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Abstract—In this paper we demonstrate that the current
state of the art social grouping methodology can be enhanced
with the use of visual attention estimation. In a surveillance
environment it is possible to extract the gazing direction of
pedestrians, a feature which can be used to improve social
grouping estimation. We implement a state of the art motion
based social grouping technique to get a baseline success at
social grouping, and implement the same grouping with the
addition of the visual attention feature. By a comparison of the
success at finding social groups for two techniques we evaluate
the effectiveness of including the visual attention feature. We
test both methods on two datasets containing busy surveillance
scenes. We find that the inclusion of visual interest improves the
motion social grouping capability. For the Oxford data, we see
a 5.6% improvement in true positives and 28.5% reduction
in false positives. We see up to a 50% reduction in false
positives in other datasets. The strength of the visual feature is
demonstrated by the association of social connections that are
otherwise missed by the motion only social grouping technique.

Keywords-Video surveillance; Computer aided analysis; Ma-
chine vision

I. INTRODUCTION

Human behavior analysis has presented a challenging
problem in autonomous surveillance due to the variety,
subtlety, and obscurity of behavioral expression. To ad-
dress the challenge, estimating social connectivity between
individuals is a contextual feature gaining popularity in
recent work. Social connectivity and grouping is used to
improve tracking [1] and behavior analysis. It has been
shown that with an understanding of the social context
surrounding human behavior in surveillance it is possible
to better interpret observed events and detect abnormal
behavior [2], [3]. Using the social behavior feature is par-
ticularly relevant in crowded environments in which the
motion of an individual is more constrained and social
dependencies are more salient against the entropic crowd
motion. Our work focuses on the use of visual attention to
better classify social connections in a semi-crowded surveil-
lance scene. Human motion information of individuals and

crowds is commonly used in automatic social grouping.
However, the surveillance environment can exert influence
upon trajectories by channeling people, presenting queuing
or waiting areas, or containing objects to interact with. These
motions are ambiguous with intentional motion from social
connections and as such obscure any trivial definition of
social connectivity. In this work we extract a further feature;
visual attention and demonstrate visual attention can be used
to better identify social grouping in crowded environments.
The visual attention of an individual provides an additive
feature which supplements the motion based similarity used
in the state of the art. The visual attention feature is not
impacted in the same way as the motion features are by the
scene.

With this research we aim to verify the hypothesis that
pedestrian visual attention can be used to compliment mo-
tion based social group estimation. To verify our hypothesis
we will implement our hybrid motion-visual attention system
demonstrating better social grouping in a variety of different
surveillance datasets. Comparison will be made against a
hand labeled social group ground truth, assessing the efficacy
of our visual attention and motion against motion alone.

A. Related Work

The estimation of social groups in surveillance has a
focused primarily on motion features. To estimate social
groupings Ge et al. uses a proximity and velocity metric to
associate individuals into pairs, iteratively adding additional
individuals to groups using the Hausdorff distance as a
measure of closeness [5]. Yu et al. implements a graph cuts
based system which uses the feature of proximity alone [6].
However, modeling social groups by positional information
alone is prone to finding false social connections when
individuals are within close proximity due to environmental
influences such as queuing. Oliver et al. uses a Coupled
HMM to construct a-priori models of group events such
as Follow-reach-walk together, or Approach-meet-go sep-
arately [7]. Certain actions are declared group activities and
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Figure 1. Image (a) illustrates an example from the PETS 2007 dataset [4]
of our tracking output, the social groups (designated by colored bounding
boxes) and the extracted gaze direction estimates (illustrated by field of
view cones). image (b) is a zoomed subsection showing the gaze direction
field of view of a person in the image.

thus groups can be constructed from individuals via mutual
engagement in a grouping action. However, a more recent
development in automatic social grouping seeks to model
social interaction using the visual interest of the tracked
individuals. The use of an individuals visual attention is
significant as it uses a rich feature which indicates the
intention of the individual. Robertson and Reid utilize gaze
direction in order to determine whether individuals are
within each other’s field of view [8]. Farenzena et al use an
estimation of the visual focus of attention of a person as a
cue to indicate social interaction [9]. Head pose is quantized
into 4 different locations at each frame, and a predefined set
of spatial and visual criteria determines if the conditions
for a social interaction are met at each time step. A social
exchange is then defined as lasting a given duration (10
seconds). In our work we bring together the motion based
social paradigm with the benefit of visual information as it
is demonstrated by [8], [9].

B. Initial Hypothesis Validation

Our visual interest social grouping is based on the hypoth-
esis that socially connected people act as a source of visual
interest for each other. This hypothesis makes the implicit
assumption that the gazing patterns of socially connected
persons differs from those that are unconnected. The vali-
dation of the underlying hypothesis was performed in two
steps. In the first step, pedestrians were segmented into two
groups: those with social connections, and those without.
This segmentation was performed by hand. Once segmented,
we calculated the deviation between travel direction and
gaze direction for each pedestrian for each frame of video.
Travel direction was calculated using each persons smoothed
velocity over a 15 frame window using the head centroids
provided by Benfold [10] and our own tracks on the PETS
2007 data [4]. In our initial validation we removed false-
positive head detections and used hand-labeled gaze direc-
tions rather than utilizing algorithmic solutions. Formally,

denote a persons velocity direction at frame t as θDt and their
gaze direction as θGt . The gaze-velocity deviation can then be
calculated as the absolute error εt = |θDt − θGt |. The mean
and variance of the deviations was then extracted for the
two pedestrian groups (socially connected and unconnected)
upon which further analysis was performed.

Validation Results: The analysis of gazing patterns was
performed on 3 datasets: the Benfold dataset [10], the Caviar
dataset [11] and the PETS 2007 dataset [4]. In each case
the pedestrian detection and tracking information provided
by each dataset was used. Where not supplied, additional
ground-truth gaze labels were added by the authors of
this paper. Statistics were extracted for 37 tracks from the
caviar dataset, 372 tracks from the PETS dataset, and 170
tracks from the Benfold dataset. Figure reffig:DataExample
shows example frames from PETS scene 4 highlighting
socially connected and unconnected persons. We illustrate
in figure reffig:GazeVelocity the extracted distributions from
all datasets. One can see from the figure that for the Benfold
dataset, there is little difference between the gazing patterns
of the two groups. However, on the caviar dataset two
distinct distributions are observed, as is also the case with the
PETS dataset. For each dataset, performing the χ2 variance
test between the socially connected and unconnected devia-
tions with a p-value of 0.05 shows that in all three datasets,
the differences between the deviations for socially connected
and unconnected persons are statistically significant.

To partially validate our assumption that socially con-
nected individuals are a source of visual focus for each other,
we analyzed the null hypothesis that socially connected and
unconnected persons have the same gazing patterns. Our
analysis of deviations between travel direction and gaze
direction showed evidence that gazing patterns do differ
between socially connected and unconnected persons. How-
ever, the degree of separation between distributions varied
for each dataset, identifying the need for the weighting factor
to be used when using gaze data for determining social
connectivity. For all datasets the differences between the two
groups were statistically significant giving support for our
assumption and leading us to reject the null hypothesis.

II. METHOD

The motion based social grouping is grounded upon
the premise that shared trajectory information implies a
social dependence between two individuals. The principles
of the social force model are such that socially connected
individuals are more likely to move together, and thus
display more similar trajectory information, and socially
independent people feel a force of repulsion and are more
likely to avoid moving similarly and avoid close proximity.
The more entropic the underlying motion of the crowd the
more salient similar social trajectories will be. We base our
motion based social grouping method upon the work of
Leach et al. A full description of the method is given in
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Figure 2. Example frames and extracted gaze-velocity deviation (error) statistics extracted from three datasets. Column (d) shows the normal distributions
for socially connected (red) and unconnected (blue) persons. Column (e) shows the mean and standard deviation of socially connected (red) and unconnected
(blue) persons.

the referenced paper [2].Their grouping method finds social
similarity upon the features of direction, speed, proximity,
and temporal overlap. Each feature is weighted based upon
a one off training phase, such that proximity and temporal
overlap have more dominance in the overall metric than
direction and speed, which were found to be less important.
The similarity of direction and speed are measured using the
mutual information measure. The proximity and temporal
overlap similarity are measured by euclidean distance. Once
the similarity for each feature has been measured the four
features are combined to a single similarity measure, which
we use 4. Each tracked object has a similarity to every other,
populating a social pairing likelihood table.

A. Visual Interest enhanced social grouping

To verify our hypothesis that visual interest can be used
to enhance the existing motion based social grouping we
incorporate gaze direction and subsequently visual interest
into the social grouping model. The distinction between gaze
direction and visual interest is as follows; gaze direction
is the raw angle in which the person is looking, usually

indicated by head pose in our data, and visual interest is
an estimation of or distribution over possible regions of
interest. In our case, we extract gaze direction estimates
in order to further refine the estimation with knowledge of
interest points and characteristics of how interest drops at
the periphery or with distance, permitting a estimation of
the focus of interest for any given person.

We use two methods to determine gaze direction; hand
annotated ground truth and automated gaze estimation. We
first hand annotate each head image at each frame in order to
provide a baseline gazing direction from which the error of
the automatic estimation can be calculated. Furthermore this
provides the means to verify our hypothesis upon ideal data
prior to testing on realistic data with error. Hand annotation
was achieved by a tracking a mouse pointed moved by the
user to point to the current angle that the head was posed at
at 10 frames per second for a single person at a time. As the
head angular velocity is highly constrained the head pose is
particularly predictable in the short term, and hand tracking
was found to be adequate, with occasional latency when the
head motion is more erratic. In total we groundtruthed 3
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datasets; 2 from the PETS 2007 data, and the Oxford Data.
For the Oxford dataset approximately 70,000 head images
where annotated. For the PETS scene 4 near 90,000 head
images where annotated. The PETS scene 0 data entailed
over 50,000 head images.

To automatically determine the gaze direction we must
estimate their head pose at each frame, and determine the
likelihood distribution of visual interest given typical scene
interest and people. Our method is identical to the work
’Unsupervised Learning of a Scene-Specific Coarse Gaze
Estimator’ [10] with the exception of the image classification
factor. The work of Benfold uses a randomized forest of
ferns to learn typical relations between pixel triplets for a
given head pose angle. The randomized trees were trained
in a weakly supervised fashion with examples of each head
pose class being fed through the ensemble of trees such
that at each end node for each tree a distribution over
every class is populated showing the probability that a
head image reaching this node belongs to any given head
pose class. The tree is split at each branch based upon
one of two types of binary decision. The first decision
compares randomly chosen bins from the Histogram of
Oriented Gradients (HOG) representation of the head image.
The second type of decision is a Color Triplet Comparison
(CTC) which samples three pixels of the head image and
makes a binary decision based upon the difference between
pixel A and B and the difference between B and C using
the L1 Norm of the RGB vector for any given pixel pair.
A full comparison of all pixel triplets would be infeasible,
entailing N3/2 comparisons where N is the number of pixels
in a head image, each comparison representing a split in
a decision tree, rendering the end nodes severely under-
populated. Typically only 100 pixel triplets are sampled,
which is a heavy subsampling of the entire feature space. In
Benfolds work this is a necessary step in order to achieve
video rate processing however as we are not constrained by
processing time we opt for a slower classification technique.
Rather than using pixel triplets we use pixel pairs, making a
binary decision based upon whether the magnitude of pixel
A is greater than that of pixel B, for each color channel
independently. We build a map of all possible unique pixel
comparisons, which is 3/2∗N2 comparisons. For any given
head image the feature representing the head image is a
four dimensional map detailing the pixel comparison result,
0 or 1, between each pixel and every other pixel in each
color channel. To build a classifier for each class we then
take the mean pixel comparison result for all head images
of this class. The result of which is a 4D matrix detailing
the probability of any pixel A having a greater magnitude
than pixel B for a given gaze direction, quantized to 8
directions. Classification is then achieved by extracting the
binary features from a query image and multiplying through
by the class 4D probability matrix, giving a score of how
well the query image fits the head pose class. This provides a

(a) (b)

Figure 3. Illustration of mutual visual attention (a) and visual correlation
(b). In both cases the red line represents variable θGit , the gaze direction
for person i. The bright green line is the angle compared to in the two
metrics. For image (a) this is θijt the direction from person i to j for
mutual attention, and for image (b) the green line represents θGjt the gazing
direction for person j for visual correlation.

probability distribution over all gaze directions for the head
in the query image. For a sequence of query images we
then smooth over the distributions using forward backward
smoothing as set up in the original Benfold work.

We theorize that there are two ways socially connected
individuals can demonstrate social interaction using gazing
direction; correlated direction of gaze, and looking at each
other. The former occurs in cases when two individuals are
actively looking at the same thing, which requires com-
munication to coordinate, however it could be coincidental
when an event or object has drawn both of their attention.
The latter event, when two individuals are looking at each
other, implies communication - that they are the object of
attention for each other. It is at least unusual for two socially
unconnected individuals to look at each for a prolonged
period of time. Following from this reasoning, there are two
events we wish to measure. These are, how similar the gaze
direction of two individuals are and the amount of time gaze
direction is directed towards each other. Figure 3 illustrates
the two examples of mutual visual attention (a) and visual
correlation (b). In both cases the red line represents variable
θGit , the gaze direction for person i. The bright green line
is the angle compared to in the two metrics. For image
(a) this is θijt the direction from person i to j for mutual
attention, and for image (b) the green line represents θGjt the
gazing direction for person j for visual correlation. We wish
to exclude cases where two individuals are looking in the
same direction due to walking in that direction. The work of
Benfold [10] showed that pedestrians spend the majority of
their time looking in the direction of travel. To avoid highly
scoring correlated gaze direction due to two people looking
in the same direction of travel we introduce a weight which
represents our confidence that the direction of gaze is due to
visual interest other than direction of travel. The weighting
is greater for those with a gaze direction off their current
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direction of travel. The visual correlation weight coefficient
is given by:

ωijt = |θGit − θDit ||θGjt − θDjt| (1)

Where θGit is the gazing direction for person i at frame t,
and θDit is the direction of travel. Thus we score people with
attention towards either side stronger than those who are
looking in the direction of travel, dropping linearly. This is
justified on the assumption that a social source of attention
is more likely when not looking in the direction of travel;
backed up by the preliminary hypothesis verification. If there
is no current direction of travel then this weight is always
1. Similarly, we introduce a weighting for visual mutual
attention. We weight the measure of visual interest between
two individuals by proximity. The further away someone is
the less confident we are they are a social focus of attention.
The mutual visual attention weight is given by:

λijt = 1−

√
x2ijt + y2ijt

X
(2)

Where xijt and yijt is the x and y distance between person
i and person j at frame t and X is the width of the scene;
the maximal distance between two people. Thus we model
the probability of interest between person i and person j
as falling linearly with distance. We then define the total
Visual Interest feature Λijt between person i and j at any
given frame as the product of two Gaussian distributions
encompassing the visual correlation variance σλ and the
visual mutual attention variance σω predefined as π/4.

Λijt =
1

σλσω4π2
e
−
|θijt−θ

G
it |

2

2σ2
λ

−
|θGit−θ

G
jt|

2

2σ2
λ (3)

Where θijt is the direction from person i to person j
at time t. We next incorporate the visual interest into our
system as another feature in the existing social similarity
metric. We measure the visual interest similarity between
each potential socially connected individuals and include
this with a weighting of 1 into the social similarity metric.
Thus for any two people the features that determine grouping
likelihood in the social pairing table are; proximity, temporal
overlap, direction, speed, and visual interest. The total social
grouping strength between person i and person j for all
frames is then given by:

κijt =
1

T

T∑
t

IVijtIΘijt∆PijtτijtΛijt (4)

τijt, IVijt, IΘijt,∆Pijt, λij are the temporal overlap, mu-
tual information for speed, mutual information for direc-
tion, proximity and visual interest difference between per-
son i and j. Specific definitions for the motion features
τijt, IVijt, IΘijt,∆Pijt are given in Leach et al [2].

III. EXPERIMENT

We wish to evaluate whether the use of visual focus of
attention is indicative of social engagement, and if these
features can be used to better classify social groups in
multiple surveillance datasets. We evaluate the strength of
the visual interest features by a comparison of the motion
based social grouping and motion plus visual interest social
grouping in the following way.

We test upon the publicly available PETS 2007 dataset
[4] and the publicly available Oxford town center data [10].
The PETS data offers a source of multi camera real world
surveillance footage. The datasets consists of 8 sequences
each captured from 4 different viewpoints. We consider
the PETS 2007 data to be a crowded scene. The data we
use from this dataset contains a total of 372 individuals
over 8000 frames, averaging 24 people in the scene at
any given frame in a space measuring 16.2 meters by 7.2
meters. Social groups in this scene are characterized by
small clusters of 2 - 4 people typically moving together or
waiting together. The exception to this are four individuals
who are actively engaging in abnormal loitering behavior
which separates them for relatively long periods of time.
These individuals talk to each other at times in the scene
and stand together at times, and as such are still considered
to be socially connected. The Oxford data contains 430
tracked pedestrians over 4500 frames. There are an average
of 15 individuals in any given frame, with a minimum of 5
and a maximum of 29. We consider this data as sparse to
moderately populated. The trajectory motion in the Oxford
data is far more structured; the vast majority of individuals
travel at walking pace in one of two directions. In the Oxford
data the trajectories of socially unconnected pedestrians are
often very similar, and often close in proximity - giving
the appearance of social connectivity. It is our prediction
that the visual interest of pedestrians in this scene will
be a relatively strong feature to detect social groups given
the motion similarity of socially disconnected people. We
evaluate upon 2 non-sequential videos from the PETS 2007.
PETS Scene 00 consists of 4500 images, and Scene 04 is
3500 images long. both sequences are imaged at 25fps. The
single scene from the Oxford dataset is captured at 25fps
and 4500 frames in length. We apply the tracking procedure
outlined earlier II upon the jpeg the format images with no
other pre-processing.

A. Automatic gazing direction

We use both groundtruth and automatic gaze direction
estimations in our experiment. By taking the mean angular
error (MAE) between the automatic estimated field of view
and the groundtruth gazing direction we found that for the
Oxford data we achieved an automatic gaze estimation with
MAE of 25.4 degrees compared to the groundtruth. For the
more challenging PETS scene 4 data we achieved a MAE
of 36.9 degrees. This represents a moderate estimated field
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PETS scene 4 - Social Grouping PETS scene 0 - Social Grouping

(a) (b)

Figure 4. The true positive rate (TPR) and false positive rate (FPR) from the pair connection likelihood matrix for the method without gaze information
(red) and with gaze information (blue). The blue band illustrates the the results with groundtruth gaze direction as it degrades when automatic gaze direction
is used. Image (a) shows the results for PETS scene 4 and image (b) for PETS scene 0.

of view offset from the true gazing direction. Our results
are comparable to Benfolds results (MAE of 23.9) on the
Oxford data [10]. Chen and Odobez achieve an angular error
of 18.4 degrees [12] on the Oxford dataset. As of yet there
are no published gaze direction statistics for the PETS 2007
dataset, however we consider our results to be particularly
good given the far greater deviation from walking direction
2, and lower quality image data than the Oxford data.

B. Visual interest social grouping

We illustrate below the true positive rate (TPR) and false
positive rate (FPR) social group classification result for the
three sequences we evaluated upon. In each case we ran the
motion only social grouping method, the automatic visual
interest and motion social grouping, and the groundtruth
visual interest and motion social grouping. We use both
groundtruth and automatic gazing direction estimates to
illustrate the theory under ideal conditions, and to demon-
strate the impact of noisy data. The output of our social
grouping is a social connection likelihood matrix, entailing
the likelihood of each pair of individuals being socially
connected, as detailed in the pair strength equation 4. This
matrix entails multiple grouping hypothesis, each hypothesis
characterized by a different grouping strength threshold.
To find the true positive and false positive connections for
different grouping thresholds we vary the grouping threshold
from 0 to 1 in increments of 0.001; the hypothesis varies
from no social connections to everyone in one social group.
We find for the following optimal social grouping results by
varying the connection threshold:

We find that in each dataset the inclusion of automatic
gaze direction into the social grouping model improves
the social grouping capabilities for the optimal threshold.

Dataset Auto TP/FP GT TP/FP Motion TP/FP
Oxford 0.90/0.07 0.93/0.05 0.88/0.07

PETS S4 0.89/0.06 0.93/0.05 0.89/0.06
PETS S0 0.93/0.02 0.95/0.02 0.92/0.04

Social

Grouping Optimal Results

Table I
WE ILLUSTRATE HERE THE OPTIMAL SOCIAL GROUPING

RESULT, SELECTED FROM THE ROC CURVES 5, 4. FOR THE
OXFORD DATA, WE SEE A 5.6% IMPROVEMENT IN TRUE

POSITIVES AND 28.5% REDUCTION IN FALSE POSITIVES. FOR
THE PETS SCENE 4 DATA WE SEE A 4.5% IMPROVEMENT IN
TPR AND A 16.6% DECREASE IN FPR. THE PETS SCENE 0

DATA YIELDS A 3.3% INCREASE IN TPR AND A 50% DECREASE
IN FPR. GROUND TRUTH GAZE DIRECTION SCORES HIGHEST

FOR ALL THREE SEQUENCES AND HAS JOINT OR LOWEST FPR.

For all thresholds we illustrate the improvement that the
inclusion of visual attention provides in the social grouping
efficacy figures 5,4. The visual attention feature is a subtle
and inherently noisy feature, and the motion only method
achieves a result close to optimal, as such the improvements
are only a small percent of the total value. For the Oxford
data, we see a 5.6% improvement in true positives and 28.5%
reduction in false positives. For the PETS scene 4 data we
see a 4.5% improvement in TPR and a 16.6% decrease in
FPR. The PETS scene 0 data yields a 3.3% increase in TPR
and a 50% decrease in FPR.

IV. DISCUSSION

Our results provide a strong indication that the inclusion
of visual attention improves the capability of the motion
based social grouping in crowded human surveillance. We
tested upon three video sequences; two PETS sequences
considered challenging due to motion complexity, occlusion
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Oxford - Social Grouping

Figure 5. The true positive rate (TPR) and false positive rate (FPR) from
the pair connection likelihood matrix for the method without gaze informa-
tion (red) and with gaze information (blue). The blue band illustrates the
the results with groundtruth gaze direction as it degrades when automatic
gaze direction is used.

and crowding, and the oxford data which is challenging
due to a highly structured scene masking salient social
motion. We note that our system shows a susceptibility to
gaze direction feature noise. An angular error of average
25 degrees can reduce the efficacy of visual attention and
motion social grouping to below that of motion alone in
the worst cases 5. However, the predominant result is an
improvement when using automatic gaze direction above
motion alone, and an even greater improvement when using
ground truth gaze direction.

The power of the visual attention feature is that it is
independent from the motion influences the environment
presents, such as channeling people, queuing areas. The use
of the visual attention feature is clearly additive to motion
based social grouping. There is however a computational
cost to extracting gaze direction features from data. We
computed gaze direction estimates as a batch process taking
between 8 to 10 hours. However, Benfold [10] has demon-
strated this process can be achieved at video rate when
the feature space is sub-sampled, and still achieving good
accuracy.

Our visual attention social grouping demonstrates, for the
first time, the use of visual information in a generalized
social grouping task, rather than used to detect specific or
anecdotal social events. Our work demonstrates the appli-
cability of visual information upon real world surveillance
tasks, using a fully automated system. Our approach is
most applicable to scenarios in which there is high motion
similarity between social grouped people and un-grouped
people, such as airports, stadiums, train stations, and busy
town or city surveillance, particularly for use with automated
human behavior analysis.
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