
A Piggyback Representation for Action Recognition

Lior Wolf, Yair Hanani
The Balvatnik School of Computer Science

Tel Aviv University

Tal Hassner
Dept. of Mathematics and Computer Science

The Open University of Israel

Abstract

In video understanding, the spatial patterns formed by
local space-time interest points hold discriminative in-
formation. We encode these spatial regularities using a
word2vec neural network, a recently proposed tool in the
field of text processing. Then, building upon recent accu-
mulator based image representation solutions, input videos
are represented in a hybrid manner: the appearance of lo-
cal space time interest points is used to collect and associate
the learned descriptors, which capture the spatial patterns.
Promising results are shown on recent action recognition
benchmarks, using well established methods as the under-
lying appearance descriptors.

1. Introduction
Understanding human actions in unconstrained 2D

videos has been a central theme in Computer Vision re-
search for decades, and considerable progress has been
achieved. The gap between the current capabilities and the
needs of real-world applications still remains wider than in
other vision domains, including photo categorization, face
recognition, occlusion avoidance, and pose-recognition in
constrained depth video.

This gap in performance is not surprising, when one
considers the many challenges that must be addressed in
attempting to automatically decide what actions are being
performed in a video. This is particularly true when one
compares video analysis to image analysis problems. For
one thing, images can often be assumed to have the camera-
man controlling the appearance of the photo. Videos, on the
other hand, contain many frames (many images) over which
the cameraman has far less control. Individual frames can
therefore be noisy, contain motions that are irrelevant to the
action of interest, and the actors themselves may be partially
or completely occluded at different parts of a video clip. All
these issues are exacerbated by the sheer size of the videos
and the processing and storage overhead that this can imply.

To make sense of these many challenges and confound-
ing factors, action recognition research addresses four key

aspects of action recognition, all of which are likely to
be essential for successfully identifying actions in videos.
These are:
(i) Appearance: The same action may be performed by dif-
ferent people in different settings, and so appear very differ-
ent. Effective action recognition therefore requires develop-
ing representations that are invariant to these changes, yet
capable of discriminating between different activities.
(ii) Spatial arrangement: Different feature arrangements
can imply different actions. Representing arrangements of
image features is therefore a crucial step towards represent-
ing the action itself.
(iii) Temporal arrangement: The order in time in which
features appear captures much information about the action
being performed. Moreover, the motion trajectories of local
scene elements, features tracked in time, also hold substan-
tial amounts of information.
(iv) Context: Where the action is taking place – the scene
around the action – and how the camera is moving in that
scene, are two examples of contextual information. This
information can provide important clues for identifying the
action being performed.

Our method focuses on the second aspect. However, as
it attempts to capture spatial arrangements and their sig-
nificance, it builds upon techniques that have been devel-
oped to capture the aspect of appearance. Although it is
not evaluated in this work, the same approach can also be
used to capture temporal arrangements. Our method builds
upon several recent advancements to the Bag of Keywords
methodology, in particular the Vector of Locally Aggre-
gated Descriptors (VLAD) method of [7]. In order to cap-
ture local structures, it employs a variant of a method called
word2vec [16] to encode the local spatial arrangements of
keypoints in each frame. The resulting system seems to be
unique in that it provides a global descriptor that captures
the regularities of local structures, but does not try to detect
those structures in the video. We demonstrate its capabil-
ities by testing it on recent, challenging action recognition
benchmarks.

Our main contributions are: (i) The application of log-
linear neural nets to capture spatial relations is novel and

1506



very different from existing solutions. (ii) The process of
applying word2vec to images/video, as introduced here, in-
cluding a spatial word2vec variant and VLAD based join-
ing, is novel and not an obvious extension of any existing
method. (iii) Our experiments show significant improve-
ment in two challenging benchmarks. In one benchmark
our improvement is greater than any previous performance
leap on this benchmark.

2. Previous Work
Our work borrows from multiple domains including

video analysis, visual keypoint representation, and natural
language processing.

2.1. Video content representations.

Over the years many attempts have been made to de-
sign effective representations of video content. These range
from high-level shape representations, to methods which
consider low-level appearance and motion cues. Recently,
three general low-level representation schemes have been
central in action recognition systems. These are the lo-
cal descriptors (e.g., [13]), optic flow based methods such
as [1], and dynamic-texture representations [8].

This paper does not present new appearance descriptors,
rather we employ code made available by the respective au-
thors of various existing contributions, specifically MIP [8],
dogMIP and histMIP [5], and dense MBH [22]. The Motion
Interchange Patterns (MIP) descriptor is a dynamic-texture
representation, which reflects the range of possible changes
in motion and their likelihoods of occurring at each pixel
in the video. This is done by comparing 3 × 3 gray-level
patches, for 64 different direction changes from a previous
frame, through the current frame, to the next frame. Each
comparison provides a trinary value indicating the similar-
ity of the central patch to the one in the previous frame or
to the next, producing a characterization of the motion in
the pixel without computing flow. Various combinations of
MIP trinary values indicate static edges which may be ig-
nored by subsequent processing. In addition, MIP codes al-
low for effective camera motion compensation. Since origi-
nally presented in [8], several variations of the original MIP
descriptor have been proposed and have gradually improved
its capabilities [27, 5].

The second type of descriptor used in our experiments,
is the dense-motion boundary histogram (dense-MBH) de-
scriptor proposed by [22]. It uses dense, random sam-
pling of multi-scale part models as an effective, yet ef-
ficient, action representation. Each of these “parts” is a
fixed-dimensional cube in space-time, which locally cap-
tures both the spatial and temporal appearance of the video.
These parts are arranged in a pyramid which contains both a
coarse-level sample of the video at half of its resolution, as
well as multiple fine-scale cubes, overlapping in both space

and time, sampled in locations determined by the position
of the coarse-scale sample. The parts are sampled from
an MBH representation of the video, originally described
in [2]. This representation encodes the changes in optical
flow along each image axis.

The field of action recognition is rapidly changing, and
the descriptors we employ, although state-of-the-art when
published (both in the last two years), are no longer leading
the performance charts. Specifically, the most successful
method to date is based on keypoint trajectories and com-
bining multiple descriptors [24, 25], as detailed below.

2.2. Spatio-temporal (mid-level) structures

Local appearance and motion representations, and the
associated Bag of Features models, are popular due to their
simplicity, robustness and the ability to quickly train these
models on large amounts of data. However, many au-
thors have opted to utilize mid-level structures that are con-
structed hierarchically on top of the local features. These
attempts have often helped push the performance envelope.
Some examples include “Action Bank” [21], which em-
ploys spatio-temporal pooling of features; the Hierarchy
of Discriminative Space-Time Neighborhood Features [11],
which groups together local features to form discrimina-
tive structures; the stacked convolutional network approach
of [15], which builds a hierarchy of spatio-temporal units;
and the data mining approach of [4]. It is noteworthy that
each of these examples used a technique that was very dif-
ferent than the others – such variance might imply a rapid
evolution of methods.

A successful thread of work in action recognition con-
siders dense video trajectories [24, 25, 19]. Feature points
in video are tracked and their appearance descriptors accu-
mulated along the trajectory to form complex descriptors.
The properties of the motion trajectories themselves are also
informative, and are encoded as normalized displacement
vectors. Combining these sources of information, such ap-
proaches dominate the performance charts of most of the
important action recognition benchmarks.

Our proposed method is designed to capture spatial
structures, but could easily be extended to capture temporal
relations as well. While it is intuitively appealing to think of
video as a 3D entity, we first focus on the spatial structures.
In addition, instead of capturing well localized structures,
which is also an appealing idea with useful outcomes, we
encode globally using representations that are learned lo-
cally, but never made explicit. This is done through the use
of a 2D variant of the word2vec method.

2.3. word2vec

In a scheme that is much simpler than previous work in
Natural Language Processing, where neural networks with
many hidden units and several non-linear layers were con-

507



structed, word2vec [16] constructs a simple log-linear clas-
sification network. In the CBOW variant of word2vec, the
network predicts each word based on its neighborhood –
the five words preceding and the five words following that
word. An input layer denotes the bag of words representa-
tion of the surrounding words, and contains one input ele-
ment per each dictionary word. It is projected linearly to the
hidden encoding layer. The hidden layer is then mapped to
an output Huffman code representation of the given word.
Once the network is trained, the projections from each input
unit to the middle encoding layer are used to represent the
associated dictionary word. Interestingly, the resulting en-
coding not only captures meaningful word representations,
where words of similar meaning have nearby representa-
tions, but also captures, in a surprising manner, pairwise
relations through simple arithmetic operations [16].

2.4. Bag of visual keywords variants

Bag of visual words approaches [23] represent a video V
by a set of vectorsQ = {Ii}ni=1. Each vector Ii encodes the
local appearance of one video patch. The basic scheme for
transforming the set Q into a vector is borrowed from the
field of text processing. Using a dictionary of prototypes
D = {Cj}fj=1, a histogram is constructed where each lo-
cal descriptor is assigned to one bin according to its closest
dictionary word Ci(j).

In more sophisticated schemes, used for image recog-
nition, such as sparse coding [26, 29], each keypoint is
assigned with unequal weights to multiple dictionary pro-
totypes, again based on its appearance. In very success-
ful recent methods, including the Fisher Vectors [18], and
VLAD [7], the appearance vectors themselves (e.g., 128-D
for SIFT) are accumulated for each learned prototype.

Fisher vectors are based on a Gaussian Mixture Model
(GMM) representation of the space of image descriptors.
Assuming that the GMM has f centers µj , j = 1..f , the
representation of an image is a concatenation of f vectors.
Each such vector is a weighted sum of the image descriptors
Ii, where the weights are a function of the affinity between
each image descriptor Ii and each GMM center µj . Some-
what similarly, in the VLAD method, a dictionary of some
size f is used to generate a descriptor, which is formed by
the concatenation of f vectors. Each one of these vectors
j = 1..f , is the sum of vectors of the form Ii − Cj , for all
descriptors of index i which are assigned to dictionary item
j. The utility of the Fisher Vectors for action recognition
was recently demonstrated in [25].

What is common to these schemes is that once assigned,
the keypoint descriptors are considered as either atomic
units or otherwise as vectors in the appearance space. There
is an opportunity to utilize additional information by sepa-
rating the two steps: (1) mapping image/video keypoints
to prototypes based on appearance; (2) using accumulating

schemes such as VLAD or Fisher Vectors but based on vec-
tor representations that are not necessarily related to appear-
ance. This, in contrast to previous methods which couple
both these steps together, and use appearance for both pro-
totype assignment and accumulation of vectors.

3. The Piggyback Descriptor

3.1. Overview

Space-time keypoints are often considered atomic units,
which can be counted, in parallel, by their type. However, in
action recognition in particular, there is a line of work which
tries to combine co-occurring keypoints into more elabo-
rate structures. We suggest representing each keypoint as
a vector, capturing not its appearance, but rather its spatial
relation to other keypoints. In order to capture the spatial
structures of keypoints, relating to the distribution of vari-
ous types of keypoints within a single frame, we propose an
encoding that is based on keypoint co-occurrences as repre-
sented by a 2D word2vec-like architecture.

Given all the keypoints of the training frames, we con-
sider for each such keypoint a spatial neighborhood con-
taining its N = 10 closest keypoints in the same frame.
Recall that each keypoint i is assigned to a dictionary word
j(i). This assignment, similar to bag of keyword methods,
is based on the similarities of the appearance representa-
tions of these keypoints. Each neighborhood is represented
as a binary vector of the same size as the dictionary (f ),
which denotes exist/does not exist for each dictionary word.
A network analogous to the word2vec network is trained to
predict from this binary vector the type j(i) of keyword i;
that is, to predict the dictionary word association of each
keypoint, based on its spatial neighborhood. This network
has one hidden layer of size L, which is fixed to be 200
throughout our experiments. Once trained, we take the pro-
jection weights mapping the corresponding element in the
input layer to the hidden units, as our encoding of each dic-
tionary word j = 1...f . Hence, each word in our modi-
fied dictionary now reflects not its appearance, but rather
the characteristics of the spatial arrangement patterns found
in the video, in the vicinity of that word.

Representing an entire video is performed in a process
similar to the one used by VLAD: The dictionary words are
used to form a Gaussian Mixture Model (GMM) in RL of
k = 5 centers. Each dictionary word j is assigned to a
Gaussian (based on the posterior probability) and its differ-
ence from the mean of that Gaussian is stored as a vector
Uj ∈ RL.

Given a video to encode, the system produces a concate-
nation of k accumulator vectors in RL, where each of the
keypoints adds to one of the k vectors the associated vec-
tor Uj . Thus, association of words to Gaussians, and their
accumulation, is performed using one representation, “pig-

508



gybacking” on the original representation, which was used
to form the original associations of features to dictionary
words. The latter captures the appearance, the former, of
size kL, is our contribution and is used to reflect spatial
patterns.

3.2. Training

There are four components which are learned or com-
puted: (i) a dictionary of keypoints containing f elements;
(ii) Huffmann codes of the dictionary items; (iii) a repre-
sentation of each dictionary element 1..f by a “semantic”
vector in R200; and (iv) an association of each semantic
vector to one of k Gaussians, and the center µl, l = 1..k
of these Gaussians. These are mostly straightforward and
are described below to allow complete reproducibility..

To learn the dictionary, we simply examine the set of
training videos, extract the keypoints’ descriptors Ii from
all frames of these videos, and employ k−means with the
number of centers set to f = 5000 for MIP and its variants,
and f = 4000 for dense MBH. Each training keypoint Ii is
then associated with the closest cluster center Cj(i).

The Huffman codes Hj , j = 1..f of length log2(f) are
constructed by considering the frequency of training key-
points associated with each dictionary item Cj . The use
of Huffman codes follows a common practice in neural net
language models [17]. We adhere to this practice, although
its main advantage over encoding through balanced trees is
to reduce evaluation time. This consideration is not a major
concern in our system, where f is relatively small.

In order to obtain the semantic representation, we apply
a variant of word2vec, as illustrated in Figure 1. Recall that
each keypoint Ii is associated with the nearest dictionary
item Cj(i). The distances used for this association are based
on the appearance descriptors, which are not used again in
our procedure. The word2vec neural net is trained as fol-
lows: For each keypoint i in every training frame, we con-
sider two vectors – a binary input vector and a binary out-
put vector. The binary input vector Bin

i is of length f , with
one element corresponding to each dictionary item. It de-
notes the existence of keywords assigned to each dictionary
item within the neighborhood of size N = 10 surrounding
keypoint i. The binary output vector Bout

i = Hj(i) is the
Huffman code of the associated dictionary item.

The neural network is trained to link the binary input
to the binary output vectors using a simple log-linear ar-
chitecture with a hidden (linear-projection) layer of size L.
The model thus has a total of f ∗ L + L ∗ log2(f) param-
eters. Our implementation is based on the code available
from https://code.google.com/p/word2vec/,
and the learning procedure follows a gradient descent
method with an adaptive learning rate controlled by the
Adagrad scheme [3]. Once the network is trained, the se-
mantic vector representation Sj of each dictionary item j is

Figure 1: An illustration of the word2vec network applied to im-
age or video descriptors. Each visual keypoint i is predicted, i.e,
encoded at the output layer Bout

i with accordance to its Huffman
encoding Hj(i) of the closest dictionary item j(i). The neighbor-
hood of keypoint i is encoded through a bag of words scheme as
the input layer Bin

i . The hidden layer is a linear projection layer
and the entire architecture is a simple log-linear one.

obtained as the projection weights from the associated input
unit to the hidden layer.

We learn a mixture of k = 5 Gaussians in RL by using
all vectors Sj , j = 1..f as input to an EM based GMM
procedure. Once the GMM is trained, each dictionary item
of index j is associated with the Gaussian of the highest
posterior probability a(j) ∈ 1, 2, ..., k, and is represented
by a vector Uj = Sj − µa(j), where µl is the center of the
mixture’s Gaussian of index l.

3.3. Encoding

Encoding a video, after the training completes, follows
an efficient procedure. Keypoints are associated to vec-
tors Uj and mixture index 1..k using the same flow used
for training: each keypoint i = 1..n in the video is repre-
sented by an appearance descriptor Ii and then by its closest
(Euclidean distance) dictionary item Cj(i). The dictionary
item is associated with Gaussian number a(j(i)) and with
descriptor Uj(i) that was computed during training based on
the semantic vector Sj(i).

Let Aq ⊆ 1..n be the set of all indices i for which
a(j(i)) = q. The video is represented as the concatena-
tion of k accumulator vectors Vq, q = 1...k in RL, which
are computed as:

Vq =
∑
i∈Aq

Uj(i)

More elaborate representation schemes can be devised
by splitting the video and using spatial and temporal pyra-
mid representations. However, this is not explored here.

509

https://code.google.com/p/word2vec/


Table 1: Performance comparison of various combinations of methods on the ASLAN [10] benchmark. The average accuracy
and standard error over the ten folds are given for a list of methods including MIP [8], histMIP and dogMIP [5], and MBH [2].
The MIP results are obtained from [8] and patchMIP and dogMIP results are taken from [5]. The Piggyback descriptor
performs slightly worse than the baseline raw descriptor on which it is based. However, the combination, using stacking, of
the baseline features and their Piggyback counterpart consistently improves results. The result of combining all descriptors
(vanilla and Piggyback versions) together presents a leap in performance on the ASLAN benchmark.

System Baseline Piggyback Combined
Accuracy AUC Accuracy AUC Accuracy AUC

MIP 64.62± 0.8% 70.40 63.50± 0.6% 68.68 69.70± 0.9% 76.13
histMIP 64.30± 1.0% 69.09 61.98± 0.2% 66.38 67.08± 0.9% 73.61
dogMIP 60.82± 1.1% 65.76 59.23± 0.2% 63.29 64.70± 0.9% 69.71
MBH 64.25± 0.9% 69.91 57.83± 0.4% 61.39 66.22± 1.0% 72.18
All Combined 65.88± 0.9% 72.72 64.47± 0.4% 70.55 72.25± 1.1% 78.74

4. Experiments

We demonstrate our method on two challenging action
recognition data sets: ASLAN [10, 9] and HMDB51 [12].
There are other popular action recognition benchmarks, see
[6] for a comprehensive survey. Since we employ exist-
ing code as the underlying visual appearance descriptors,
we choose in our experiments to focus on benchmarks for
which publicly available code reproduces near state of the
art results.

Classification is done using SVM. For ASLAN we use
linear SVM following [8]; for HMDB the intersection ker-
nel as in [22]. To combine methods, following [5], we use
stacking on the signed distances from the hyperplanes of the
individual SVM, and train a linear SVM on the entire train-
ing set. Almost all parameter values are taken from previ-
ous work. C=1 for ASLAN following [8, 5] and C=32.5
for HMDB following [22]. Dictionary sizes are also based
on these baseline methods. The hidden layer has 200 units
– the default value in [16]. The only “new” parameter is
the number of GMM components, which we set to 5 in or-
der to keep the representation compact. Experiments show
that using one component (almost equivalent to summing
the learned representations) does not work as well (1-2%
lower accuracy on Aslan); we did not try other values so
far.

The ASLAN benchmark contains 3, 697 videos from 432
different action classes. We follow the prescribed protocol
that offers ten splits, each containing 600 pairs of video se-
quences. Half the videos are labeled as “same” and half as
“not-same”. At each round of the benchmark, nine splits
are used for training, and one for testing. On the ASLAN
benchmark, we apply the MIP descriptor [8], two recent
variants of MIP [5], and MBH [2]. In addition, we apply
the corresponding Piggyback descriptors. Experiments are
conducted according to the common experimental settings
involving multiple repeats of same/not-same trials.

Table 1 present the results on the ASLAN benchmark.

For each of the MIP variants, and also for the MBH de-
scriptor, the stacking of the baseline descriptor to its com-
plementary Piggyback descriptor significantly outperforms
baseline results. Combining representations, using the MIP
or histMIP descriptors, already outperforms current state of
the art result (AUC of 73.23), which was obtained in [5] by
combining multiple descriptors. By combining all descrip-
tors together, performance increases even further (AUC
78.74).

HMDB51 contains 51 different actions, with over a hun-
dred samples each (6, 766 sequences in total). Each of the
three splits of the benchmarks contains 70 training videos
per class. The rest are used for testing by way of multi-
class classification. On HMDB51, although lagging behind
the state of the art results, our results consistently show the
complementary value of the Piggyback descriptor over the
baseline dense MBH descriptor [22] (Table 2). The same
pattern of results is common across each of the data sets.
While the baseline appearance representation outperforms
the suggested secondary “semantic” representation, their
combination outperforms both.

We have also experimented with alternative schemes.
For example, we replace the word2vec network with a Mul-
tidimensional Scaling (MDS) solution. Each dictionary
item is represented as a point in RL such that the underly-
ing distances are optimized to match the distances between
the associated binary input vectors Bin

i described in Sec-
tion 3.2. Because each dictionary item has multiple oc-
currences in the video, and is associated each time with a
different binary vector, this constitutes a generalization of
MDS. In this generalization, every recovered MDS vector
is repeated multiple times in the cost function. The opti-
mization that is performed is a modification of the MDS
EM algorithm [28]. The results are somewhat lower than
those obtained with word2vec.

Since our method is accumulator-based, we also repeated
the experiments on the ASLAN benchmark using the origi-

510



Table 2: Comparison of dense MBH [22] to its Piggy-
back version and to their combination. The average ac-
curacy and standard error are shown. Dense MBH results
were obtained using the authors’ code and the results of
the baseline system completely replicate their experiments.
While the Piggyback version performs worse than the base-
line method, combined they perform better than baseline.
Since the publication of [22] earlier this year, much better
results were obtained and the current state of the art on this
benchmark is 57.2% [25].

System Performance
Dense MBH 43.51± 0.5%
Piggyback of dense MBH 31.22± 0.7%
The two combined 45.34± 0.6%

nal VLAD descriptor [7]. Despite some effort, VLAD per-
formed significantly worse than the baseline bag of word
based methods and did not contribute to the overall perfor-
mance even when used in combination.

References
[1] S. Ali and M. Shah. Human action recognition in videos us-

ing kinematic features and multiple instance learning. IEEE
TPAMI, 32(2):288–303, 2010. 2

[2] N. Dalal, B. Triggs, and C. Schmid. Human Detection Using
Oriented Histograms of Flow and Appearance. In Computer
Vision–ECCV 2006, LNCS 3952, pages 428–441. Springer,
2006. 2, 5

[3] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12:2121–2159,
2011. 4

[4] A. Gilbert, J. Illingworth, and R. Bowden. Action recog-
nition using mined hierarchical compound features. IEEE
TPAMI, 33(5):883–897, 2011. 2

[5] Y. Hanani, N. Levy, and L. Wolf. Evaluating new variants
of motion interchange patterns. In Proc. IEEE Conf. Com-
put. Vision Pattern Recognition Workshops, pages 263–268,
2013. 2, 5

[6] T. Hassner. A critical review of action recognition bench-
marks. In CVPR Workshops, 2013. 5

[7] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, pages 3304–3311, jun 2010. 1, 3, 6

[8] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf. Mo-
tion interchange patterns for action recognition in uncon-
strained videos. In ECCV, Oct. 2012. 2, 5

[9] O. Kliper-Gross, T. Hassner, and L. Wolf. One shot similarity
metric learning for action recognition. Proc. of the Workshop
on Similarity-Based Pattern Recognition (SISM), pages 31–
45, 2011. 5

[10] O. Kliper-Gross, T. Hassner, and L. Wolf. The action similar-
ity labeling challenge. IEEE TPAMI, 34(3):615–621, 2012.
5

[11] A. Kovashka and K. Grauman. Learning a hierarchy of dis-
criminative space-time neighborhood features for human ac-
tion recognition. In CVPR, 2010. 2

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: a large video database for human motion recogni-
tion. In ICCV, 2011. 5

[13] I. Laptev. On space-time interest points. IJCV, 64(2):107–
123, 2005. 2

[14] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008.

[15] Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical
invariant spatio-temporal features for action recognition with
independent subspace analysis. In CVPR, 2011. 2

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013. 1, 3, 5

[17] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and
S. Khudanpur. Extensions of recurrent neural network lan-
guage model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pages
5528–5531, 2011. 4

[18] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In CVPR, jun. 2007. 3

[19] M. Raptis, I. Kokkinos, and S. Soatto. Discovering discrim-
inative action parts from mid-level video representations. In
CVPR, pages 1242–1249, 2012. 2

[20] K. K. Reddy and M. Shah. Recognizing 50 human action
categories of web videos. MVAP, Sept. 2012.

[21] S. Sadanand and J. J. Corso. Action bank: A high-level rep-
resentation of activity in video. In CVPR, 2012. 2

[22] F. Shi, E. M. Petriu, and R. Laganière. Sampling strategies
for real-time action recognition. In CVPR, pages 2595–2602,
2013. 2, 5, 6

[23] J. Sivic and A. Zisserman. Video google: A text retrieval ap-
proach to object matching in videos. In ICCV, pages 1470–
1477, Nice, France, 2003. 3

[24] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. IJCV, 103(1):60–79, 2013. 2

[25] H. Wang and C. Schmid. Action Recognition with Improved
Trajectories. In International Conference on Computer Vi-
sion, Oct. 2013. 2, 3, 6

[26] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, pages 3360 –3367, jun. 2010. 3

[27] C. Whiten, R. Laganire, and G.-A. Bilodeau. Efficient action
recognition with MoFREAK. In Int. Conf. on Computer and
Robot Vision, pages 319–325, May 2013. 2

[28] S. Winsberg and G. Soete. A latent class approach to fit-
ting the weighted euclidean model, clascal. Psychometrika,
58(2):315–330, 1993. 5

[29] J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial
pyramid matching using sparse coding for image classifica-
tion. In CVPR, pages 1794–1801. IEEE, 2009. 3

511


