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Abstract

Multiple image warping computes deformation fields be-
tween an image and a collection of images. Using multiple
warping, we develop a variational method for the compu-
tation of average images of volumetric biological organs.
In medical diagnosis, the average shape of individual or-
gans provides essential properties for the general expres-
sion of organs. For the comparative reading of medical im-
ages, image registration to a standard organ in database
is achieved to discriminate abnormal organs from the stan-
dard organ. Our algorithm numerically generates a stan-
dard organ from a collection of volumetric medical images.
Appling the multiple warping to the temporal sequence of a
beating heart, we obtain the average heart.

1. Introduction

In this paper, we deal with multiple image warping,
which computes deformation fields between an image and
a collection of images. This collection of multiple defor-
mation fields provides the average image and shape of a
collection of volumetric images and objects. For a col-
lection of spatiotemporal volumetric images, we can define
the temporal average a sequence, the spatial average of the
temporal average and temporal average of spatial average.
We clarify relations among these three averages of Appling
the temporal average computation to sequence of a beating
heart, we obtain the average heart.

In medical diagnosis, the average shape of individual or-
gans provides essential properties for the general expres-
sion of organs [I]]. In computational anatomy, the statistical
average shape, which is computed using principal compo-
nent analysis of a shape descriptor, is well defined [2]]. In
both structure pattern recognition [3} 4] and variational reg-
istration [[]], the average shape among a collection of given
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shapes is of interest. There are various methods for com-
puting the average shape [3] [6]. These methods are based
on the mathematical definition that shapes are the bound-
ary contours of physical objects with shapes defined in the
shape space [7]]. This definition is suitable for dealing with
highly nonlinear geometric variations.

Furthermore, in comparative reading of medical images,
image registration is the main method used to classify the
differences among the images. In particular, the establish-
ment of local deformations between a collection of given
shapes has attracted researchers of medical image analysis
for decades. Some pioneering works demonstrated a regis-
tration process achieved by pattern matching based on dy-
namic programming [8 [9], which is a fundamental idea in
pattern recognition. These approaches involve the matching
and retrieval of occluded shapes, and they are intended for
the global alignment of planar shapes. The shape-matching
algorithm observes a collection of given shapes, detects the
contours and then computes (1) distances among them and
(2) point correspondences between the contours [10]. How-
ever, it tends to be less accurate in the representation of lo-
cal structures because the point correspondences are com-
puted without preserving the geometric local structure of
the shapes. In structure pattern recognition the av-
erage of a collection of combinatorial structures such as
strings and graphs is of interest.

Warping and morphing are fundamental techniques in
computer graphics to interpolate and generate shapes and
objects. In medical applications, morphing is used for the
description of the deformation process of biological organs.
This process predicts the deformable motion of biological
organs in the human torso such as the beating heart and
the deformation of the lungs during breathing. In medi-
cal image diagnosis and retrieval [12]], average images
and shapes of individual organs provide essential properties
for the general expression of organs. Shape retrieval cat-
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egorises and classifies shapes, and finds shapes from por-
tions of shapes. In shape retrieval, the matching of shapes
is based on the diffeomorphism of shapes [13} [14] and the
descriptor of shape boundary contours are used. In
the matching process for discrete shapes, the string edit dis-
tance [3L4]] computed by dynamic programming is a funda-
mental tool. Moreover, in the matching process of images,
the variational registration strategy [111[12] is a typical tool.

2. Variational Average Computation
Multiple Warping

For a function f(z) defined on a finite region 2 in the
n-dimensional Euclidean space R™ and a transform ¢(x)
from R™ to R™, the transform ¢ o f = f(é(x)) is called
the morphing of f by ¢. Setting ¢y, to an appropriate defor-
mation operation applied to each fj fork = 1,2,---  ,m,
we deal with the minimiser

m

= Z {d(fr,dr 09) + pP(ér)} + AQ(9),

i=1
ey
which simultaneously computes g and ¢y, for an appropriate
metric d(f, g) over a collection of images, where P and ()
are the regularisers for ¢, and g, respectively.

J({br}iz1:9)

We call the minimization problem defined by eq. ()
multiple warping from { f}7"_, to g. From multiple warp-
ing, we define the temporal average a sequence, the spa-
tial average of the temporal average and temporal average
of spatial average. We clarify relations among these three
averages of Appling the temporal average computation to
sequence of a beating heart, we obtain the average heart.

Setting the data size of a volumetric image to be N =
G-H -V -D, where GG, H, V and D are the number of
levels of grey values, the horizontal resolution, the vertical
resolution and the depth resolution, respectively, the total
numbers of data for static and temporal volumetric-image
multiple warping are Ts = N x mand Ty = N x m X p,
respectively, where m and p are the numbers of images and
phase in a sequence, respectively. Therefore, data size of
multiple warping for the variational average computation is
relatively large comparing to traditional image registration.

Group Average

For volumetric images { f;(x)}/~, for x € R™ we define
the variational average ¢ as the minimiser of the variational

problem
> [ se-w) - file) de
k=17R?
m m 2
+uZ/ |Vuk|2da:+a/ (Zuk> dx
k=17 R? R? \}=1
+>\/ |Vg|?dz, 2)
R3
where
I‘:/ |Vg|de, Uk:/ |Vauy|2de, S = Zuk,
R? k=1
3)

are regularisers for g and deformation fields {w}}_,. The
constraints I' and Uy, imply that the average g and the de-
formation field are smooth, respectively. The constraint S
implies that the average image exists at the median point of
the deformation field. We set the minimiser of eq. (@) fa
and call f the group average.

Temporal Average

The temporal average g(¢) for 0 < ¢ < T of {fi(¢),0 <

t < T;}™, is the minimiser of
k(£)* +XiP(k(8))+KR(g) ydt,

/ {Z fr(t)
“

where P and R are regularisers and ¢, is a function from
[0,T;] to [0,7]. We extend the this procedure to the spa-
tiotemporal data f(z,t) 0 <t < T.

The temporal average g of f(x,t) 0 < ¢t < T, is the
minimiser of the functional

-/ / (&.1) ~ 9(6(a,1))
R3

+AP(¢(x,t)) + kR(g) }dtdx ®)
We set the minimiser of eq.(@) to be fr. If

IVol* + |0:9]°, (6)
R(g) = |Vg|> =|Vg|]* +10:yl, (7)

e
B=S
8
=
I

we have the Euler-Lagrange equations
—(f(z,t) — g(o(z,

T
- [ G0 - g0t~ 289 =0 ©)

1)JsVig — AiAip =0 (8)

where V; = (V1,9,)" and A; = A + §? are spatio-
temporal operations and J is the Jacobian of f.
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Furthermore, if we set ¢(x,t) = x + u(t), we have the
criterion

T
Ty = /R/O (F(@,1) — g(@ + u(t)) dide
T
+/R3/0 AP(u(t)) + kR(g)}dtdx. (10)

Moreover, if the sequence of samples { f(z, 0k)};*' fora
fixed § such that dm = T is measured, we have the tempo-
rally discrete criterion

e = [ LU0 ~gle+wde

m—1
+/R3 g AP(ug) + kR(g)}dx.  (11)

Group Temporal Average

Setting f;(x) to be the temporal average of { f;(x, )},
the group temporal average of f;(x,t) defined on R3 x
[0, T;] is the minimiser of the functional

Jar = /Rg{Z(fi(m)—9(1/%(w)))2+AiP(¢i(w))+ﬂR(9)}m-

(12)
If we set ¢; (x) = @ + u;, we have the criterion

Jran :/Rg{Z(fi(m)—g(m+ui)2+)\iP(ui)+nR(g)}m.

(13)

Temporal Group Average

For a collection of temporal volumetric images f;(x,t), if
we set f;(x) := fi(x,T), the spatial average at time ¢t = T
is the minimiser of

e = 3 [ ot u) - )i

m m 2
+u2/ |Vuk|2d:c+a/ > uy | dw
k=1 R3 R?

k=1

+>\/ V[ d. (14)
RS

For these four averages of spatio-temporal volumetric
images, we have the following property.

Property 1 Setting frq = arg(minJrg) and for =
arg(min Jg7), the relation far # fra is satisfied.

Figure [[l shows methods for the computation of the vol-
umetric average-shape of three-dimensional organs. Al-
though the average shape of usual organs is computed by
the one step method, the average shape of temporal organs,
such as beating hearts, is computed by the bi-step method.
First, we compute the temporal average shape of an organ.
Then, the spatial average is computed from individual tem-
poral averages.

:\'I""p’ “m::;;‘“- - - -
ol ¢ |v]e]e

Input Average image .

(a) Spatial average

(b) Temoral average

Figure 1. Average image. (a) The average shape of usual organs
is computed by the uni-step method. (b) The average shape of
temporal organs, such as beating hearts, is computed by the bi-step
method. The first, we compute the temporal average of an organ.
Then, the spatial average is computed from individual temporal
averages.

3. Numerical Method

The Euler-Lagrange equations for the computation of f,
for x € {T,G,TG,GT} are in the same class of the par-
tial differential equations. Therefore, we derive a numerical
method for eq. @).

From eq. (@), for the variational average image g and
deformation fields uj we derive the Euler-Lagrange equa-
tions,

alAg(x) — G =0, [Aug(x)—U, =0, (15)
where
G = Y (9@ — ful —uy)), (16)
k=1
Ue = 7O wi+ (9(@) — ful(@ — up))
k=1
xV(g(x) — fr(x —ug))). (17)

Next, we convert eq. (T3] to the diffusion equations

9
ot

Ouy _ Aug(@) — LU, (18)

1
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and discretise them as

1) _
M Lg(n+1) _ lg(n)’ (19)
T @

(n+1) (n)

Uy, — Uy (n+1) 1 _(n)

—* =L -=U. ", 20

- uy, 3ok (20)

where L is the discrete Laplacian operation. Therefore, we
obtain the iteration forms

(I—rD)g™D = g™ —Zam, @D
(I — L™ = uﬁﬁ-%m@. (22)

In each step of the iteration, the results are expressed
on the Euler frame. Image sampled by the Lagrange frame
do not guarantee correspondence between points. There-
fore, we resample the results using the Lagrange frame .
In the Lagrange-frame-sampled images, we use Delaunay-
triangle-based interpolation [[I8] since the method satisfies
the minimum gradient property.

The iteration forms derived in the previous sections

are described in the form
(I —rL)a™*) = a™ — f(a™). (23)

where L is the discrete Laplacian matrix.
dimensional problems, L are described as

L=DRIQI+IDI+II®D, (24

For three-

for
-1 1 0 0 O 0
1 -2 1 0 O 0
0 1 =2 0 O 0
D= ,  (25)
0 0 o --- 1 -2 1
0 0 o --- 0 1 -1

where A ® B is the Kronecker product of matrices A and
B, assuming the von-Neumann condition on the boundary.

The eigenvalues of D are \j, = 4 sin’ % forthe M x M
matrix [I5], and the eigenmatrix [[16] of D, is

_ (2) + D) _f =0
P = ((ecos TWM €= ) L otherwise.

V2
(26)
® is the matrix of the DCT-II transform. Therefore, the
matrix L is decomposed as

L = (2% ®)
XARITRI+IRARI+IRI®A)
x(P2 P ®)"

= UZU' 27)

IThere are two reference frames, which are called the Euler frame and
Lagrange frame [12]. When we have an image B and an invertible trans-
form ¢, the frames are described as BL*97am9€ (o (3, 5)) := B(i, j) and
BPuer(i,j) == B(p™" (i, ).

Table 1. Parameters for computation

a B | v
Female || 107! | 10% | 10°
Liver, | Male 1071 [ 10 | 10°
Mixed || 10~ | 10% | 103
Heart 10~' | 10% | 10*

and the eigenvalues of L are \; + A; + . Then, since eq.
(23) is redescribed as

UsSUT o) = a™ — f(a™), (28)
we have the iteration form
a" =UT(I-r=)"'U (@™ — f(a™)), (29)

where

(I —7%)~! = Diag ( ! > , (30

].—T()\i-f-)\j-l-/\k)

that is, a("*1) is numerically computed from a(™ using
DC(S)T-II [16] and a filtering operation for the Neumann
boundary condition.

4. Numerical Examples

We show computational results for the first, second and
third averages. For the first average, we have computed the
average of 7 female livers and 25 male livers. For the second
and third average, we computed the temporal averages of 7
beating hearts.

We evaluate the warp image error WIE, the total defor-
mation norm FNS, the volume V; and the deformation en-
ergy D Ej, which are defined as

WIE() = [ lo(@) = (e —up)loda.
PNS(e) = | Y will

Vi= [ fr(®—u)de,
R3

DE = [ lus(@)ida.
R3

Furthermore, we show the relation between the input volu-
metric data and averages using the multidimensional scal-
ing. For the numerical computation, we adopt the regulari-
sation parameters in Table[I]
The resolutions of livers and hearts are listed in table 4]
Figures2(a), (b) and (c) show the linear average, and the
eigenorgan, [ which is the linear combination of the first

2See Appendix A for the computation of the eigenorgan.
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Table 2. Resolutions of livers and hearts

Organ || Grayvalue Horisontal Vertical Depth
Liver 256 87 97 76
32 data

Heart 256 128 128 15
20 phase

7 data

four principal functions in the organ space and the varia-
tional average, respectively, of 32 livers. As shown in Fig.
[ the boundary of the variational average is clear and sharp,
although the boundary of the eigenorgan is blurred. This
blurring on the boundary is caused by the geometric diver-
gence of the boundary of each principal organ.

Figure [3| shows the distribution of the volumes and the
average deformation vectors for 32 livers. Figure [3] shows
a graphic expression of the multidimensional scaling of 32
livers. For the definition of the distance between a pair of
organs see Appendix B. This graphical expression shows
that the variational average lies at a position close to the
average with respect to the rotation invariant distance of the
volumetric images.

Figure[d show the compass charts of the deformation for
(a) the linear average, (b) the eigenorgan and (c) the vari-
ational average. The arrows show the total difference be-
tween the average and each shape on the cycle. The config-
uration of allows is symmetric for the variational average.
This geometric configuration coincides with the configu-
ration of samples in the multidimensional scaling. These
charts imply that the variational average is stable and robust
against outer layers, although the eigenorgan is sensitive to
outer layers.

Figure [6] shows 20 temporal volumetric images of a se-
quence of a beating heart. Figures[7] (a), (b) and (c) show
the compass charts of beating cycle of a beating heart for
the variational temporal average, temporal eigenorgan and
the linear average with respct to time. Figures[7l(d), (e) and
(f) show the spatial average of the temporal averages, the
eigenorgan of the temporal averages and the linear average
with respect to time, respectively. In the compass chart of
the beating heart, 20 phases of a beating heart are shown on
the circle and the arrow from the origin of the circle is the
deformation energy to deform the temporal average, which
is shown in the centre of the chart, to each volumetric image
at each phase.

The arrows show the total difference between the aver-
age and each shape on the cycle. These charts show that
the variational average is a stable shape with respect to the
cyclic deformation because the deformations on the chart
are symmetry. However, the eigenorgan of the beating heart
is unstable against cyclic motion because the deformation
on the chart is asymmetric.

Figures[7] (a), (b) and (c) show the spatial average of the
temporal averages, the eigenorgan of the temporal averages
and the linear average with respect to time, respectively.
Figures [8(a) and (b) show the totl deformation norms and
The warp image errors, respectively for three averages. Fig-
uresPla) and (b) show th he spatial average of the temporal
averages of 7 beating hearts. and the eigenorgan of the tem-
poral averages of 7 beating hearts. Figure Plc) shows the
graphical MDS of the variational average.

The boundary of the spatial average of the temporal av-
erages is smooth, although that of the eigenorgan contains
small vibrations. These results show the variational aver-
age of the variational temporal averages is suitable for the
construction of the model of the stationary heart of a man.

(a) (b) ()

Figure 2. Comparison of the numerical averages. (a) The linear
average. (b) The eigenorgan. (c) The variational average.

5. Conclusions

We introduced multiple image warping as an extension
of variational registration. We also introduced the defor-
mation compass chart to evaluate the performance of the
average computation.

The multiple image warping computes deformation
fields between an image and a collection of images. We
developed a variational method for the computation of the
average images and shapes of biological organs in three-
dimensional Euclidean space. We combine the diffusion
registration technique and optical flow computation for the
computation of spatial deformation field between the aver-
age image and input organs. We defined the average shape
as the shape which minimises the total deformation field.

For temporal volumetric images, we develop variational
method for the computation of the temporal average and
the spatial average. The temporal average of a beating heart
constructs a model heart of an individual. This model shape
of sequence of temporal volumetric shape illustrated defor-
mation of a beating heart at each phase. Furthermore, as
a combination of the computations of the temporal average
and the spatial average. we defined the temporal average of
spatial averages and spatial average of temporal averages.
We clarified that these method derive different results.
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Figure 3. Numerical evaluation (a) The warp errors of deforma-
tion. (b) The total deformation norms. (c) The deformation en-
ergies of livers (d) Graphical expression of the multi-dimensional
scaling. (e) Magnification of the graphical MDS around the varia-
tional average.
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Appendix

A. Eigenorgan

Since, for function f(z) defined on R?,

flx+08)=f(x)+6'Vf

erage

Figure 4. Statistical analysis the averages of 32 livers. (a) Linear
average. (b) Eugenorgan. (c) Variational average. Arrows from
the center of the chart show the total deformation norm. The con-
figuration of allows is symmetric for the variational average.

(a) Liver20 (b) Liver19

(c) Liver28

(d) Liver13

Figure 5. Examples of livers. (a) The variatioal average:20. (b)
The liver of a male:19. (c¢) The liver of a male:28. (d) The liver of
a female: 13 The number labels of livers correspond to the number
labels on the multidimensional scaling of Fig. [3](d).

and

/R iz =0, /R efyiz =0,
/R3 ffydx =0, /R3 fyf.dx =0,
/Rg ffoda =0, /R fofadz =0

in the neighbourhood of the point x, the dimension of the
image space is locally four. Therefore, using the local or-
thogonal base, the volumetric eigenimage is expressed as

4
@) =3 cun(@)
k=1
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Figure 6. Sequence of volumetric beating-heart image and the tem-
poral average shape. (a)-(t) are 20 input temporal image-sequence.
(u) and (v) are two views of the temporal-average shape of the vol-
umetric beating heart images.

where {u;}1_, are the first four principal components of the
covariance kernel

n

K(z,y) =Y f(@)f(y).

i=1
B. Volumetric Diatance
Setting

fi(z)dz

1 — 1
Jlinear(T) = - Zfi(fl? - 9i), 9i = 0 e
=1

Maximun Distance = 4093 Maximun Distance = 5853 Maximun Distance = 4042

(a) (b) ()

(@ () ®

Figure 7. Comaprison of the three averages a beating heart. (a)
The radar chart for the linear average a sequence of a beating heart.
(b) The radar chart for the eigenorgan of a sequence of a beating
heart. (c) The radar chart for the variational temporal average of
a beating heart. (d) The linear average a sequence of a beating
heart. (e) The eigenorgan of a sequence of a beating heart. (f) The
variational average a sequence of a beating heart.
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Figure 8. Comparison of the three averages a beating heart. (a)
The total deformation norms (b) The warp errors

the volumetric distance is computed as

D(f.g) = min [ | |f(a) - o(Re)fde,

R
where the rotation R is computed by aligning landmarks.
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