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Abstract— This paper presents and assesses a novel physics-

based change detection technique, Spectral-360, which is based 

on the dichromatic color reflectance model. This approach, 

uses image formation models to computationally estimate, 

from the camera output, a consistent physics-based color 

descriptor of the spectral reflectance of surfaces visible in the 

image, and then to measure the similarity between the full-

spectrum reflectance of the background and foreground pixels 

to segment the foreground from a static background. This 

method represents a new approach to change detection, using 

explicit hypotheses about the physics that create images. The 

assumptions which have been made are that diffuse-only-

reflection is applicable, and the existence of a dominant 

illuminant. The objective evaluation performed using the 

‘changedetection.net 2014’ dataset shows that our Spectral-360 

method outperforms most state-of-the-art methods.  

Keywords-image formation models; change detection; colour 

constancy, background modelling 

I.  INTRODUCTION  

Robust change detection techniques with high detection 
probabilities and low-false alarm rates are a subject of 
extensive research. Developments of such techniques have 
become important in the past three decades. This is due to 
the fact that change detection is a key computer vision 
component which contributes to a wide spectrum of 
applications in diverse disciplines [1].  

The task of change detection is to extract pixels which 
are changing due to motion of objects in image sequences of 
a dynamic scene and labelling such pixels which belong to 
the moving (foreground) objects or regions from the rest of 
the scene (background). The output of these techniques is a 
foreground mask, a set of connected pixels which correspond 
to moving objects (foreground). The mask provided by such 
techniques can then be considered as a valuable low-level 
visual cue to perform high-level object analysis tasks such as 
object recognition, tracking, and activity classification. 

Apart from the motion of object(s) relative to the 
background or disappearance of background object(s), 
foreground mask errors may result from a combination of 
different physical problems, being a consequence of the 
image formation (e.g. illumination variation, shadows, 
reflections, sensor noise, in addition to camouflage 
foreground, similar background-foreground colored objects), 

which result in two types of errors, false alarms and missed 
detections. 

The research community has addressed, with various 
degrees of success, the technical problems associated with 
change detection and foreground segmentation techniques. 
However, very few of the proposed techniques are up to the 
challenges of a real-world operating environment, where 
robustness, adaptability, and flexibility are essential. 

Change detection approaches based on background 
modelling are widely used. A detailed modelling of all type 
of changes is required to segment relevant changes for a 
given application. 

Background modelling may be decomposed into four 
major steps, image representation, statistical manipulation, 
threshold selection and background model updating. The 
literature suggests that the best combination between these 
steps is a key success to develop a real-time, robust and 
adaptive change detection algorithm. 

An important factor in change detection is the choice of 
the image representation and the transformation that is 
applied to the raw data in order to obtain the information that 
is relevant to the specific application domain.  

Change detection approaches may be classified 
depending on the image representation used as physics-based 
or non-physics-based. Non-physics based change detection 
methods use one of the known color spaces as a cue to model 
the scene. While the word physics refers to the extraction of 
intrinsic features about the materials contained in the scene 
based on an understanding of the underlying physics which 
govern the image formation. 

Most of the proposed change detection techniques use 
well-known color spaces to represent the image, trying to 
model the variation in illumination and camera noise using 
statistical modelling techniques. The gap appears to be in the 
image representation used which does not give any 
consideration to the elements which govern the camera 
output. Few solutions have been proposed in the literature 
with regard to the use of physical models of image formation 
to solve the change detection problem. 

This paper proposes a novel physics-based change 
detection approach. First, we introduce image formation 
models in Section II. In Section III, our Spectral-360 
approach is discussed in detail. In Section IV, we compare 
our results to other change detection methods using the 
‘changedetection.net 2014’ dataset.  
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II. IMAGE FORMATION MODELS 

Appearances of scenes depend on four fundamental 

elements: an illuminant, a medium, a material and an 

imaging device. The illuminant represents the source of 

visible electromagnetic energy and is characterized by its 

Spectral Power Distribution (SPD). 

The electromagnetic waves travel from the light source 

through a medium, and eventually reach a physical object in 

the scene. The surface material of this object reflects the 

light; it effectively modulates the incident electromagnetic 

energy. This property is represented by the Surface Spectral 

Reflectance (SSR), the fraction of incident radiation reflected 

by the surface. The reflected electromagnetic energy will 

eventually reach the imaging device. The imaging device is 

characterized by the spectral sensitivities of its 

photosensitive sensors, which represent the response of such 

elements to the received electromagnetic waves.  

Apart from the aforementioned spectral features which 

characterize the elements of the scene appearance, another 

important parameter is the set of geometrical features, which 

represent the scene structure, the illuminant orientation, the 

surface roughness and the viewing geometry. These features 

combine non-linearly to yield a digital image.  

Recovering these features from images is an important 

problem in image processing; however, this recovery is 

generally hard with the limited amount of information 

provided by standard commercial imaging devices. 

The dichromatic model represents the light reflected by an 

inhomogeneous dielectric material as a linear combination of 

diffuse and specular reflections. Each of these parts is further 

divided into two elements, one accounting for the geometry 

and another purely spectral. 

There is a great number of reflection models, most of 

them developed in the field of computer graphics. Among 

these methods, the dichromatic reflection model in [2] is a 

usual choice for those algorithms employing a physical 

model to represent color images, as shown in Figure 1, and 

the equation below: 

 
(1) 

Where Ω is the visible range from 400nm to 700nm, Ic is 
the measured color intensity of the reflected light, wd and ws 
are geometrical parameters for diffuse and specular 
reflection respectively, E(λ) is the spectral power distribution 
function of the illumination, S(λ) is the SSR of the object, 
Qc(λ) is the camera sensor spectral sensitivities 
characteristic, and c represents the color channels (Red, 
Green and Blue). 

Assuming Lambertian surfaces, theoretically, an image 
taken by a digital color camera (for diffuse only reflection) 
can be described as: 

 
(2) 

For what concerns the surface properties, this model 
assumes that: the surface is opaque; not optically active (no 
fluorescence) and the colorant is uniformly distributed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. SYSTEM DESCRIPTION 

Spectral-360 adopts physics-based image formation 
models to denote the image representation. In particular 
Spectral-360 uses the dichromatic reflection model [2]. The 
assumptions made by the dichromatic reflection model are: 
there is a single light source that can be a point source or an 
area source; the illumination has a constant SPD across the 
scene and the amount of illumination can vary across the 
scene. 

Our approach is different from all the previous work, in 
that it relies on models, which can represent wide classes of 
surface materials. It makes use of the pre-trained linear SSR 
models, i.e. Parkkinen basis functions [3], shown in Figure 3, 
to represent the SSR of the objects in the scene.  

As Figure 2 shows, our technique starts with the training 
phase where N training images are acquired (N=60) which 
represent relatively static background frames. The 
illumination estimation stage calculates the Correlated Color 
Temperature (CCT) of the illuminant using McCamy’s 
formula [4]. In order to build a computational physical 
model, we have represented the SSR using 3 basis functions 
of Parkkinen. Representative sensitivities of camera sensors 
are obtained from a camera manufacturer data sheet [5]. The 
weights of Parkkinen basis functions, which represent the 
SSR, are then recovered from the RGB values. Then, the 
mean SSR of the background training images is calculated 
and taken as a reference SSR. In order to build the 
background model, the technique passes through all 
background frames and calculates the correlation between 
each SSR of the N background frames and the reference 
SSR. Then, the maximum and minimum correlations for 
each pixel are added to the background model. 

After building the background model, the testing phase 
starts by capturing a new frame, and then the SSR recovery 
module converts the new frame to its SSR weights using the 
estimated CCT. Then the statistical manipulation module 
calculates the correlation between the new SSR with the 
reference SSR. A decision stage uses an adaptive threshold 
to generate a binary foreground mask, using the maximum 
and minimum values of the correlation measured from the 
pool of background frames.  

Figure 1 Schematic diagram of image formation 
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After the segmentation of the foreground mask, a post-

processing phase applies a post-processing step which 
performs a 9x9 median filter to smooth the changed regions 
within the segmented mask.  

The background model, mean SSR as well as maximum 
correlation and minimum correlation, is evaluated by 
observing the scene during a training period; this model 
should be updated continuously. 

Continuous updating of the model makes the foreground 

extraction more robust to illumination change or objects that 

become part of the background. This occurs when a moving 

object originally enters the field of view and then stops 

moving. The system then updates the background model 

through a model maintenance phase, using an update rate of 

0.005. Static objects for more than 300 frames are gradually 

updated to the background model with an update rate of 

0.01. A condition has been added to accommodate the Pan-

Tilt-Zoom (PTZ) scenario, by resetting the background 

model if the number of pixels in the foreground mask is 

greater than half the frame size and the difference in CCT in 

current frame and previous frame is greater than 100oK.  

A. Illumination estimation  

This stage aims to calculate the Correlated Color 
Temperature (CCT) as an illumination parameter of the 
illuminant. McCamy’s method [4] is used in our approach, 
which is a simple equation to compute the CCT from CIE 
1931 chromaticity coordinates x and y: 

 
(3) 

Where xe = 0.3320 and  ye = 0.1858 then: 

 
   (4) 

This equation proves useful for implementation in real-
time applications. This method has a maximum absolute 
error of less than 2oK for colour temperatures ranging from 
2856oK to 6500oK. 

B. Surface Spectral Reflectance Recovery 

Assuming diffuse-only materials, and using finite-
dimensional linear models to represent the SSR, the physical 
model can be re-written as: 

 
(5) 

where ϕi(λ) is the ith reflectance linear basis function, and 
wi is its corresponding weight. Using this equation, an RGB 
pixel could be linearly transformed to its equivalent SSR 
represented by three basis function weights. 

C. Spectral Similarity Measure 

Our statistical manipulation sub-module measures the 
spectral similarity between the spectral signatures of two 
SSRs.  Cha [6] has carried out a comprehensive survey on 
similarity/distance measures. He has categorized various 
similarity/distance measures as Minkowski family, L1 
family, intersection family, inner product family, fidelity 
family, Squared L2 family or χ2 family, Shannon’s entropy 
family as well as combination of these families. In our 
proposed algorithm, the similarity between spectral pixels 
are measured using the inner product (correlation) similarity 
measure, other similarity measures could be used. 

D. Decision Rule 

The threshold operation creates an initial binary 
foreground mask defined as FGMask, using the maximum 
Cmax and the minimum Cmin values of the correlation 
measured from the pool of background frames. 

 

(6) 

where the thresholds are chosen experimentally as 
follows: 

 

 
 

 

 

Figure 3 Parkkinen’s first 4 basis functions [3] 

Figure 2 Proposed system block diagram 
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IV. PERFORMANCE EVALUATION 

The Changedetection.net (CD.net) challenge [7] aims to 
initiate a rigorous and comprehensive academic 
benchmarking effort for testing and ranking existing and new 
algorithms for change and motion detection.  

In Table 1, our Spectral-360 results using the seven 
performance measures, used by CD.net, are shown for all 
eleven scenarios. The results of our Spectral-360 is 
compared to several state-of-the-art methods (made available 
by CD.net prior to the change detection workshop) in Table 
2. Our Spectral-360 method performs better than all other 
methods in terms of ‘Percentage of Bad Classification’ 
(PBC) and F-measure. El-Gammal scores the best Recall and 
False Negative Rate (FNR) at the cost of low Precision. On 
the other side, Mahalanobis distance scores the best 
Specifity, False Positive Rate (FPR) and Precision at the cost 
of very low Recall.  

V. CONCLUSION 

This paper argues that image formation models offer 
interesting new alternative physics-based cues for change 
detection compared with other representations used in 
conventional methods. Features such as surface spectral 
reflectance have not been applied yet in the field of change 
detection. The reason is the computational complexity of 
such models, and hence possible unfeasibility of real-time 
implementation. This challenge was tackled, firstly, by 
choosing an appropriate reflection model, the dichromatic 
reflection model. Secondly, by setting a feasible set of 
assumptions for such model which best match the reduction 
of model complexity and does not contradict with real-world 
operational conditions. In this paper we have proposed a 
physics-based change detection approach which estimates 
the full spectrum of surface spectral reflectance from the 
video and then segments the moving objects. 
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Table 1: Results of Spectral-360 on all eleven scenarios using all seven measures. 

Table 2: Comparison of Spectral-360 to several state-of-the-art methods using all seven proposed performance measures. 

402

http://www.eureca.de/datasheets/01.xx.xxxx/01.02.xxxx/01.02.0185/ICX098BQ.pdf
http://www.eureca.de/datasheets/01.xx.xxxx/01.02.xxxx/01.02.0185/ICX098BQ.pdf

