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Abstract

In the past decade, there has been a growing need for
machine learning and computer vision components (seg-
mentation, classification) in the hyperspectral imaging do-
main. Due to the complexity and size of hyperspectral im-
agery and the enormous number of wavelength channels,
the need for combining compact representations with im-
age segmentation and superpixel estimation has emerged in
this area. Here, we present an approach to superpixel esti-
mation in hyperspectral images by adapting the well known
UCM approach to hyperspectral volumes. This approach
benefits from the channel information at each pixel of the
hyperspectral image while obtaining a compact represen-
tation of the hyperspectral volume using principal compo-
nent analysis. Our experimental evaluation demonstrates
that the additional information of spectral channels will
substantially improve superpixel estimation from a single
“monochromatic” channel. Furthermore, superpixel esti-
mation performed on the compact hyperspectral represen-
tation outperforms the same when executed on the entire
volume.

1. Introduction
With the ramping up of hyperspectral imaging technolo-

gies in the past twenty years, there is now widespread in-
terest in the application of computer vision and machine
learning techniques in this domain. Regardless of whether
data are specifically acquired in the infra-red, microwave
or the ultra-violet ends of the spectrum, the foci of infor-
mation processing of hyperspectral images largely remain
the same: endmember extraction, abundance estimation and
segmentation are typical examples. Given these overarch-
ing goals, it is somewhat surprising to see the lack of ap-
plication of standard computer vision modules in the hy-
perspectral domain, with superpixel segmentation being an
obvious example.

In the past decade, we have witnessed the sparing use of
segmentation approaches such as graph cuts [13] and be-
lief propagation [10] in the hyperspectral domain. The need

for these is seemingly easy to motivate. Hyperspectral im-
agery of complex scenes benefit from region specific esti-
mation of endmembers (followed by abundance estimation)
and this calls for hyperspectral image segmentation prior
to (and concomitant with) endmember extraction. Unfortu-
nately, given the remote sensing aspect of hyperspectral ac-
quisition, the paucity of object models makes it difficult to
perform model based segmentation. Completely unsuper-
vised segmentation is even more challenging with the lack
of ground truth compounding the difficulty. Given these
challenges, it is quite surprising to see the lack of applica-
tion of superpixel estimation in the hyperspectral domain.
To be clear, we use the term superpixel estimation to refer to
the process of super-pixellization—a process by which non-
uniform image tesselations are obtained—which should not
be confused with the much more difficult task of image seg-
mentation. We believe that hyperspectral superpixels are a
useful intermediate representation and can significantly im-
prove downstream modules such as endmember extraction.
We further believe that hyperspectral superpixels are more
efficient to compute than segmentation per se while being
helpful for abundance estimation etc.

Insofar as we have identified a clear cut need—the esti-
mation of hyperspectral superpixels, the rest of this paper
is entirely straightforward. We first review the state of the
art of hyperspectral superpixel estimation finding a lack of
a lot of previous work in this area. This considerably sim-
plifies our task—we essentially survey the set of superpixel
estimation methods for color images and set about adapting
the best of breed to the hyperspectral domain. The result is
HYP-UCM—an application of the popular ultrametric con-
tour map (UCM) approach for hyperspectral imagery.

2. Literature Review
Hyperspectral imagery was introduced at National Aero-

nautics and Space Administration (NASA)’s Jet Propul-
sion Laboratory and since then Nasa has gathered enor-
mous amount of images with hundreds of spectral channels
containing either visible or near infrared spectra of the re-
flectance of light [6]. Therefore each pixel of the hyper-
spectral image can be considered a spectral function which
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characterizes the underlying objects in the image.
There has been a growing need for image segmentation

in the hyperspectral area over the past decade with recent
work borrowing from machine learning and computer vi-
sion approaches. Some methods have exploited the corre-
lation between spatial and spectral neighbors and used sup-
port vector machine (SVM) training [4], minimum spanning
forests [16], classification using the watershed algorithm
[15] or multinomial logistic regression with active learn-
ing [8]. The work in [10] addressed the problem of hyper-
spectral classification by using loopy belief propagation and
most recently, composite kernels have been generalized to
be used for classification in [11]. Graph-cuts based segmen-
tation for hyperspectral images (GRENDEL) [13] has been
used as an important step for a piece-wise convex unmixing
of hyperspectral images.

Needless to say, there has been an enormous amount
of work on superpixel estimation in computer vision.
Newer approaches have used learning techniques to com-
bine brightness, texture and color information from the in-
put image [3]. Some approaches have combined informa-
tion at multiple scales [12] and a variety of other novel ap-
proaches have been proposed [14, 2, 5]. The approach most
suited to our present work is the ultrametric contour map
(UCM) which uses brightness, color and texture cues to es-
timate the probability of existence of a boundary at each
pixel in the image [1]—essentially a multiscale extension
of the work in [12].

Very little previous work exists for the problem of super-
pixel estimation for hyperspectral images. In [17], super-
pixels have been computed with a graph based approach on
a grid using the sum of squared differences between neigh-
boring pixels and later in [18], superpixels have been used
for endmember detection and unmixing. To summarize, we
have not yet seen the application of the latest state of the
art superpixel estimation approaches in the hyperspectral
domain—hence the motivation for the present work.

3. Methodology
Given the development thus far, the methodology for su-

perpixel estimation is entirely straightforward. We first pro-
vide an intuitive overview of our approach to superpixel es-
timation followed by mathematical development.

It is common to refer to the channel information avail-
able at each hyperspectral pixel as a feature vector with in-
tensity information available at each wavelength. This is en-
tirely misleading since (i) the wavelengths are usually close
to each other and (ii) the set of wavelengths possess linear
ordering. For these reasons, it may actually be beneficial to
consider the hyperspectral image as a 3D volume (by per-
forming interpolation along space and wavelength dimen-
sions). We have not chosen this route in this paper (setting
this larger goal aside for future work). However, the fact

that nearby wavelengths carry similar reflectance informa-
tion is obviously known to researchers in the hyperspectral
domain but to the best of our knowledge has not been uti-
lized in superpixel estimation. Based on this observation,
we conjecture that feature extraction (oriented filter banks
etc.) at every wavelength is highly redundant calling for
the construction of more compact representations of the 3D
reflectance distribution prior to feature extraction.

In this work, we have elected to use principal compo-
nent analysis (PCA) to obtain a compact representation of
the hyperspectral volume. While more recently, sparse and
overcomplete representations have become available, there
is no previous work on superpixel estimation from PCA
driven compact representations. Our first step therefore is
to perform PCA on the hyperspectral volume followed by
feature extraction and superpixel estimation. These are next
described.

The steps in superpixel estimation are as follows: (i)
compact representation using PCA, (ii) feature extraction
using oriented scale space derivatives, (iii) graph construc-
tion, (iv) eigenvector computation and (v) oriented water-
shed transform to produce non-uniform tesselations. While
this sequence is somewhat of a simplification, the major
steps have been highlighted. The sequence follows the well
known UCM approach for the most part but obviously tai-
lored to hyperspectral imagery. The UCM approach com-
bines local and global contour information by combining
information from the original image and weighted graph
eigenvector “images.” In the hyperspectral case, in addi-
tion to the regular channels, we also have PCA wavelength
channels which provide more contour information. We now
detail the individual steps in the overall sequence:
Step 1: Scale space feature extraction from brightness, tex-
ture and wavelength channels: We execute oriented Gaus-
sian derivative filters at multiple scales to obtain

Ilocal(x, θ) =
∑
λ

∑
s(λ)

∑
i(λ)

wi(λ),s(λ)G(x, θ;σ(i(λ), s(λ)))

(1)
where

{
wi(λ),s(λ)

}
is a set of weights that depend on the

channels and scales. The dependence between the Gaussian
filters, the scales and the wavelengths can range from the
simple to the complex. Here, we have just executed the fil-
ters at multiple scales, brightness, textures and wavelengths.
This results in a set of local features at different orientations
which integrates information from all wavelengths. Note
that while (1) is agnostic regarding the chosen wavelengths,
in our case these correspond to the hyperspectral principal
components as detailed in the next section. The inner wights
in each channels have been learned using a set of chan-
nels of Pavia dataset wavelengths as training images and
the outer weights of each PCA channel is the square root of
the eigen vector related to that specific channel.
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Step 2: Weighted graph construction: A weighted graph
(for the purposes of eigenvector computation) is constructed
using the local filter responses above. Following the UCM
strategy, pixels within a certain distance of each other are
linked by a weighted edge using the relation

W (x,y) = exp

{
−α max

z(x,y)
max
θ
Ilocal(z(x,y), θ)

}
(2)

where α is a constant and z(x,y) is any point lying on the
line segment connecting x and y.
Step 3: Eigenvector computation from the weighted graph
W (x,y): Following the standard strategy of spectral clus-
tering, we compute the top eigenvectors of the weighted
graph. Since these eigenvectors are in location space, the
result is a set {ek(x)} (usually rescaled using the eigenval-
ues of the weighted graph).
Step 4: Spectral information obtained from the top K
eigenvectors: Since gradient information computed from
the scaled eigenvectors can be expected to contain comple-
mentary spectral information [1], we execute a set of gradi-
ent operations in different orientations to get

Ispectral(x, θ) =
∑
k

∇θ(ek(x)). (3)

A point to note here is that we considered separately com-
puting eigenvectors for each hyperspectral PCA channel
and then combining all this global information into a sin-
gle descriptor at each pixel. While this needs more inves-
tigation, at this early stage of hyperspectral superpixel esti-
mation, we decided in the interest of simplicity to use the
integrated eigenvectors instead. We plan to revisit this issue
in the future.
Step 5: Combination of local and spectral information: We
linearly combine the information in (1) and in (3) to obtain
the final, global contour probability measure (Fig. 2) A free
parameter is used for the combination and this needs more
careful validation (which we reserve for future work).
Step 6: Oriented watershed transform applied to the global
contour measure: Since the global contour probability map
may not always be closed and therefore may not divide the
image into regions, we require another operation to extract
closed contours. We have used the Oriented Watershed
Transform (OWT) [1] to construct closed contours. Here,
the orientation that maximizes the response of the contour
detection approach is used to construct a set of regions and
further build a hierarchical region tree from the input con-
tours. Real valued weights are associated with each pos-
sible segmentation based on their likelihood to be a true
boundary. For a specific threshold, the set of the result-
ing closed contours can be seen either as a segmentation or
as the output of the super-pixellization. Further it can be

(a) NEON data

(b) Pavia data
Figure 2. Iglobal(x, θ): from left to right for four different orien-
tations: θ = π

2
, π
4
, 0, 3π

4
.

seen that the uncertainty of a segmentation can be repre-
sented. At low thresholds, the image can be oversegmented
respecting even very least probable boundaries and as you
make the threshold higher only very strong boundaries sur-
vive (Fig. 4). This has the benefit of introducing a trade off
between the extreme ends of the segmentation.

4. Experimental Results
In the following, HYP-UCM is tested using two real hy-

perspectral datasets, NEON and Pavia which are explained
in the following:

A. NEON: The National Ecological Observatory Net-
work (NEON) has conducted a series of airborne flights and
supporting ground measurements in two study areas located
near Gainesville, Florida since 2010. Major plant commu-
nities exist within the region and these diverse targets are
populated by sandhill, mixed forests, basin swamp, basin
marsh, marsh lake, etc. [9]. We conducted manual prepro-
cessing to remove the very noisy bands and also rescaled
the whole image between [0 ,1]. The image used in the ex-
periments has 358×317 pixels with 171 different bands.

B. Pavia: This data set was collected over an urban area
of Pavia, in northern Italy by the ROSIS spectrometer on
July 8, 2002 [19]. The image contains 610×341 pixels
with 103 bands. The ROSIS sensor collected data over the
430–850nm wavelength range at a 4nm spectral sampling
interval. The image has been atmospherically corrected by
the German Remote Sensing Data Center of the German
Aerospace Center (DLR) [7]. The image contains both nat-
ural and urban regions.

We have used PCA to select the most informative com-
ponents of the data to give the PCA channels as the input
to HYP-UCM. Fig. 3 shows that that each of the 3 differ-
ent components emphasizes specific details different from
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(a) NEON image

(b) Pavia image
Figure 1. Hierarchical Results for NEON (a) and Pavia (b): From left to right the threshold becomes higher and the weaker boundaries
will be omitted. Far left image is oversegmented and as we go to the right only the strong boundaries survive. As the threshold rises the
results still remain reasonable. For the NEON image, the main lake at the top and the road at the bottom have been successfully detected
whereas in Fig. 5(a) the road has been missed. Also for Pavia (b), the strong boundaries of the buildings have all survived as the threshold
gets higher compared to Fig. 5(b).

the other—a key reason why PCA is useful in this context.
Future work will focus on dictionary learning to determine
better sparse representations. We have used the wavelength
channels related to the highest eigenvalues and for each spe-
cific PCA component, 6 different inner channels are used.
All the weights of the 6 channels are learned using training
data and the outer weight assigned to each PCA component
is the square root of the corresponding eigenvalue.

Fig. 4 contains hierarchical results of HYP-UCM for
NEON and Pavia. At very small thresholds, the results
get oversegmented and as we go to the higher thresholds
only the strong boundaries survive. It can be seen in Fig. 4
that when the threshold gets larger, the result still remains
reasonable in comparison to the case without using PCA
(Fig 5). For NEON, the main lake at the top and the road
at the bottom have been successfully detected whereas in
Fig. 5(a) the road has been missed. Also for Pavia (b), the
strong boundaries of the buildings have all survived as the
threshold gets higher compared to Fig. 5(b) where at the
higher thresholds the results look completely unreasonable.

Moreover, our results show that using UCM with the
RGB version of each of the hyperspectral images as input

(a) NEON data

(b) Pavia data
Figure 3. The results of PCA for (a) NEON and (b) Pavia. From
left to right: The input image and the first, second and third prin-
cipal components of the NEON image. It can be seen that each
of the components emphasizes specific details different from the
others which is the key reason why we have used PCA to choose a
certain number of hyperspectral bands.

leads to less accurate results compared to the case of HYP-
UCM with PCA (Fig. 6 and Fig. 7).
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(a) NEON data

(b) Pavia data
Figure 4. 4 chosen Channels for one wavelength of NEON (a) and Pavia (b): From left to right the first image is the input and the 2
middle left images are two chosen brightness channels of the first PCA channel for θ = π

2
and θ = π

8
and the two right most images are

two chosen texture channels for θ = π
2

and θ = π
8

.

(a) NEON data

(b) Pavia data
Figure 5. As the threshold is increased, the results of using all
of the bands do not produce reasonable contours. The road in
the bottom and some other boundaries around the lake have been
completely missed. In (b) the boundaries that survived are not the
strongest.

(a) UCM using the RGB version of the NEON data

(b) HYP-UCM using the the PCA channels of NEON
Figure 6. Comparison of superpixel estimation results from the
input RGB image (top row), and the first 10 PCA bands of the
hyperspectral image (bottom row), for the extremely low (left col-
umn) and extremely high (right column) thresholds. The results in
(a) do not contain the main boundaries as the ones in (b). Even at
extremely high thresholds, like the left image in (a), the most no-
ticeable detection of UCM is just the very large lake in the center.
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Figure 7. Comparison of superpixel estimation results from the in-
put RGB Pavia image (right), and the first 10 PCA bands of the
hyperspectral image (left) for a very high threshold. As the thresh-
old is increased, the result of the RGB version is missing many of
the main boundaries and the result does not seem as accurate as
the left image.

5. Conclusion
In this work, we have presented an extremely straight-

forward approach to the estimation of superpixels for hy-
perspectral volumes. After summarizing the paucity of pre-
vious work in superpixel estimation in this domain, we jus-
tified the decision to adapt and extend the well known UCM
approach to hyperspectral imagery. Many issues especially
pertinent to hyperspectral images were set aside for future
work. For example, the imposition of continuity along the
wavelength dimension is a strong constraint and expected
to have a big impact on the construction of compact volu-
metric hyperspectral image representations and is a key di-
rection for future work. Our results clearly indicate that
superpixel estimation on compact hyperspectral represen-
tations is more efficient than performing the same on the
entire volume. At the same time, the additional channel in-
formation does improve the superpixels relative to using a
single “monochromatic” channel. Since we are well versed
in endmember extraction and abundance estimation, we are
positioned to adapt standard approaches such as PCOM-
MEND to non-uniform hyperspectral tesselations thereby
leveraging superpixel homogeneity. Finally, we think the
time is ripe for more computer vision and machine learn-
ing applications and extensions in the hyperspectral domain
and look forward to fostering such cross-fertilizations in the
immediate future.
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