
CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)

Stockholm, Sweden
{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Abstract

Recent results indicate that the generic descriptors ex-
tracted from the convolutional neural networks are very
powerful. This paper adds to the mounting evidence that
this is indeed the case. We report on a series of exper-
iments conducted for different recognition tasks using the
publicly available code and model of the OverFeat net-
work which was trained to perform object classification on
ILSVRC13. We use features extracted from the OverFeat
network as a generic image representation to tackle the di-
verse range of recognition tasks of object image classifica-
tion, scene recognition, fine grained recognition, attribute
detection and image retrieval applied to a diverse set of
datasets. We selected these tasks and datasets as they grad-
ually move further away from the original task and data the
OverFeat network was trained to solve. Astonishingly,
we report consistent superior results compared to the highly
tuned state-of-the-art systems in all the visual classification
tasks on various datasets. For instance retrieval it consis-
tently outperforms low memory footprint methods except for
sculptures dataset. The results are achieved using a linear
SVM classifier (or L2 distance in case of retrieval) applied
to a feature representation of size 4096 extracted from a
layer in the net. The representations are further modified
using simple augmentation techniques e.g. jittering. The
results strongly suggest that features obtained from deep
learning with convolutional nets should be the primary can-
didate in most visual recognition tasks.

1. Introduction
“Deep learning. How well do you think it would work
for your computer vision problem?” Most likely this ques-

tion has been posed in your group’s coffee room. And

in response someone has quoted recent success stories

[29, 15, 10] and someone else professed skepticism. You

may have left the coffee room slightly dejected thinking

“Pity I have neither the time, GPU programming skills nor

large amount of labelled data to train my own network to
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Figure 1: top) CNN representation replaces pipelines of s.o.a methods

and achieve better results. e.g. DPD [50].

bottom) Augmented CNN representation with linear SVM consistently

outperforms s.o.a. on multiple tasks. Specialized CNN refers to other

works which specifically designed the CNN for their task

quickly find out the answer”. But when the convolutional

neural network OverFeat [38] was recently made pub-

licly available1 it allowed for some experimentation. In

particular we wondered now, not whether one could train

a deep network specifically for a given task, but if the fea-

tures extracted by a deep network - one carefully trained

on the diverse ImageNet database to perform the specific

task of image classification - could be exploited for a wide

variety of vision tasks. We now relate our discussions and

general findings because as a computer vision researcher

you’ve probably had the same questions:

Prof: First off has anybody else investigated this issue?

Student: Well it turns out Donahue et al. [10], Zeiler

and Fergus [48] and Oquab et al. [29] have suggested that

generic features can be extracted from large CNNs and pro-

vided some initial evidence to support this claim. But they

have only considered a small number of visual recognition

tasks. It would be fun to more thoroughly investigate how

1There are other publicly available deep learning implementations such

as Alex Krizhevsky’s ConvNet and Berkeley’s Caffe. Benchmarking

these implementations is beyond the scope of this paper.
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powerful these CNN features are. How should we start?

Prof: The simplest thing we could try is to extract an image

feature vector from the OverFeat network and combine

this with a simple linear classifier. The feature vector could

just be the responses, with the image as input, from one of

the network’s final layers. For which vision tasks do you

think this approach would be effective?

Student: Definitely image classification. Several vision

groups have already produced a big jump in performance

from the previous sate-of-the-art methods on Pascal VOC.

But maybe fine-tuning the network was necessary for the

jump? I’m going to try it on Pascal VOC and just to make

it a little bit trickier the MIT scene dataset.

Answer: OverFeat does a very good job even without

fine-tuning (section 3.2 for details).

Prof: Okay so that result confirmed previous findings and

is perhaps not so surprising. We asked the OverFeat fea-

tures to solve a problem that they were trained to solve.

And ImageNet is more-or-less a superset of Pascal VOC.

Though I’m quite impressed by the indoor scene dataset re-

sult. What about a less amenable problem?

Student: I know fine-grained classification. Here we

want to distinguish between sub-categories of a category

such as the different species of flowers. Do you think the

more generic OverFeat features have sufficient represen-

tational power to pick up the potentially subtle differences

between very similar classes?

Answer: It worked great on a standard bird and flower

database. In its most simplistic form it didn’t beat the latest

best performing methods but it is a much cleaner solution

with ample scope for improvement. Actually, adopting a

set of simple data augmentation techniques (still with lin-

ear SVM) beats the best performing methods. Impressive!

(Section 3.4 for details.)

Prof: Next challenge attribute detection? Let’s see if the

OverFeat features have encoded something about the se-

mantic properties of people and objects.

Student: Do you think the global CNN features extracted

from the person’s bounding box can cope with the articu-

lations and occlusions present in the H3D dataset. All the

best methods do some sort of part alignment before classi-

fication and during training.

Answer: Surprisingly the CNN features on average beat

poselets and a deformable part model for the person at-

tributes labelled in the H3D dataset. Wow, how did they

do that?! They also work extremely well on the object at-

tribute dataset. Maybe these OverFeat features do indeed

encode attribute information? (Details in section 3.5.)

Prof: Can we push things even further? Is there a task

OverFeat features should struggle with compared to

more established computer vision systems? Maybe instance
retrieval. This task drove the development of the SIFT and

VLAD descriptors and the bag-of-visual-words approach

followed swiftly afterwards. Surely these highly optimized

engineered vectors and mid-level features should win hands

down over the generic features?

Student: I don’t think CNN features have a chance if we

start comparing to methods that also incorporate 3D geo-

metric constraints. Let’s focus on descriptor performance.

Do new school descriptors beat old school descriptors in the

old school descriptors’ backyard?

Answer: Very convincing. Ignoring systems that impose

3D geometry constraints the CNN features are very com-

petitive on building and holiday datasets (section 4). Fur-

thermore, doing standard instance retrieval feature process-

ing (i.e. PCA, whitening, renormalization) it shows superior

performance compared to low memory footprint methods

on all retrieval benchmarks except for the sculptures dataset.

Student: The take home message from all these results?

Prof: It’s all about the features! SIFT and HOG descriptors

produced big performance gains a decade ago and now deep

convolutional features are providing a similar breakthrough

for recognition. Thus, applying the well-established com-

puter vision procedures on CNN representations should po-

tentially push the reported results even further. In any case,

if you develop any new algorithm for a recognition task then

it must be compared against the strong baseline of generic
deep features + simple classifier.

2. Background and Outline
In this work we use the publicly available trained CNN

called OverFeat [38]. The structure of this network fol-

lows that of Krizhevsky et al. [22]. The convolutional lay-

ers each contain 96 to 1024 kernels of size 3×3 to 7×7.

Half-wave rectification is used as the nonlinear activation

function. Max pooling kernels of size 3×3 and 5×5 are

used at different layers to build robustness to intra-class de-

formations. We used the “large” version of the OverFeat
network. It takes as input color images of size 221×221.

Please consult [38] and [22] for further details.

OverFeat was trained for the image classification task of

ImageNet ILSVRC 2013 [1] and obtained very competitive

results for the classification task of the 2013 challenge and

won the localization task. ILSVRC13 contains 1.2 million

images which are hand labelled with the presence/absence

of 1000 categories. The images are mostly centered and

the dataset is considered less challenging in terms of clutter

and occlusion than other object recognition datasets such as

PASCAL VOC [12].

We report results on a series of experiments we conducted

on different recognition tasks. The tasks and datasets were

selected such that they gradually move further away from

the task the OverFeat network was trained to perform.

We have two sections for visual classification (Sec. 3) and

visual instance retrieval (Sec. 4) where we review different

tasks and datasets and report the final results. The crucial
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thing to remember is that the CNN features used are trained

only using ImageNet data though the simple classifiers are

trained using images specific to the task’s dataset.

Finally, we have to point out that, given enough computa-

tional resources, optimizing the CNN features for specific

tasks/datasets would probably boost the performance of the

simplistic system even further [29, 15, 51, 43, 41].

3. Visual Classification
Here we go through different tasks related to visual classi-

fication in the following subsections.

3.1. Method

For all the experiments, unless stated otherwise, we use the

first fully connected layer (layer 22) of the network as our

feature vector. Note the max-pooling and rectification oper-

ations are each considered as a separate layer in OverFeat
which differs from Alex Krizhevsky’s ConvNet number-

ing. For all the experiments we resize the whole image (or

cropped sub-window) to 221×221. This gives a vector of

4096 dimensions. We have two settings:

• The feature vector is further L2 normalized to unit

length for all the experiments. We use the 4096 di-

mensional feature vector in combination with a Sup-

port Vector Machine (SVM) to solve different classifi-

cation tasks (CNN-SVM).

• We further augment the training set by adding

cropped and rotated samples and doing component-

wise power transform and report separate results (CN-

Naug+SVM).

For the classification scenarios where the labels are not mu-
tually exclusive (e.g. VOC Object Classification or UIUC
Object attributes) we use a one-against-all strategy, in the
rest of experiments we use one-against-one linear SVMs
with voting. For all the experiments we use a linear SVM
found from eq.1, where we have training data {(xi, yi)}.

minimize
w

1

2
‖w‖2 + C

∑

i

max(1− yiw
Txi, 0) (1)

Further information can be found in the implementation de-

tails at section 3.6.

3.2. Image Classification

To begin, we adopt the CNN representation to tackle the

problem of image classification of objects and scenes. The

system should assign (potentially multiple) semantic labels

to an image. Remember in contrast to object detection, ob-

ject image classification requires no localization of the ob-

jects. The CNN representation has been optimized for the

object image classification task of ILSVRC. Therefore, in

this experiment the representation is more aligned with the

final task than the rest of experiments. However, we have

chosen two different image classification datasets, objects

and indoor scenes, whose image distributions differ from

that of ILSVRC dataset.

3.2.1 Datasets

We use two challenging recognition datasets, Namely, Pas-

cal VOC 2007 for object image classification [12] and the

MIT-67 indoor scenes [36] for scene recognition.

Pascal VOC. Pascal VOC 2007 [12] contains ∼10000 im-

ages of 20 classes including animals, handmade and nat-

ural objects. The objects are not centered and in general

the appearance of objects in VOC is perceived to be more

challenging than ILSVRC. Pascal VOC images come with

bounding box annotation which are not used in our experi-

ments.

MIT-67 indoor scenes. The MIT scenes dataset has 15620

images of 67 indoor scene classes. The dataset consists

of different types of stores (e.g. bakery, grocery) residen-

tial rooms (e.g. nursery room, bedroom), public spaces (e.g.

inside bus, library, prison cell), leisure places (e.g. buffet,

fastfood, bar, movietheater) and working places (e.g. of-

fice, operating room, tv studio). The similarity of the ob-

jects present in different indoor scenes makes MIT indoor

an especially difficult dataset compared to outdoor scene

datasets.

3.2.2 Results of PASCAL VOC Object Classification

Table 1 shows the results of the OverFeat CNN rep-

resentation for object image classification. The perfor-

mance is measured using average precision (AP) criterion

of VOC 2007 [12]. Since the original representation has

been trained for the same task (on ILSVRC) we expect the

results to be relatively high. We compare the results only

with those methods which have used training data outside

the standard Pascal VOC 2007 dataset. We can see that the

method outperforms all the previous efforts by a significant

margin in mean average precision (mAP). Furthermore, it

has superior average precision on 10 out of 20 classes. It is

worth mentioning the baselines in Table 1 use sophisticated

matching systems. The same observation has been recently

made in another work [29].

Different layers. Intuitively one could reason that the

learnt weights for the deeper layers could become more spe-

cific to the images of the training dataset and the task it is

trained for. Thus, one could imagine the optimal represen-

tation for each problem lies at an intermediate level of the

network. To further study this, we trained a linear SVM for

all classes using the output of each network layer. The re-

sult is shown in Figure 2a. Except for the fully connected
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aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation

is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.

AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP

descriptors from the VOC dataset. Oquab et al. [29] fixes all the layers trained on ImageNet then it adds and optimizes two fully connected layers on the

VOC dataset and achieves better results (77.7) indicating the potential to boost the performance by further adaptation of the representation to the target

task/dataset.

 3  7 11 15 19 230.2
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Figure 2: a) Evolution of the mean image classification AP over PAS-

CAL VOC 2007 classes as we use a deeper representation from the

OverFeat CNN trained on the ILSVRC dataset. OverFeat considers

convolution, max pooling, nonlinear activations, etc. as separate layers.

The re-occurring decreases in the plot is of the activation function layer

which loses information by half rectifying the signal. b) Confusion matrix

for the MIT-67 indoor dataset. Some of the off-diagonal confused classes

have been annotated, these particular cases could be hard even for a human

to distinguish.

last 2 layers the performance increases. We observed the

same trend in the individual class plots. The subtle drops in

the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer

which half-rectifies the signals. Although this will help the

non-linearity of the trained model in the CNN, it does not

help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT

indoor dataset. The performance is measured by the aver-

age classification accuracy of different classes (mean of the

confusion matrix diagonal). Using a CNN off-the-shelf rep-

resentation with linear SVMs training significantly outper-

forms a majority of the baselines. The non-CNN baselines

benefit from a broad range of sophisticated designs. con-

fusion matrix of the CNN-SVM classifier on the 67 MIT

classes. It has a strong diagonal. The few relatively bright

off-diagonal points are annotated with their ground truth

and estimated labels. One can see that in these examples the

two labels could be challenging even for a human to distin-

Method mean Accuracy

ROI + Gist[36] 26.1

DPM[30] 30.4

Object Bank[24] 37.6

RBow[31] 37.9

BoP[21] 46.1

miSVM[25] 46.4

D-Parts[40] 51.4

IFV[21] 60.8

MLrep[9] 64.0

CNN-SVM 58.4

CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine

tuned pipeline which takes weeks to select and train various part detectors.

Furthermore, Improved Fisher Vector (IFV) representation has dimension-

ality larger than 200K. [16] has very recently tuned a multi-scale orderless

pooling of CNN features (off-the-shelf) suitable for certain tasks. With this

simple modification they achieved significant average classification accu-

racy of 68.88.

guish between, especially for close-up views of the scenes.

3.3. Object Detection

Unfortunately, we have not conducted any experiments for

using CNN off-the-shelf features for the task of object de-

tection. But it is worth mentioning that Girshick et al. [15]

have reported remarkable numbers on PASCAL VOC 2007

using off-the-shelf features from Caffe code. We repeat

their relevant results here. Using off-the-shelf features they

achieve a mAP of 46.2 which already outperforms state

of the art by about 10%. This adds to our evidences of

how powerful the CNN features off-the-shelf are for visual

recognition tasks.

Finally, by further fine-tuning the representation for PAS-

CAL VOC 2007 dataset (not off-the-shelf anymore) they

achieve impressive results of 53.1.

3.4. Fine grained Recognition

Fine grained recognition has recently become popular due

to its huge potential for both commercial and cataloging

applications. Fine grained recognition is specially inter-
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esting because it involves recognizing subclasses of the

same object class such as different bird species, dog breeds,

flower types, etc. The advent of many new datasets with

fine-grained annotations such as Oxford flowers [27], Cal-

tech bird species [45], dog breeds [1], cooking activi-

ties [37], cats and dogs [32] has helped the field develop

quickly. The subtlety of differences across different subor-

dinate classes (as opposed to different categories) requires a

fine-detailed representation. This characteristic makes fine-

grained recognition a good test of whether a generic repre-

sentation can capture these subtle details.

3.4.1 Datasets

We evaluate CNN features on two fine-grained recognition

datasets CUB 200-2011 and 102 Flowers.

Caltech-UCSD Birds (CUB) 200-2011 dataset [45] is cho-

sen since many recent methods have reported performance

on it. It contains 11,788 images of 200 bird subordinates.

5994 images are used for training and 5794 for evaluation.

Many of the species in the dataset exhibit extremely subtle

differences which are sometimes even hard for humans to

distinguish. Multiple levels of annotation are available for

this dataset - bird bounding boxes, 15 part landmarks, 312

binary attributes and boundary segmentation. The majority

of the methods applied use the bounding box and part land-

marks for training. In this work we only use the bounding

box annotation during training and testing.

Oxford 102 flowers dataset [27] contains 102 categories.

Each category contains 40 to 258 of images. The flowers

appear at different scales, pose and lighting conditions. Fur-

thermore, the dataset provides segmentation for all the im-

ages.

3.4.2 Results

Table 3 reports the results of the CNN-SVM compared to

the top performing baselines on the CUB 200-2011 dataset.

The first two entries of the table represent the methods

which only use bounding box annotations. The rest of base-

lines use part annotations for training and sometimes for

evaluation as well.

Table 4 shows the performance of CNN-SVM and other

baselines on the flowers dataset. All methods, bar the CNN-

SVM, use the segmentation of the flower from the back-

ground. It can be seen that CNN-SVM outperforms all basic

representations and their multiple kernel combination even

without using segmentation.

3.5. Attribute Detection

An attribute within the context of computer vision is de-

fined as some semantic or abstract quality which different

instances/categories share.

Method Part info mean Accuracy

Sift+Color+SVM[45] � 17.3

Pose pooling kernel[49] � 28.2

RF[47] � 19.2

DPD[50] � 51.0

Poof[5] � 56.8

CNN-SVM � 53.3

CNNaug-SVM � 61.8
DPD+CNN(DeCaf)+LogReg[10] � 65.0

Table 3: Results on CUB 200-2011 Bird dataset. The table dis-

tinguishes between methods which use part annotations for training and

sometimes for evaluation as well and those that do not. [10] generates

a pose-normalized CNN representation using DPD [50] detectors which

significantly boosts the results to 64.96.

Method mean Accuracy

HSV [27] 43.0

SIFT internal [27] 55.1

SIFT boundary [27] 32.0

HOG [27] 49.6

HSV+SIFTi+SIFTb+HOG(MKL) [27] 72.8

BOW(4000) [14] 65.5

SPM(4000) [14] 67.4

FLH(100) [14] 72.7

BiCos seg [7] 79.4

Dense HOG+Coding+Pooling[2] w/o seg 76.7

Seg+Dense HOG+Coding+Pooling[2] 80.7

CNN-SVM w/o seg 74.7

CNNaug-SVM w/o seg 86.8

Table 4: Results on the Oxford 102 Flowers dataset. All the methods

use segmentation to subtract the flowers from background unless stated

otherwise.

3.5.1 Datasets

We use two datasets for attribute detection. The first dataset

is the UIUC 64 object attributes dataset [13]. There are 3

categories of attributes in this dataset: shape (e.g. is 2D

boxy), part (e.g. has head) or material (e.g. is furry). The

second dataset is the H3D dataset [6] which defines 9 at-

tributes for a subset of the person images from Pascal VOC

2007. The attributes range from “has glasses” to “is male”.

3.5.2 Results

Table 5 compares CNN features performance to state-of-

the-art. Results are reported for both across and within cat-

egories attribute detection (refer to [13] for details).

Table 6 reports the results of the detection of 9 human at-

tributes on the H3D dataset including poselets and DPD

[50]. Both poselets and DPD use part-level annotations dur-

ing training while for the CNN we only extract one feature

from the bounding box around the person. The CNN repre-

sentation performs as well as DPD and significantly outper-

forms poselets.
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Method within categ. across categ. mAUC

Farhadi et al. [13] 83.4 - 73.0

Latent Model[46] 62.2 79.9 -

Sparse Representation[44] 89.6 90.2 -

att. based classification[23] - - 73.7

CNN-SVM 91.7 82.2 89.0

CNNaug-SVM 93.7 84.9 91.5

Table 5: UIUC 64 object attribute dataset results. Compared to other

existing methods the CNN features perform very favorably.

Method male lg hair glasses hat tshirt lg slvs shorts jeans lg pants mAP

Freq[6] 59.3 30.0 22.0 16.6 23.5 49.0 17.9 33.8 74.7 36.3
SPM[6] 68.1 40.0 25.9 35.3 30.6 58.0 31.4 39.5 84.3 45.9
Poselets[6] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.2
DPD[50] 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5 69.9

CNN-SVM 83.0 67.6 39.7 66.8 52.6 82.2 78.2 71.7 95.2 70.8
CNNaug-SVM 84.8 71.0 42.5 66.9 57.7 84.0 79.1 75.7 95.3 73.0

Table 6: H3D Human Attributes dataset results. A CNN represen-

tation is extracted from the bounding box surrounding the person. All the

other methods require the part annotations during training. The first row

shows the performance of a random classifier. The work of Zhang et al.

[51] has adapted the CNN architecture specifically for the task of attribute

detection and achieved the impressive performance of 78.98 in mAP. This

further highlights the importance of adapting the CNN architecture for dif-

ferent tasks given enough computational resources.

3.6. Implementation Details
We have used precomputed linear kernels with libsvm for

the CNN-SVM experiments and liblinear for the CNNaug-

SVM with the primal solver (#samples � #dim). Data aug-

mentation is done by making 16 representations for each

sample (original image, 5 crops, 2 rotation and their mir-

rors). The cropping is done such that the subwindow con-

tains 4/9 of the original image area from the 4 corners and

the center. We noted the following phenomenon for all

datasets. At the test time, when we have multiple repre-

sentations for a test image, taking the sum over all the re-

sponses works outperforms taking the max response. In

CNNaug-SVM we use signed component-wise power trans-

form by raising each dimension to the power of 2. For the

datasets which with bounding box (i.e. birds, H3D) we en-

larged the bounding box by 150% to include some context.

In the early stages of our experiments we noticed that us-

ing one-vs-one approach works better than structured SVM

for multi-class learning. Finally, we noticed that using the

imagemagick library for image resizing has slight adverse

effects compared to matlab imresize function. The cross-

validated SVM parameter (C) used for different datasets are

as follows. VOC2007:0.2, MIT67:2 , Birds:2, Flowers:2,

H3D:0.2 UIUCatt:0.2.2

2The details of our system including extracted features,

scripts and updated tables can be found at our project webpage:

http://www.csc.kth.se/cvap/cvg/DL/ots/

4. Visual Instance Retrieval

In this section we compare the CNN representation to

the current state-of-the-art retrieval pipelines including

VLAD[4, 52], BoW, IFV[33], Hamming Embedding[17]

and BoB[3]. Unlike the CNN representation, all the above

methods use dictionaries trained on similar or same dataset

as they are tested on. For a fair comparison between the

methods, we only report results on representations with

relevant order of dimensions and exclude post-processing

methods like spatial re-ranking and query expansion.

4.1. Datasets

We report retrieval results on five common datasets in the

area as follows:

Oxford5k buildings[34] This is a collection of 5063 refer-

ence photos gathered from flickr, and 55 queries of different

buildings. From an architectural standpoint the buildings

in Oxford5k are very similar. Therefore it is a challenging

benchmark for generic features such as CNN.

Paris6k buildings[35] Similar to the Oxford5k, this col-

lection has 55 queries images of buildings and monuments

from Paris and 6412 reference photos. The landmarks in

Paris6k have more diversity than those in Oxford5k.

Sculptures6k[3] This dataset brings the challenge of

smooth and texture-less item retrieval. It has 70 query im-

ages and contains 6340 reference images which is halved to

train/test subsets. The results on this dataset highlights the

extent to which CNN features are able to encode shape.

Holidays dataset[19] This dataset contains 1491 images

of which 500 are queries. It contains images of differ-

ent scenes, items and monuments. Unlike the first three

datasets, it exhibits a diverse set of images. For the above

datasets we reported mAP as the measurement metric.

UKbench[28] A dataset of images of 2250 items each from

four different viewpoints. The UKbench provides a good

benchmark for viewpoint changes. We reported recall at

top four as the performance over UKBench.

4.2. Method

Similar to the previous tasks we use the L2 normalized out-

put of the first fully connected layer as representation.

Spatial search. The items of interest can appear at different

locations and scales in the test and reference images mak-

ing some form of spatial search necessary. Our crude search

has the following form. For each image we extract multi-

ple sub-patches of different sizes at different locations. Let

h (the number of levels) represent the number of different

sized patches we extract. At level i, 1 ≤ i ≤ h, we extract

i2 overlapping sub-patches of the same size whose union

covers the whole image. For each extracted sub-patch we

compute its CNN representation. The distance between a

query sub-patch and a reference image is defined as the min-
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Dim Oxford5k Paris6k Sculp6k Holidays UKBench

BoB[3] N/A N/A N/A 45.4[3] N/A N/A
BoW 200k 36.4[20] 46.0[35] 8.1[3] 54.0[4] 70.3[20]
IFV[33] 2k 41.8[20] - - 62.6[20] 83.8[20]
VLAD[4] 32k 55.5 [4] - - 64.6[4] -
CVLAD[52] 64k 47.8[52] - - 81.9[52] 89.3[52]
HE+burst[17] 64k 64.5[42] - - 78.0[42] -
AHE+burst[17] 64k 66.6[42] - - 79.4[42] -
Fine vocab[26] 64k 74.2[26] 74.9[26] - 74.9[26] -
ASMK*+MA[42] 64k 80.4[42] 77.0[42] - 81.0[42] -
ASMK+MA[42] 64k 81.7[42] 78.2[42] - 82.2[42] -

CNN 4k 32.2 49.5 24.1 64.2 76.0
CNN-ss 32-120k 55.6 69.7 31.1 76.9 86.9
CNNaug-ss 4-15k 68.0 79.5 42.3 84.3 91.1
CNN+BOW[16] 2k - - - 80.2 -

Table 7: The result of object retrieval on 5 datasets. All the meth-

ods except the CNN have their representation trained on datasets simi-

lar to those they report the results on. The spatial search result on Ox-

ford5k,Paris6k and Sculpture6k, are reported for hr = 4 and hq = 3. It

can be seen that CNN features, when compared with low-memory footprint

methods, produce consistent high results. ASMK+MA [42] and fine-vocab

[26] use in order of million codebooks but with various tricks including bi-

narization they reduce the memory foot print to 64k.

imum L2 distance between the query sub-patch and respec-

tive reference sub-patches. Then, the distance between the

reference and the query image is set to the average distance

of each query sub-patch to the reference image. In contrast

to visual classification pipelines, we extract features from

the smallest square containing the region of interest (as op-

posed to resizing). In the reset of the text, hr denotes to the

number of levels for the reference image and similarly hq

for the query image.

Feature Augmentation. Successful instance retrieval

methods have many feature processing steps. Adopting the

proposed pipeline of [18] and followed by others [16, 42]

we process the extracted 4096 dim features in the following

way: L2 normalize → PCA dimensionality reduction →
whitening → L2 renormalization. Finally, we further use

a signed component wise power transform and raise each

dimension of the feature vector to the power of 2. For all

datasets in the PCA step we reduce the dimensionality of

the feature vector to 500. All the L2 normalizations are ap-

plied to achieve unit length.

4.3. Results

The result of different retrieval methods applied to 5

datasets are in table 7. Spatial search is only used for the

first three datasets which have samples in different scales

and locations. For the other two datasets we used the same

jittering as explained in Sec. 3.1

It should be emphasized that we only reported the results on

low memory footprint methods.

5. Conclusion
In this work, we used an off-the-shelf CNN representa-

tion, OverFeat, with simple classifiers to address different

recognition tasks. The learned CNN model was originally

optimized for the task of object classification in ILSVRC

2013 dataset. Nevertheless, it showed itself to be a strong

competitor to the more sophisticated and highly tuned state-

of-the-art methods. The same trend was observed for var-

ious recognition tasks and different datasets which high-

lights the effectiveness and generality of the learned repre-

sentations. The experiments confirm and extend the results

reported in [10]. We have also pointed to the results from

works which specifically optimize the CNN representations

for different tasks/datasets achieving even superior results.

Thus, it can be concluded that from now on, deep learning

with CNN has to be considered as the primary candidate in

essentially any visual recognition task.
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