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Abstract

Most background subtraction approaches offer decent
results in baseline scenarios, but adaptive and flexible solu-
tions are still uncommon as many require scenario-specific
parameter tuning to achieve optimal performance. In this
paper, we introduce a new strategy to tackle this problem
that focuses on balancing the inner workings of a non-
parametric model based on pixel-level feedback loops. Pix-
els are modeled using a spatiotemporal feature descrip-
tor for increased sensitivity. Using the video sequences
and ground truth annotations of the 2012 and 2014 CVPR
Change Detection Workshops, we demonstrate that our ap-
proach outperforms all previously ranked methods in the
original dataset while achieving good results in the most
recent one.

1. Introduction

Background subtraction algorithms are often the first
step of more in-depth video analysis procedures. Most ap-
proaches require their own set of finely tuned, scenario-
specific parameters in order to achieve optimal results.
However, finding the best parameters for a given applica-
tion is often disregarded as it is not always trivial: it re-
quires good knowledge of the data and of the algorithm it-
self. Thus, this crucial component can easily become a bot-
tleneck when used in complex systems. In this paper, we
present a new background subtraction approach that relies
on the automatic adjustment of maintenance, update and
labeling rules surrounding a non-parametric model. Our
goal is to provide optimal segmentation results across mul-
tiple types of scenarios simultaneously. Our contributions
are highlighted in the two logical steps of our algorithm
(see Fig. 1 for a simplified overview): first, pixel-level
change detection is done by means of spatiotemporal anal-
yses based on color and Local Binary Similarity Patterns
(LBSP) [3, 16]. This allows increased sensitivity for change

Segmentation Decision
St(x)

Background 
Model

B(x) Samples
Dmin(x)
v(x)

R(x)

It(x)

T(x)

Figure 1: Basic overview of SuBSENSE’s principal com-
ponents; dotted lines indicate feedback mechanisms. In
this context, It(x) carries the LBSP/RGB representation
of x obtained from the t-th frame of the analyzed se-
quence, B(x) contains N recently observed background
samples, St(x) is the segmentation output value, R(x) con-
trols the internal segmentation decision thresholds, T (x)
controls the background update thresholds, and finally, both
Dmin(x) and v(x) dynamically control the previous vari-
ables by monitoring background dynamics.

detection. Then, the essence of our method’s flexibility re-
sides in its automatic adjustments of local sensitivity: de-
cision thresholds and state variables are continuously af-
fected by pixel-level feedback loops originating from pre-
vious analyses. These include typical noise compensation
schemes, but also include blinking pixel and ghost detec-
tion policies.

Coined “SuBSENSE” (Self-Balanced SENsitivity SEg-
menter), this new method allows us to identify and isolate
areas where segmentation is more difficult. Those areas can
then be treated differently from other frame regions, which
might only exhibit common behavior and require standard
treatment (see Fig. 2 for an example). A complete eval-
uation using the 2012 www.ChangeDetection.net (CDNet)
dataset [6] shows that we are able to achieve excellent over-
all performance in difficult scenarios, outranking all previ-
ous approaches, even for baseline sequences. This means
that flexibility is not gained at the expense of performance
on simpler scenarios. As for the 2014 update of this same
dataset, comparisons with the methods that were already
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Figure 2: Segmentation results obtained for hand-picked frames of two video sequences of the 2012 CDNet dataset (top row is
“office” at frame 966, bottom row is “highway” at frame 1091) using two well-known methods, Stauffer and Grimson’s GMM
[17] and ViBe [1], as well as our proposed method. Column (a) shows the input frames, (b) the ground truth segmentation
map, (c) GMM’s results, (d) ViBe’s results and (e) our own results. Since GMM and ViBe cannot automatically adapt to all
possible segmentation scenarios, a middle ground must be established to allow good overall flexibility.

ranked (as of 2014/05/05) show that our approach is also
generally a better alternative, even in the most difficult con-
ditions. Additionally, the processing speed of our algorithm
is still widely acceptable for real-time applications.

2. Background and Motivation
There have been countless different approaches pro-

posed over the years for background subtraction via change
detection; our method is inspired by some of the ideas put
forward by contenders of the original CDNet workshop.
First up are non-parametric approaches based on sample
consensus: ViBe [1], ViBe+ [4] and PBAS [8] are all good
examples of simple methods that only rely on the pixel-level
sampling of colors to create their background model. Al-
though far less complex than methods based on probabilis-
tic models, these performed quite well on the 2012 CDNet
dataset, as reported in [6]. Therefore, we decided to also use
a sample consensus model for our own method. Besides,
this kind of model is very well suited for the description of
pixels via complex features, as no aggregation is required.

PBAS is also the main inspiration of our feedback
scheme: unlike regular methods which use a global strategy
for model maintenance and internal labeling decisions, Hof-
mann et al. proposed in [8] to monitor background dynam-
ics at the pixel level. This allowed them to identify and treat
unstable regions (i.e. regions that the model cannot properly
adapt to) by readjusting distance thresholds and adaptation
rates locally using feedback mechanisms. Their monitoring
technique is however inefficient against regions with inter-
mittent dynamic variations (e.g. tree branches on a windy
day), thus why we decided to rework their approach in our
own novel method.

Lastly, Local Binary Similarity Pattern (LBSP)-based
features were demonstrated by Bilodeau et al. in [3] to

be more effective than color intensities at detecting rele-
vant pixel-level changes in simple background subtraction
scenarios. These are a variation of Local Binary Patterns,
which were first used in [7] to improve robustness against il-
lumination variations and reduce false classifications due to
camouflaged foreground objects. The particularity of LBSP
features is that they can also be computed across multiple
frames, improving temporal consistency. For this reason,
we incorporated them in our model to improve the spa-
tiotemporal sensitivity of our approach.

3. Self-Balanced Sensitivity Segmenter
Essentially, we use a sample-based, non-parametric sta-

tistical model that portrays the background at individual
pixel locations (notedB(x)) using a set ofN = 50 past rep-
resentations (or “samples”). When at least #min = 2 sam-
ples intersect with the representation of x at time t (noted
It(x)), the pixel is labeled as background in the raw seg-
mentation map (St(x) = 0); otherwise, it is automatically
considered foreground (St(x) = 1). The way these back-
ground “samples” are updated is similar to what is done in
[1, 8]: they are randomly replaced by local values after the
segmentation step, but only when St(x) = 0.

In their most basic form, the samples in B(x) could only
contain pixel colors, and the comparison scheme used to
compute intersections between B(x) and It(x) could sim-
ply be based on L1 or L2 distance, using a specific max-
imum threshold. However, we directly incorporate binary
strings obtained from LBSP features to our model, result-
ing in samples that carry both local color intensity and
spatiotemporal neighborhood similarity information. More
specifically, for a regular RGB image, our samples consist
of 8-bit RGB intensities paired with 16-bit LBSP binary
strings (for each channel). Accordingly, comparisons are

409



done on colors using L1 distance and on binary strings us-
ing Hamming distance. Although the maximum distance
thresholds (noted Rcolor and Rlbsp) used for these two op-
erations differ in nature, both are obtained from the same
abstract threshold variable, noted R(x):

Rcolor = R(x) ·R0
color, (1)

Rlbsp = 2R(x) +R0
lbsp, (2)

where R(x)≥1, and R0
color and R0

lbsp are, respectively, the
minimal color and LBSP distance thresholds (30 and 3 in
our case). We define R(x) as a pixel-level variable that
controls the maximum difference allowed between two rep-
resentations (or samples) before they are considered dissim-
ilar. This variable is dynamically adjusted using the mov-
ing average of recent minimal distances between B(x) and
It(x), noted Dmin(x). The following equation reflects how
Dmin(x) governs R(x) and how R(x) is updated:

R(x) =

{
R(x) + v(x) if R(x)<(1+Dmin(x)·2)2
R(x)− 1

v(x) otherwise ,

(3)
where v(x) is a strictly-positive factor (described further
down). We determined through early experiments that mod-
ifying R(x) using a relative value (as suggested in [8]) gen-
erally results in a slower feedback response time than us-
ing an absolute value (based on v(x) in our case). Also,
we established the link between Dmin(x) and R(x) using
an exponential relation: this allows the use of much larger
R(x) threshold values when Dmin(x) becomes more sig-
nificant. Eq. 4 shows how Dmin(x) itself is updated using
the current normalized minimal distances between samples
in B(x) and It(x) (noted dt(x)), where α is a predeter-
mined constant learning rate. Note that Dmin(x) is always
bound to the [0, 1] interval.

Dmin(x) = Dmin(x)·(1−α) + dt(x)·α (4)

The concept behind R(x)’s relation with Dmin(x) is sim-
ple: an area with continuous change (caused, for example,
by rippling water or falling snow) will possess a higher
Dmin(x) than an area with very little change. Therefore,
its local R(x) value will be greater (as dictated through Eq.
3), and intersections of background samples with It(x) will
also be more likely.

Unlike PBAS’s approach ([8]), our main pixel-level
monitoring variable (Dmin(x)) is updated using Eq. 4 for
every new observation, no matter what the actual pixel clas-
sification is. This results in faster threshold responses to in-
termittent dynamic elements (such as swaying tree branches
due to wind bursts), which drastically reduce the amount of
false detections in unstable areas. However, it also leads
to rapidly increasingDmin(x) values (and, logically, R(x))
in regions where foreground objects frequently occlude the

background. This is due to the fact that the model can
only slowly incorporate new observed samples in B(x),
and continuous disparities between B(x) and I(x) lead to
Dmin(x) buildups. Such behavior may become detrimental
over time, as true foreground objects would become harder
and harder to detect.

To counter this problem, we propose to dynamically
readjust the v(x) value seen in Eq. 3 to control the vari-
ations of R(x) based on the region’s nature. Ideally,
static regions should be characterized by small v(x) values
(0<v(x)<1), thus making sure R(x) can barely increase
but may decrease rapidly. On the other hand, v(x) should
be much greater in dynamic regions (v(x)>1), leading to
the opposite phenomenon. To properly discern and isolate
static and dynamic regions over time, we rely on the anal-
ysis of blinking pixels. These are characteristic of dynamic
regions, as segmentation noise is often intermittent and ir-
regular in such areas. Therefore, an XOR operation on sub-
sequent segmentation frames (St and St−1) can easily re-
veal blinking pixels. We use v(x) variables as accumulators
in this context: each time a blinking pixel is seen at x, we
increase the value of v(x) and we slowly decrease it other-
wise.

As stated earlier, the samples contained in B(x) can be
randomly replaced by local representations if the current
intersection of B(x) and It(x) resulted in #min or more
matches. We follow part of the logic that was suggested
in [1, 4, 8] in this matter: for every background classifica-
tion, a single, randomly-picked sample of B(x) (as well as
one of its direct neighbors’) can be replaced with the ac-
tual observation of x based on probability p = 1/T (x)
(where T (x) is the “update rate”). In our case, T (x) also
depends on our two background dynamics monitoring vari-
ables, Dmin(x) and v(x), and on the latest segmentation
results, St(x). More specifically, we use:

T (x) =

{
T (x) + 1

v(x)·Dmin(x)
if St(x) = 1

T (x)− v(x)
Dmin(x)

if St(x) = 0
, (5)

where T (x) is limited to the [Tlower, Tupper] interval (by
default, [2, 256]). In short, this relation dictates that back-
ground regions with very little variation should see rapid up-
date rate increases (i.e. sudden drops in update probability)
when they are classified as foreground, whereas unstable ar-
eas should experience the opposite (i.e. slower increases in
T (x)). The reasoning behind raising the update rate (and re-
ducing the update probability) for foreground regions is that
the model should try to keep older local representations ac-
tive for as long as possible in order to allow the continuous
foreground segmentation of intermittently moving objects
of interest.

On a related note, the detection of “ghosts” is very chal-
lenging in background subtraction, especially at the pixel
level: these typically appear when part of the background

410



Categories Recall Specificity FPR FNR PWC Precision F-Measure
baseline 0.9622 0.9976 0.0024 0.0378 0.3821 0.9346 0.9480
cameraJitter 0.7495 0.9908 0.0092 0.2505 1.8282 0.8116 0.7694
dynamicBackground 0.7872 0.9993 0.0007 0.2128 0.3837 0.8768 0.8138
intermObjectMotion 0.6679 0.9919 0.0081 0.3321 3.7722 0.7975 0.6523
shadow 0.9529 0.9910 0.0090 0.0471 1.0668 0.8370 0.8890
thermal 0.8379 0.9889 0.0111 0.1621 1.6145 0.8116 0.8184
overall (2012) 0.8263 0.9933 0.0067 0.1737 1.5079 0.8449 0.8152
badWeather 0.8100 0.9989 0.0011 0.1900 0.4671 0.9051 0.8528
lowFramerate 0.8399 0.9944 0.0056 0.1601 0.9644 0.6122 0.6437
nightVideos 0.6262 0.9779 0.0221 0.3738 3.7145 0.5168 0.5390
PTZ 0.8316 0.9418 0.0582 0.1684 5.9293 0.2666 0.3185
turbulence 0.8118 0.9995 0.0005 0.1882 0.1348 0.8398 0.8197
overall (2012+2014) 0.8070 0.9884 0.0116 0.1930 1.8416 0.7463 0.7331

Table 1: Results obtained for SuBSENSE using the 2012 and 2014 versions of the CDNet dataset and evaluation tools.

model portrays an older, but irrelevant version of the ob-
served scene, causing the “true” background to be mis-
classified as foreground. This usually happens when static
background objects are removed from the scene (e.g. a car
leaving a parking lot). In our case, for a given x, if T (x)
is abruptly raised to Tupper (due to Dmin(x) ≈ 0), it could
take a while before enough samples are added back toB(x)
to restart classifying x as background. To solve this prob-
lem, we determined that when regions are classified as fore-
ground over long periods of time (over 300 frames) and
when local variations between consecutive frames (It and
It−1) are negligible, increasing the update probability by
temporarily setting T (x) to a lower value (i.e. 4) usually
helps. Once the region no longer needs updates or no longer
matches the “ghost” profile, it regains its regular, dynamic
T (x) value.

Segmentation results in sequences where the camera is
not completely static are also improved by monitoring the
overall observation disparities between consecutive frames
in order to dynamically readjust learning rates. Although
this solution is not perfect, it allows us to detect sud-
den and continuous camera movements as long as the ob-
served scene presents enough high-level changes. More
specifically, we use moving averages of downsampled in-
put frames (1/8 of the original frame size) to detect ap-
proximately when large portions of the analysis region suf-
fer from drastic changes, in both pixel-level intensities and
textures. When such an event is detected, the Tlower and
Tupper variables are scaled down based on the severity
of this event, thus instantly increasing update probabilities
frame-wide.

4. Evaluation

In order to evaluate how our solution performs against
various types of background subtraction problems, we first

relied on the video sequence dataset proposed in the 2012
CVPR Workshop on Change Detection [6] that includes 31
video sequences spanning six categories: baseline, cam-
era jitter, dynamic background, intermittent object motion,
shadow and thermal. We also used the 2014 version of this
same dataset, where 22 videos were added in five new cate-
gories: bad weather, low framerate, night videos, point-tilt-
zoom (PTZ) and turbulence. As required, we used a unique
parameter set for all videos to determine the true flexibility
of our method. The post-processing operations we used are
only based on median blur and morphological operations.
Note that the latest C++ implementation of SuBSENSE is
available online1. The metrics used in the tables below are
described in [6].

First, we present in Table 1 the averaged metrics across
all 2012 and 2014 categories obtained using our proposed
method as well as the averaged overall results. We can ob-
serve that our results for the six original categories are much
better than those of the newer categories, indicating that the
videos added in the 2014 dataset present much more chal-
lenging background subtraction problems. In our case, the
PTZ category seems to be the worse: since we do not rely on
accurate region-level motion estimation, our approach does
not handle non-static cameras very well, causing continu-
ous false classifications over the entire analyzed region of
interest. Adding a video stabilization step as preprocessing
or an optical flow analysis component to our method could
improve performance in this case. Segmentation results ob-
tained for “night videos” also seem problematic: since cars
are the main focus in this category, their headlights in dark
regions often cause important illumination changes that re-
sult in false positive classifications. Despite these two draw-
backs, all other categories show F-Measures above 60%,
which indicates that our approach offers generally good per-

1https://bitbucket.org/pierre luc st charles/subsense
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Method AvgRank FMeasure
SuBSENSE (Proposed) 2.16 0.8152
PBAS[8] 4.00 0.7532
ViBe+[4] 5.33 0.7224
PSP-MRF[15] 5.50 0.7372
SC-SOBS[11] 6.50 0.7283
Chebyshev Prob.[12] 7.16 0.7001
SOBS[10] 8.83 0.7155
KNN [21] 8.83 0.6785
KDE Nonaka et al. [13] 9.50 0.6418
KDE Elgammal et al. [5] 9.66 0.6719
ViBe[1] 10.50 0.6683
KDE Yoshinaga et al. [19] 11.16 0.6437
Bayesian Background[14] 11.66 0.6272
GMM Stauffer-Grimson[17] 12.00 0.6624
GMM Zivkovic[20] 14.00 0.6596
GMM RECTGAUSS-T.[18] 14.33 0.5221
Local-Self Similarity[9] 14.66 0.5016
Mahalanobis distance[2] 15.50 0.6259
Euclidean distance[2] 17.33 0.6111

Table 2: Updated average ranks (obtained via the Meth-
odsRanker script) and overall F-Measures of the original
methods tested on the 2012 CDNet dataset.

Method AvgRank FMeasure
FTSG 2.14 0.7283
SuBSENSE (Proposed) 2.43 0.7331
CwisarDH 4.57 0.6812
Spectral-360 4.86 0.6732
Bing Wang’s 6.14 0.6577
KNN [21] 7.43 0.5937
SC-SOBS 7.57 0.5961
Mahalanobis distance[2] 8.29 0.2267
CP3-online 8.43 0.5805
GMM Stauffer-Grimson[17] 8.43 0.5707
KDE Elgammal et al. [5] 9.71 0.5688
GMM Zivkovic[20] 10.71 0.5566
MST BG Model 12.00 0.5141
Euclidean distance[2] 12.29 0.5161

Table 3: Average ranks and overall F-Measures of all
available methods on the 2014 CDNet dataset as of
2014/05/05; for more information about each method, re-
fer to www.ChangeDetection.net.

formance.
Then, in Tables 2 and 3, we present how our method

ranks among other CDNet contenders (based on CDNet’s
MethodsRanker script for 2012 results and on website rank-
ings for 2014 results) along with their respective overall F-
Measure metrics (which were considered good indicators of
overall performance in [6]). Although we did not reach the

first overall rank in the 2014 dataset, we can denote that our
F-Measure score surpasses that of all other state-of-the-art
methods. This is due to our algorithm’s excellent flexibility
in most scenarios, which allows the treatment of different
frame regions using the right level of change detection sen-
sitivity. Also, the full results (which are not shown here but
available on the CDNet website) indicate that our method
obtains the best F-Measure score in seven out of eleven cat-
egories.

Besides, even though processing speed was not the main
focus of our work, the configuration we used managed to
clock an average of over 30 frames per second for the com-
plete 2014 dataset (53 sequences), which is well above the
expected average for other methods. For reference, we only
used C++ code on a 3rd generation Intel Core i5 processor
with no architecture-specific instructions or other low-level
optimizations.

5. Conclusion

We presented an adaptive and truly flexible background
subtraction algorithm based on pixel-level change detec-
tion using comparisons of colors and LBSP features. The
feedback-driven, self-balancing properties of this new ap-
proach allowed us to reach a new height in terms of global
performance on the 2012 CDNet dataset, but our experi-
ments also showed that we outperform all other already-
ranked methods in the 2014 version of this same dataset in
terms of F-Measure scores. We believe our results could
still be drastically improved in PTZ scenarios by adding an
accurate region-level analysis component based on motion
estimation, or in general by using a Markov Random Field-
based post-processing component (such as [15]).
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