frame for
each tracker are shown in (f) and (h). Vertical green lines in
(g) and (h) indicate the instant at which each IR image ar-
rives. In the video sequence, a person enters the scene and is
tracked (see Frame 241). A rolling chair is pushed into the
scene, which due to its proximity merges with the person
track (as seen in Frame 2000). This creates a false positive
and a missed detection for both trackers, because the over-
lap ratio between the track’s bounding box and the ground
truth is less than the threshold of 0.3. When an IR image
arrives (at about frame 2100), these errors are corrected by
the RGB+IR tracker when the tracked bounding box is re-
placed by the transformation into RGB image space of the
corresponding IR blob’s bounding box.

6.3. Adding new Tracks

Figure 7 shows results on another test sequence that
demonstrates a scenario in which the RGB+IR tracker adds
a track for a stationary person. Two people enter together
in the scene and are tracked as a single entity because their
boundaries touch or overlap (see Frame 750). One person
gets up and walks out, and is tracked while leaving the scene
(see Frame 1450). The stationary person who is left behind
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is not tracked by the RGB tracker (because this case can-
not be distinguished from that of a left-behind object), as
shown in Frame 2000. When the next IR image arrives, the
RGB+IR tracker creates a new track for the stationary per-
son based on the rules described in Section 5.3 (see Frame
2250). Hence, the detection rate for the RGB+IR tracker
goes up when the IR frame arrives, while the RGB tracker
continues to fail to track the stationary person. This can be
seen in the detection rate graph of Figure 7(f), in which the
detection rate for the RGB+IR tracker goes up around frame
2200 while the detection rate for the RGB tracker (seen in
Figure 7(e)) remains at 0. When the stationary person even-
tually stands up and walks away (around frame 2350), both
trackers successfully track the person. The graphs of false
positives per frame are not shown here, because they are
almost identical for both RGB and RGB+IR trackers and
contain very few false positives.

7. Conclusion
This paper presents a method for using a low-cost ther-

mal IR sensor to improve RGB camera-based tracking. We
explain how to fuse information between the IR sensor and
RGB camera at the track level to remove most of the errors
encountered in RGB-only tracking. We tested our frame-
work using an RGB tracker based on integrated background
subtraction and template tracking, and showed significant
improvements using information from an extremely-low-
frame-rate IR sensor. Our system is capable of robustly
tracking people in indoor environments over long periods
of time.
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Figure 6: Images (a,b,c,d) show frames from the video with overlaid bounding boxes showing the ground truth, RGB only
and RGB+IR tracks. (e,f) Detection rate and number of false positives for RGB tracking alone on Scene 2. (g,h) Same plots
for RGB+IR tracking, with the arrival of each IR image indicated by a green vertical line. [Please see in color.]
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Figure 7: Images (a,b,c,d) show frames from the video with overlaid bounding boxes showing the ground truth, RGB only
and RGB+IR tracks. (e) Detection rate for RGB tracking alone on Scene 3. (f) Same plot for RGB+IR tracking, with the
arrival of each IR image indicated by a green vertical line. [Please see in color.]
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