
Change Detection with Weightless Neural Networks

Massimo De Gregorio
Istituto di Cibernetica

“E. Caianiello” (ICIB–CNR)
Via Campi Flegrei, 34

80078 Pozzuoli, ITALY
massimo.degregorio@cnr.it

Maurizio Giordano
Istituto di Calcolo e Reti

ad Alte Prestazioni (ICAR–CNR)
Via P. Castellino, 111
80131 Naples, ITALY

maurizio.giordano@cnr.it

Abstract

In this paper a pixel–based Weightless Neural Network
(WNN) method to face the problem of change detection in
the field of view of a camera is proposed. The main features
of the proposed method are 1) the dynamic adaptability to
background change due to the WNN model adopted and 2)
the introduction of pixel color histories to improve system
behavior in videos characterized by (des)appearing of ob-
jects in video scene and/or sudden changes in lightning and
background brightness and shape. The WNN approach is
very simple and straightforward, and it gives high rank re-
sults in competition with other approaches applied to the
ChangeDetection.net 2014 benchmark dataset.

1. Introduction
The ChangeDetection.net (CDNET) 2014 competition

invites academies and industries to publish results of their
more advanced change&motion detection (CD) methods
and techniques. As in the previous CDNET 2012 chal-
lenge, competing solutions would be classified according to
different background modeling approaches, from statistical
(KDE, single and mixture of Gaussian), to clustering mod-
els, from computer vision techniques (median or histogram
analysis) to neural network modeling.

Up to now, previously proposed neural network ap-
proaches to CD problem falls in the class of weighted neu-
ral network systems [8][7]. On the contrary, our approach,
which is called CwisarDH and extends a previous method
[4] still competing in the CDNET 2012 challenge, relies on
a weightless neural network architecture named WiSARD
[3].

In this paper1 the proposed CwisarDH method to CD
problem is described by emphasizing its main characteris-

1This research work was partially funded by the EU FP7-ICT-2012-8
under the MIDAS Project – Grant Agreement no. 318786.

tics: 1) pixel–based processing without the need of neigh-
borhood information; 2) the simplicity of pre– and post–
processing of video data; 3) straightforward use of a WNN
for the purpose without ad hoc modifications.

The paper is so organized: in Section 2 the adopted
WNN model is introduced; in Section 3 the proposed
WNN–based approach to change detection is presented to-
gether with the experimental settings; Section 4 reports
and discusses the experimental results of CwisarDH detec-
tion capabilities when running on the CDNET 2014 video
dataset; finally, Section 5 summarizes concluding remarks
and future perspectives.

2. The WiSARD weightless neural model

Weightless neural networks are based on networks of
Random Access Memory (RAM) nodes [1]. As illustrated
by Figure 1, a RAM–based neuron/node is capable of recog-
nizing n bit inputs (n–tuple) coming from the retina (usu-
ally a black and white image). The WNNs have a basis
for their biological plausibility because of the straightfor-
ward analogy between the address decoding in RAMs and
the integration of excitation and inhibitory signaling per-
formed by the neuron dendritic tree. WiSARD systems are
a particular type of WNN. While the use of n–tuple RAM
nodes in pattern recognition problems is old, dating about

Figure 1. A WiSARD discriminator.

1403



60 years, with the availability of integrated circuit mem-
ories in the late 70s, the WiSARD (Wilkes, Stonham and
Aleksander Recognition Device) was the first artificial neu-
ral network machine to be patented and produced commer-
cially [3]. The WiSARDs can be, in fact, developed directly
on reprogrammable hardware. This characteristic finds a
concrete applicability in embedded robotic systems.

In the WiSARD model, RAM input lines are connected
to the retina by means of a biunivocal pseudo–random map-
ping as a set of uncorrelated n–tuples. For instance, in Fig-
ure 1, the n–tuple, and so the memory address of RAM1, is
always formed by the colors of the 3 pixel labeled with “1”.
In our example and for the “T” represented on the retina,
RAM1 will receive as input the tuple 110. Each n–tuple is
used as a specific address of a RAM node memory location,
in such a way that the input pattern is completely mapped
to a set of RAM locations.

A WiSARD discriminator, composed bym RAM–based
neurons, is trained with representative data of a specific
class/category. In order to use the network as a discrimi-
nator, one has to set all RAM memory locations to ‘0’ and
choose a training set formed by binary patterns of (m× n)
bits. For each training pattern, a ‘1’ is stored in the mem-
ory location of each RAM addressed by this input pattern.
Once the training of patterns is completed, RAM memory
contents will be set to a certain number of ‘0’s and ‘1’s.
The information stored by RAM nodes during the training
phase is used to deal with previous unseen patterns. When
one of these is given as input, RAM memory contents ad-
dressed by the input pattern are read and summed by the
summing device Σ. The number r thus obtained, which is
called the discriminator response, is equal to the number
of RAMs that output ‘1’. It is easy to see that r necessar-
ily reaches the maximum m if the input pattern belongs to
the training set. r is equal to zero if no n–bit component
of the input pattern appears in the training set (not a single
RAM outputs ‘1’). Intermediate values of r express a kind
of “similarity measure” of the input pattern with respect to
the patterns in the training set. The summing device en-
ables this network of RAM nodes to exhibit – just like other
ANN models based on synaptic weights – generalization
and noise tolerance [2].

3. The CwisarDH approach to CD
Algorithm 1 describes the CwisarDH method pseu-

docode. In order to feed the discriminators with the right
input, CwisarDH creates one discriminator for each pixel of
the video frame. The RGB color of the pixel is represented
by a binary (black & white) image, where the columns rep-
resent the color channel (R, G and B) and the rows the color
channel values (see Figure 2). CwisarDH adopts 192 values
(that is, the retina size is 192 × 3) to represent the channel
values. This is the value the system works at the best (the

Input: video
Output: outvideo (B&W video with detected moving objects)

1 while getting a new frame from video do
2 if frame belogs to trainset then
3 foreach pixel in frame do
4 train the pixel discriminator with RGB encoding;
5 set pixel as bg in outframe;

6 else
7 foreach pixel in frame do
8 use RGB encoding to get response from pixel

discriminator;
9 if response> σ then

10 empty pixel history buffer;
11 train the pixel discriminator with RGB encoding;
12 set pixel as bg in outframe;
13 else
14 if pixel history buffer is full then
15 re-train the pixel discriminator with RGB

encodings stored in the pixel history buffer;
16 empty pixel history buffer;
17 else
18 store RGB encoding in pixel history buffer;

19 set pixel as fg in outframe;

Algorithm 1. CwisarDH method pseudocode

less is the value the faster is the system). Other two parame-
ters have been fixed to face the CD challenge: RAM address
memory and threshold σ. With 16 bit address location and
86% as threshold the average performance of the system is
the best.

The system parameters are constrained to the application
domain. For instance, in case of dynamic backgrounds the
system can better face the problem with threshold values
around 80%. This is because it can absorb and better clas-
sify shimmering water or trees shaken by the wind.

CwisarDH is trained on a certain number of pixel in-
stances taken in different frames of the video under exam-
ination. After the training phase, the system classifies the
pixel as belonging to the background only if the correspond-
ing discriminator response is greater than the fixed thresh-
old σ, otherwise the pixel is considered belonging to the
foreground. The system takes the correctly classified pix-
els to further train the associated discriminator: the on–line
training is a peculiar characteristic of weightless systems.
In this way, CwisarDH adapts itself both to dynamic back-
grounds and to gradual changes in light.

CwisarDH extends the previous method CwisarD [4] by
introducing a pixel classification History support: a k–sized

Figure 2. CwisarDH input encoding

404



Figure 3. CwisarDH retrain on new pixel background

buffer is associated to each pixel to stores pixel colors con-
tinuously classified as foreground in k successive frames.
When the buffer is full, the color history is used to reset
and then to train the associated discriminator on buffered
data (see Figure 3). On the contrary, each time the pixel is
classified as background the history is emptied.

The history buffer support was introduced to improve
performance of the previous CwisarD system, especially
to face with both the case of intermittent objects, like
(des)appearing of objects that change status from back-
ground to foreground in the scene, and the case of sudden
changes in light, shape and colors of background regions
(like in Bad Weather and Turbulence dataset categories).

As an example, Figure 3 shows the case of a light
switched on and left on for all the video duration. Be-
cause the corresponding pixels are continuously classified
as foreground in the successive k frames, the buffer gets
full and the discriminator is retrained on the buffered RGB
instances. From this point on, the pixels representing the
switched light are absorbed and considered as part of the
background.

The result of CwisarDH is displayed after the application
of two post–processing filters: erosion and dilation. This
is to reduce the salt and pepper effect in the output video
frames.

3.1. CwisarDH parallelism on multicores

CwisarDH is implemented in C++ and uses the OpenCV
library [9] for image pre/post–processing and visualization.
CwisarDH software is characterized by a high degree of
potential parallelism, since pixel–based computation in a
frame has neither data nor control dependency on other
pixel computations in the same frame. In fact, one WiS-
ARD discriminator is associated to each pixel and trained
by pixel values gathered in successive frame of the timeline.
While computation on each pixel of the same video frame
can be parallelized, synchronization is require at each new
frame. For this reason we implemented an OpenMP C++
version of CwisarDH to better exploit parallelism on a mul-
ticore CPUs. We used the parallel for OpenMP [10]

No. of

Threads

320×240 pixels 720×480 pixels

Frame Rate (in fps)

Sequential

no optimization 9 5.25 1.38

optimization lvl. 02 9 7.45 2.23

OpenMP with opt. lvl. 02

schedule(dynamic,1) 16 18.5 4.22

Table 1. CwisarDH OpenMP vs Sequential timing

directive to parallelize the loop iterating on frame pixels.
This directive forces the compiler to generate threads2 act-
ing in parallel on separated regions of the image frame.

We carried out timing measurements on a 3.4 Ghz Intel
Core i7 (quadcore) with 8GB RAM and Mac OS X v.10.9.2
operating system to compare the OpenMP version of Cwis-
arDH with the sequential one. The results are reported in
Table 1. We measured the mean value of video frame pro-
cessing rate over one hundred frames soon after CwisarDH
starts classifying. It is worth noticing the significant speed
up gained in both resolutions: the number of threads in-
creases, and, much more interesting, they exploit the multi-
cores more efficiently.

4. CwisarDH results evaluation

Some snapshots of the system outputs are reported in
Figure 4. Table 2 reports system results on all videos in
the dataset while Table 3 reports the average measures of
all CDNET 2014 competing methods.

As one can notice, the system behaves quite well in most
of the situations. This is due both 1) to the characteristic
of artificial neural networks that well adapt to background
changing and 2) to the pixel colors history buffer support
proposed in the new method. In fact, being based on an ar-
tificial neural network paradigm, CwisarDH gives the best
results (first in the Average ranking) on the videos belong-
ing to the category Camera Jitter and very good results on
videos belonging to PTZ and Dynamic Background where
one has to face the problem of, for instance, continuous
change of the background or shimmering water or waving
trees. On the other side, the introduction of the pixel col-
ors buffer allows the system to dial even with situations
in which the original background changes because of the
(des)appearance of an object in the scene (like in the In-
termittent Object Motion dataset category). This is based
on the absorption in the new background of persistent pix-
els continuously classified as foreground in k consecutive
video frames. The overall best metric values obtained by
CwisarDH are reported in Table 3 with black cells.

2The number of threads is chosen by the C++ runtime and it depends
on several dynamic parameters, such as the OS version and current load,
the user environment settings, and so on.

405



(a) Baseline (b) Dynamic Background

(c) Camera Jitter (d) Intermittent Object Motion

(e) Shadow (f) Thermal

(g) Bad Weather (h) Low Framerate

(i) Turbulence (j) PTZ

(k) Night Videos

Figure 4. CwisarDH outputs on CDnet

5. Conclusions
CwisarDH is a method based on Weightless Neural Net-

works to face the change&motion detection problem in
videos. CwisarDH outperforms other competitors in the
CDNET 2014 challenge. The main features of CwisarDH

are: 1) the dynamic adaptability to background change due
to the WiSARD model adopted; 2) the use of pixel color
history buffers to improve the system behavior in videos
characterized by (des)appearing of objects in the scene and
slow/fast changes in lightning and background brightness.

406



R
an

ki
ng

ac
ro

ss
ca

te
-

go
ri

es

R
an

ki
ng

R
ec

al
l

Sp
ec

ifi
ci

ty

FP
R

FN
R

PW
C

F–
m

ea
su

re

Pr
ec

is
io

n

FTSG (Flux Tensor with Split Gaussian models) 1.64 2.00 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696
SuBSENSE 3.00 4.43 0.7842 0.9742 0.0258 0.2158 3.3712 0.6889 0.7135
CwisarDH 3.45 4.57 0.6608 0.9948 0.0052 0.3392 1.5273 0.6812 0.7725
Spectral-360 4.36 4.43 0.7345 0.9861 0.0139 0.2655 2.2722 0.6732 0.7054
Bin Wang Apr 2014 6.27 5.57 0.7035 0.9794 0.0206 0.2965 2.9009 0.6577 0.7163
KNN 6.55 7.00 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788
SC SOBS 7.64 7.57 0.7621 0.9547 0.0453 0.2379 5.1498 0.5961 0.6091
KDE - ElGammal 8.64 9.71 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811
Mahalanobis distance 9.00 8.14 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403
GMM | Stauffer & Grimson 9.27 8.14 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025
CP3-online 9.82 8.43 0.7225 0.9705 0.0295 0.2775 3.4318 0.5805 0.5559
GMM | Zivkovic 10.18 10.71 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973
Multiscale Spatio-Temporal BG Model 11.45 12.00 0.6621 0.9542 0.0458 0.3379 5.5456 0.5141 0.5536
Euclidean distance 13.00 12.29 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480

Table 3. Average measures comparison among all methods

R
ec

al
l

Sp
ec

ifi
ci

ty

FP
R

FN
R

PW
C

Pr
ec

is
io

n

F-
m

ea
su

re

B
as

el
in

e pedestrians 0.9681 0.9995 0.0005 0.0003 0.0766 0.9546 0.9613
PETS2006 0.8084 0.9985 0.0015 0.0025 0.3968 0.8766 0.8411
office 0.8898 0.9989 0.0011 0.0082 0.8603 0.9840 0.9346
highway 0.9225 0.9949 0.0051 0.0049 0.9379 0.9195 0.9210

D
yn

am
ic

B
ac

kg
ro

un
d

overpass 0.8285 0.9997 0.0003 0.0023 0.2563 0.9766 0.8965
canoe 0.8979 0.9994 0.0006 0.0037 0.4215 0.9815 0.9378
fall 0.8430 0.9926 0.0074 0.0028 1.0065 0.6722 0.7480
fountain02 0.9184 0.9999 0.0001 0.0002 0.0296 0.9423 0.9302
fountain01 0.6382 0.9996 0.0004 0.0003 0.0673 0.5872 0.6116
boats 0.7604 0.9997 0.0003 0.0015 0.1810 0.9394 0.8405

C
am

er
a

Ji
tt

er

boulevard 0.6031 0.9943 0.0057 0.0195 2.4093 0.8382 0.7015
sidewalk 0.7138 0.9987 0.0013 0.0077 0.8734 0.9360 0.8100
badminton 0.8079 0.9948 0.0052 0.0068 1.1608 0.8466 0.8268
traffic 0.8498 0.9846 0.0154 0.0100 2.3798 0.7855 0.8164

In
te

rm
itt

en
t

O
bj

.M
ot

io
n abandonedBox 0.2984 0.9959 0.0041 0.0354 3.7621 0.7872 0.4327

winterDriveway 0.4999 0.9860 0.0140 0.0038 1.7665 0.2119 0.2976
sofa 0.8294 0.9955 0.0045 0.0078 1.1745 0.8940 0.8605
tramstop 0.1625 0.9971 0.0029 0.1832 15.2681 0.9241 0.2764
parking 0.6017 0.9729 0.0271 0.0334 5.5843 0.6501 0.6250
streetLight 0.9376 0.9992 0.0008 0.0032 0.3806 0.9832 0.9598

N
ig

ht
V

id
eo

s tramStation 0.5107 0.9925 0.0075 0.0138 2.0761 0.6577 0.5749
busyBoulvard 0.1738 0.9971 0.0029 0.0302 3.1947 0.6877 0.2775
streetCornerAtNight 0.7249 0.9880 0.0120 0.0014 1.3339 0.2306 0.3499
fluidHighway 0.5955 0.9724 0.0276 0.0058 3.2948 0.2363 0.3384
winterStreet 0.5394 0.9778 0.0222 0.0141 3.5153 0.4262 0.4762
bridgeEntry 0.1622 0.9969 0.0031 0.0121 1.4980 0.4266 0.2350

T
he

rm
al lakeSide 0.4540 0.9981 0.0019 0.0107 1.2373 0.8198 0.5844

park 0.6417 0.9976 0.0024 0.0074 0.9610 0.8482 0.7306
diningRoom 0.7199 0.9945 0.0055 0.0263 2.9048 0.9253 0.8098
library 0.9357 0.9898 0.0102 0.0154 2.0642 0.9563 0.9459
corridor 0.8825 0.9944 0.0056 0.0040 0.9324 0.8434 0.8625

PT
Z

twoPositionPTZCam 0.7215 0.9956 0.0044 0.0043 0.8586 0.7152 0.7184
zoomInZoomOut 0.5275 0.9941 0.0059 0.0010 0.6887 0.1587 0.2440
continuousPan 0.2157 0.9978 0.0022 0.0050 0.7066 0.3866 0.2769
intermittentPan 0.0683 0.9996 0.0004 0.0133 1.3513 0.7290 0.1249

Tu
rb

ul
en

ce turbulence2 0.8889 1.0000 0.0000 0.0000 0.0046 0.9850 0.9345
turbulence3 0.7140 0.9996 0.0004 0.0047 0.5035 0.9638 0.8203
turbulence0 0.6980 0.9999 0.0001 0.0006 0.0658 0.9362 0.7998
turbulence1 0.5479 0.9993 0.0007 0.0017 0.2379 0.7592 0.6365

Sh
ad

ow

copyMachine 0.8705 0.9917 0.0083 0.0096 1.6663 0.8869 0.8786
bungalows 0.9627 0.9763 0.0237 0.0024 2.4489 0.7218 0.8250
busStation 0.8676 0.9924 0.0076 0.0051 1.2176 0.8145 0.8402
peopleInShade 0.9666 0.9889 0.0111 0.0020 1.2325 0.8394 0.8985
backdoor 0.8357 0.9997 0.0003 0.0033 0.3576 0.9817 0.9028
cubicle 0.7686 0.9971 0.0029 0.0046 0.7392 0.8413 0.8033

B
ad

W
ea

th
er skating 0.8345 0.9996 0.0004 0.0086 0.8586 0.9905 0.9058

wetSnow 0.2834 0.9997 0.0003 0.0094 0.9553 0.9195 0.4332
snowFall 0.7236 0.9992 0.0008 0.0022 0.2945 0.8816 0.7948
blizzard 0.8372 0.9986 0.0014 0.0019 0.3258 0.8777 0.8570

L
ow

Fr
am

er
at

e

tunnelExit 0 35fps 0.6065 0.9960 0.0040 0.0111 1.4717 0.8090 0.6932
port 0 17fps 0.4118 0.9999 0.0001 0.0002 0.0292 0.5105 0.4559
tramCrossroad 1fps 0.8279 0.9932 0.0068 0.0049 1.1380 0.7768 0.8015
turnpike 0 5fps 0.8175 0.9904 0.0096 0.0147 2.2504 0.8721 0.8439

Table 2. CwisarDH results on CDnet

In many real situations, there is no opportunity to have
a certain number of frames representing the background
(busy highway, underground stations, ...). In these cases, the
system cannot be appropriately trained and its performance
degrades. To overcome this problem, we are going to adopt
a self–adaptive version of CwisarDH that already gave very
good results in the problem of tracking deformable objects
[6][5]. This new system version does not need to be trained
in advance and it is able to dynamically generate the back-
ground model very quickly.

References
[1] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V.

Lima, and H. Morton. A brief introduction to weightless
neural systems. In ESANN 2009, pages 299–305, 2009.

[2] I. Aleksander and H. Morton. An introduction to neural com-
puting. Chapman & Hall, London, 1990.

[3] I. Aleksander, W. V. Thomas, and P. A. Bowden. WiSARD
a radical step forward in image recognition. Sensor Review,
4:120–124, 1984.

[4] M. De Gregorio and M. Giordano. A WiSARD-based ap-
proach to CDnet. In Proc. of 1st BRICS Countries Congress
(BRICS-CCI), 2013.

[5] M. De Gregorio, M. Giordano, S. Rossi, and M. Staffa. Can
you follow that guy?. In ESANN 2014, pages 511–516, 2014.

[6] M. De Gregorio, M. Giordano, S. Rossi, and M. Staffa.
Tracking deformable objects with WiSARD networks.
In Workshop on Deformable Object Manipulation – IN-
NOROBO2014, 2014.

[7] S. Ghosh, M. Roy, and A. Ghosh. Semi–supervised change
detection using modified self–organizing feature map neural
network. Applied Soft Computing, 15(0):1 – 20, 2014.

[8] L. Maddalena and A. Petrosino. The SOBS algorithm: What
are the limits?. In CVPR Workshops, pages 21–26, 2012.

[9] OpenCV. Open source computer vision.
http://www.opencv.org.

[10] OpenMP. The openmp api specification for parallel program-
ming. http://www.openmp.org.

407


