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Abstract

Non-rigid image registration of large 3D volumes de-
pends heavily on image size. Voxel-based approaches for
registration of large data sets are computationally intensive
and take a lot of processing time, usually exponentially pro-
portional to their resolution. In this paper, we present a
method for non-rigid image registration that is independent
of the image size. It can be applied to large data sets without
sacrificing performance. The method is based on comput-
ing a thin plate spline (TPS) transformation between cor-
responding control points derived from a rapid and highly
accurate model-based segmentation. The segmentation pro-
cess does not depend on the image size and defines accurate
point-based correspondence. Those properties were used
to estimate an approximating TPS between a source and a
target volumes and to deform the target to align with the
source. The method was applied to image sequences of pe-
diatric 3D ultrasound data. Registration of 3D ultrasound
images is challenging because of poor-defined image gra-
dients, artifacts, low contrast, noise and speckle. Quan-
titative and qualitative results indicate that the method is
capable of registering large volumes acquired throughout
the cardiac cycle from both intra- and inter-patient ultra-
sound sequences. More importantly, the actual registration
does not depend on image intensity and can be applied to
multi-modal applications.

1. Introduction

Image registration is a computational method for es-
tablishing point-by-point correspondence between two data
sets [5]. The registration process typically relies on cor-
responding image points known as control points or land-
marks. These points are used to estimate a transfor-
mation function that deforms one image to align with
the other. Non-rigid registration uses non-rigid transfor-
mation functions such as polynomials, splines, or multi-
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quadrics [6], [2], [3]. These could be formulated as either
approximating or interpolating functions that require the so-
lution of a system of equations. The non-rigid registration
is usually achieved in an iterative fashion by minimizing a
cost or energy function that represents the geometric and/or
intensity differences between the two data sets. The perfor-
mance of the registration algorithm depends on the quality
of the corresponding landmarks and the image resolution in
terms of accuracy and speed. In voxel-based non-rigid im-
age registration, the cost function is estimated by optimizing
an intensity-based similarity metric, such as mutual infor-
mation or normalized cross correlation. These techniques
could be accurate but are time consuming and impractical
for many interventional procedures. Furthermore, the op-
timization process could be trapped in false local maxima,
resulting in large registration errors.

Model-based segmentation is a fully-automated method
for organ segmentation [11], [1]. It can account for large
variations of the segmented shape. It also defines accurate
point-based correspondence between segmented volumes.
Furthermore, the segmentation speed depends on the reso-
lution of the mesh representing the model rather than the
image resolution. Those properties make the approach ex-
tremely attractive for registration of large volumes. Hav-
ing a set of accurate corresponding control-points enables
the use of point registration techniques to derive a transfor-
mation function which does not depend on intensity-based
similarity measures. More importantly, the registration is
independent of the image size and the registration speed re-
mains constant with increased image resolution. This is of
the key importance for registration of large volume data,
where the number of image voxels could be really high and
the registration could take a significant amount of time.

2. Method

We propose the use of rapid and accurate shape-
constrained segmentation [12] to establish point-based cor-
respondence between two volumes. A shape-constrained



deformable model can be adapted to source and target vol-
umes. The geometry of the model consists of a triangu-
lar mesh with a fixed topology and a constant number of
vertices and triangles. When the model is adapted to dif-
ferent volumes, the triangles of the mesh enlarge or shrink
but their number stays the same. They are also attracted to
the same part in different images, a property that provides
accurate point-based correspondence. A non-rigid transfor-
mation function could then be defined in various ways [13].
In this work, we used an approximating thin plate spline to
deform the target image to align with the source. The details
of each step are provided below.

2.1. Segmentation of the Aortic Root

3D echocardiography is a common procedure for de-
tailed anatomical assessment of cardiac pathology, par-
ticularly valvular defects [4]. Real-time 3D (RT3D)
echocardiography is capable of acquiring volumetric data
at frame rates sufficient to depict cardiac motion. By us-
ing transesophageal (TEE) or transthoracic (TTE) multi-
plane probes, it is possible to obtain rotational images at
defined interval angles around a fixed axis. To minimize re-
construction artifacts, sequential images are gated to both
electrocardiography (ECG) and respiration. RT3D echocar-
diography systems use matrix-array transducer technology
typically containing several thousand imaging elements, to
acquire large volumes of data within a single heart beat.
Rapid data acquisition and online reconstruction of 3D data
has made 4D and multidimensional echocardiography pos-
sible. However, processing of TTE ultrasound images is
challenging due to low image quality, limited field of view
and apical haze. Registration of 3D ultrasound volumes is
necessary in several applications, such as when stitching
volumes to expand the field of view or when stabilizing a
temporal sequence of volumes to cancel out motion of the
probe or anatomy [9].

Shape constrained deformable models (SCDM) with su-
pervised learning have been used for developing heart mod-
els from CT [12]. The entire segmentation framework pre-
sented in [12], is not tailored for a specific modality and can
easily be adapted or extended to other modalities if suitable
boundary detection functions can be defined and trained. To
enable use of these features for ultrasound imaging modali-
ties that do have uncalibrated gray values, we use a simple
histogram-based calibration scheme. In particular, we de-
termine the gray-value histogram of the image and map the
gray-value interval between the L and (100 — L)-percentile
linearly to a standardized interval. This calibration makes
the appearance of images acquired with the same protocol
from different individuals more similar. We do, however,
not transform the entire image, but include this calibration
step in the boundary detection functions. Fully automatic
segmentation is achieved by a segmentation chain compris-

Figure 1. The mesh model used for training of segmentation of 3D
ultrasound pediatric data. The model only includes the aorta (red),
aortic valve (light blue), left atrium (green) and left ventricle (dark
blue).

ing a localization step based on the Generalized Hough
Transformation (GHT) and subsequent model adaptation
with increasing degrees of freedom. The automatic initial-
ization of the model is performed by application of GHT
for localizing anatomical structures in 3D images and the
fact that patients are scanned in standardized poses and that
the orientation of organs shows little variability. In many
cases, it is therefore sufficient to consider translations and
possibly scaling. After initial model placement, parametric
model adaptation with one global similarity transformation
was used to refine pose and size of the aortic root model.
Then, using a multi-affine transformation, the locations of
suborgans were adjusted to further adapt to the 3D structure
of image. Finally SCDM adaptation is performed by iterat-
ing boundary detection and mesh deformation (see below).

We followed the same methodology and developed a new
aortic root model that could adapt to 3D ultrasound data
from pediatric hearts. We created a heart model which only
included aorta, aortic valve, left atrium and left ventricle,
Figure 1. Each vertex and each triangle in the model is de-
scribed with an anatomical label and a unique identifier, and
therefore can be used as a landmark. For model training,
we segmented volumes from pediatric 3D TTE. The model
population consisted of 21 different patients who prospec-
tively underwent 3D TTE for reasons other than aortic valve
(AoV) or aortic root diseases and were found to have mor-
phologically and functionally normal AoV and aortic root
on TTE '. Since consistency of data is important for ro-
bust segmentation of arbitrary volumes, the model was only
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Figure 2. Segmentation of the aortic root model

trained on the normal aortic valves data. Different models
could be trained for normal versus abnormal cases for geo-
metrical measurements and comparison.

The model is represented with a mesh that consists of
vertices and triangles. Various properties describing the lo-
cal image appearance and shape variation are extracted for
model creation. These properties are learned from a set of
pediatric 3D TTE training volumes and their corresponding
ground truth segmentation. Each triangle in the model is
associated with a feature function. The goal of the feature
function is to pull its corresponding triangle closer to the
object boundary during adaptation. The feature functions
are selected and assigned to each triangle in a supervised
feature learning step. A set of possible feature function can-
didates is evaluated in terms of accuracy with which target
points are detected in a simulated search. Object bound-
aries in general can be detected by projecting the image
gradient at location VI (X;) onto the corresponding triangle
normal n;. This suppresses the effect of edges (high gradi-
ents), which deviate from the expected surface orientation.
Furthermore, gradients exceeding a certain threshold, g, 42,
can be damped, using:

gmaib(gmam’ + || \V4 I(X’L)”)
Next, the adaptation of the model to a volume is guided by

the minimization of an energy term defined as the weighted
sum of external and internal energies:

Gproj = inz \V4 I(X) (l)

E= Eint + aEea:t (2)
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The external energy, E.,;, moves the mesh towards de-
tected image boundaries while the internal energy, F,:,
penalizes deviation from a mean geometric (prior) model.
The parameter «v acts as a weighting term that balances the
effect of the two energies. The adaptation is an iterative pro-
cess that combines a boundary detection step followed by a
deformation step.The aortic root model used in this study is
a modification of the four chamber heart model containing
only the left ventricle, left atrium, aorta, and aortic valve.
We found this model is sufficient for aortic leaflet segmen-
tation in general and application to pediatrics in particular.
A segmentation of such a model is shown in Figure 2.

Expert tracers manually annotated the set of training im-
ages and the data was used to build a mean mesh and to
train the boundary feature functions following the simulated
search approach [8]. To generate a well behaved patient-
specific mesh model that can adapt to the youngest of pa-
tients, image enhancement techniques have been applied.
In young children, due to their fast heart rates and small
anatomical structures, it is difficult to get high resolution
imaging. Two ways to improve imaging are to increase the
effective frame rate, compensating thusly for their fast heart
rate [7], and de-noising the images to improve the signal
to noise ratio. This is done through combining a number
of overlapping transthoracic images of the aortic valve to
de-noise the image [9], [10].

2.2. Thin Plate Spline (TPS)
Given a set of 3D points as defined by

{(xzyywzz)a(XHYhZZ) 1= 177N} (3)

the TPS interpolating the points is defined by [13]

N
flzyy,2) = A1+ Asz+ Asy+ Ayz + Z Fir?inr? (4)

i=1

where ’I“? = (37@ — Xi)2 + (yz — Y;)Q + (Zz — ZZ‘)Q + d2.
This is the equation of a plate of infinite extent deforming
under loads centered at {(x;,y;,2;) : ¢ = 1,..., N}. The
plate deflects under the imposition of loads to take values
{fi,i = 1,...,N}. The value d? acts like stiffness, and as
d? approaches zero, the load approaches point loads. As d?
increases, the loads become more widely distributed pro-
ducing a smoother surface. Four more constraints are as
follows:

N
Y Fi=0 )
i=1
N N N
DowiFi=0, Y yFi=0, Y zF=0. (0
i=1 i=1 i=1

The first constraint shows that the sum of the loads applied
to the plate should be zero. This is needed to ensure that



Figure 3. Surface-to-surface distance error between a ground truth
mesh (expert tracer) and a mesh obtained from the automated seg-
mentation using a shape-constrained deformable model.

plate does not move under the imposition of the loads and
remains stationary. The other constraints require that the
moments with respect to each axis be zero, ensuring that
the plate would not rotate under the imposition of the loads.

2.3. Registration of 3D Ultrasound Data

3D ultrasound volumes were extracted from 4D echocar-
diography at different points in the cardiac cycle. Regis-
tration of these 3D images was performed using the 3D
meshes resulting from the segmentation of the volumes with
the shape-constrained deformable aortic root model. The
model was adapted automatically to each image and the re-
sults were saved as a series of control points. As mentioned
earlier, the model-based segmentation preserves mesh cor-
respondence from one image to another.

To evaluate the quantitative accuracy of the segmenta-
tion, we used a leave-one-out cross validation. Our training
set consisted of 21 volumes. Their corresponding ground
truth meshes were provided by expert tracers. The model
was trained on 20 volumes, leaving one out. The volume
that was left out was then segmented with the trained model
and the mesh resulting from the segmentation was com-
pared with the ground truth mesh for that patient. The
surface-to-surface distance error for each vertex and the av-
erage error were computed. The process was repeated 21
times, leaving a different volume out at each iteration. Fig-
ure 3 shows the surface-to-surface error for one of the data
sets. The mean surface to surface error for the aortic root
was 1.21 £ 0.6mm, which is well within the voxel size (3.0
mm) of the ultrasound volume. The accuracy of the seg-
mentation is important because the accuracy of the regis-
tration ultimately depends on the accuracy of the segmenta-
tion.

Using the thin plate splines described in Section 2.2, we
used the segmented meshes to estimate the transformation
function. The method was applied in two different ways:
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Figure 4. The registration pipeline for 3D ultrasound volumes.

first to inter-patient images at different time points in the
cardiac cycle, and then to inter-patient images at the same
time point in the cardiac cycle. After segmentation, the
TPS function was estimated from corresponding meshes
and used to deform the target volume. The registration
pipeline is depicted in Figure 4.

3. Results

The registration of the same patient at two different time
points in the cardiac cycle, the end of diastole (ED) and the
end of systole (ES), are shown in Figures 5 and 6, respec-
tively. Each row represents three orthogonal cross-sections
from the same ultrasound volume. The third and fourth
rows illustrate image overlays of the source and target vol-
umes.

The volumes shown in Figure 5 were sequentially ex-
tracted from a DICOM heart beat sequence and downsam-
pled to the same grid size: 56 x 74 x 34 with a 3.0mm
isotropic voxel resolution. Each volume was segmented
with the model and the TPS-based registration was per-
formed. The result of the registration is shown in Figure 6.
The second row illustrates the deformed target volume. It
can be compared to the target volume before registration
shown in Figure 5. The overlaid images in Figure 6 (third
and fourth rows) show that the described method was able
to account for the nonrigid deformation of the heart from
ED to ES.

The same procedure was followed for the inter-patient
registration. Here the volumes were extracted at the same
time point in the cardiac cycle, which was ED. The source
and target images are shown in Figure 7 (first and second
rows). It can be seen from Figure 7 (third row) that there is
a significant misalignment between the two volumes. Like
with the intra-patient case, the two volumes were segmented
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Figure 5. Image overlay of non-registered ED and ES data of the Figure 7. Image overlay of non-registered ED data of different pa-
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Figure 8. Image overlay of registered ED data of different patient
TTE data.
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Figure 6. Image overlay of registered ED and ES of the same pa-
tient TTE data.

and registered with the thin plate splines. The result is
shown in Figure 8, with the target image after registration
shown in second row. The overlaid images shown in the
third and fourth rows display the performance of registra-
tion. To further illustrates the performance of the registra-
tion we used Canny edge detector to extract boundaries in
the image sets. Figures 9 and 10 show the overlay of image
boundaries in the registered and non registered datasets. Itis
clear that registration performed well in aligning the edges
and boundaries in images. Therefore, the registration was
accurate and computationally efficient to be applied in in-
terventional procedures.

Figure 9. Overlay of image boundaries in non-registered ED and
ES of the same patient TTE data.



Figure 10. Overlay of image boundaries in registered ED and ES
of the same patient TTE data.

4. Conclusion

We presented a method for non-rigid registration of large
3D data volumes that does not depend on the image size and
any intensity-based similarity metrics. Voxel-based regis-
tration methods for large volumes are computationally in-
tensive and depend on the image size. That renders them
impractical for a large number of interventional procedures.
Using the properties of the shape-constrained deformable
models, we created a mesh segmentation scheme that adapts
well to 3D TTE data. The adaptation of the model to differ-
ent volumes provides accurate point-based correspondence
that can be used to estimate a non-rigid thin plate spline
transformation. The speed of the registration depends on
the mesh resolution and stays constant with increased image
size/resolution. More importantly, our method is capable of
registering multi-modal data. As long as the 3D mesh used
for segmentation has the same topology in different modal-
ities, the control points can be used to calculate the TPS
transformation. This is another key feature of our method
that makes it suitable for multi-modal clinical applications.
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