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Abstract

In this paper we present a novel approach to detect
groups in ego-vision scenarios. People in the scene are
tracked through the video sequence and their head pose
and 3D location are estimated. Based on the concept of
[f-formation, we define with the orientation and distance an
inherently social pairwise feature that describes the affinity
of a pair of people in the scene. We apply a correlation clus-
tering algorithm that merges pairs of people into socially
related groups. Due to the very shifting nature of social in-
teractions and the different meanings that orientations and
distances can assume in different contexts, we learn the
weight vector of the correlation clustering using Structural
SVMs. We extensively test our approach on two publicly
available datasets showing encouraging results when de-
tecting groups from first-person camera views.

1. Introduction

Wearable computing devices are becoming more and
more common: first-person camera views present some
unique advantages if compared to the setting used in the last
20 years of computer vision. The video is recorded by the
same perspective humans see, focusing exactly on what we
focus, seeing what we see. Ego-vision applications hence
have a great potential allowing for a completely new ap-
proach to social analysis, object detection and recognition
or human actions recognition. Some great challenges come
with this new scenario as well: having a camera tied to one’s
head instead of being placed in a fixed position presents
strong ego-motion, background clutter and the ability to
move with the camera can also imply strong changes in
lighting conditions.

Recently, efforts in the direction of a better understand-
ing of human-objects interactions or egocentric video sum-
marization have been made [11, 13, 12]. Furthermore, so-
cial interaction is a very interesting field due to the unique
perspective of ego-vision. In particular, the work by Fathi

Figure 1: An example of our method’s output. People dif-
ferent colors in segmentation indicate their belonging to dif-
ferent groups. The red dot represents the first-person wear-
ing the camera.

et al. [6] aims to the recognition of five different social situ-
ations (monologue, dialogue, discussion, walking dialogue,
walking discussion). By using day-long videos recorded
from an egocentric perspective in an amusement park, they
extract features like the 3D position of faces around the
recorder and ego-motion. They estimate the head pose of
each subject in the scene, calculate their line of sight and
estimate the 3D location they are looking at under the as-
sumption that a person in a social scenario is much more
likely to look at other people. A multi-label HCRF model
is then used to assign a category to each social situation in
the video sequence.

Differently, in this paper we address the problem of par-
titioning people in the scene into socially related groups.
Human behavior is by no means random: when interacting
with each other we naturally tend to place ourselves in de-
termined positions to avoid occlusions, stand close to the
ones we interact with and organize orientations so as to nat-
urally place the focus on the subjects of our interest. In
order model this behavior, we follow the formalism of the
[f-formation defined in [10]. A f-formation is a pattern that

580



people naturally tend to create when interacting and can be
used to understand whether an ensemble of people forms a
group or not based on the mutual distances and orientations
of the subjects in the scene.

F-formations theory has been successfully applied in re-
cent works aimed at social interaction analysis showing
great promise [4, 9]. The idea behind our approach is to
adopt distance and orientation information and use them to
build a pairwise feature vector capable of describing how
two people stand in relation to one another. In this paper
we present a novel framework for detecting social groups
by using a correlation clustering algorithm that exploits so-
cial features to truly capture the social clues inferred from
human behavior. In order to achieve this result, we present
(1) a novel head pose estimation framework developed for
ego-vision, (ii) a 3D scene reconstruction method capable
of estimating the position of people without relying on cali-
bration, (iii) a Structural SVM based approach to learn how
to weight each component of the feature vector depending
on the social situation is applied to. Our experimental re-
sults (see an example in Figure 1) on two publicly available
datasets show that our approach is capable of dealing with
the complex challenges of the egocentric point of view. To
our knowledge, our work is the first that tackles the group
detection task in an ego-centric video scenario.

2. Group detection

To present how our method deals with the group detec-
tion problem, we formally introduce the concept of rela-
tionship between individuals. Given two people r and t,
we describe their relation ¢,.; in terms of the distance be-
tween the two, the rotation needed by the first to look at
the second and vice versa ¢,+ = (d, 0y, 0¢). Note that d
is symmetric while o,; and oy, are not and thus the need
of two orientation features instead of just one. This can be
better explained with an example: if two people are facing
each other, 0,, = o4 = 0; on the contrary if they both have
the same orientation resulting in r looking at t’s back, we
will have 0,4 = 0 and o4, = .

In practice, it can often be hard to fix this definition
of relationship and use it independently from the scenario,
mainly due to the fact that different situations can form
groups in very different manners. Sometimes people are
in the same group because of the mutual orientations and
distances or sometimes they are all looking at the same ob-
ject and none of them looks at any other group member. In
any case, it clearly emerges the need for an algorithm capa-
ble of adapting to different situations /earning how to treat
distance and orientation features depending on the context.

2.1. Correlation Clustering via Structural SVM

In order to categorize groups given the pairwise relations
of their members we used the correlation clustering algo-

rithm [1]. In particular given a set of people x in front of the
camera we describe their pairwise relations with an affinity
matrix W, where for Wy¢ > 0 two people r and t are in the
same group with certainty |Wy¢| and for Wy < 0 r and ¢
belong to different clusters. The correlation clustering y of
a set of people x is then the partition that maximize the sum
of affinities for item pairs in the same cluster:

arg m;mxz Z Wiyt (1)
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where the affinity between subjects t and r, W,;, is mod-
eled as a linear combination of the pairwise features of ori-
entation and distance over a temporal window. The window
size determines how many frames are used to calculate the
groups, capturing variations among the groups composition
and maintaining robustness to noise. In order to obtain the
best way to partition people into groups in the current so-
cial situation, the weight vector w should not be fixed but
learned directly from the data.

Being the input x; a set of distance and orientation fea-
tures of a set of people and y; their clustering solution it is
easy to notice that the output cannot be modeled by a single
valued function, a graph describing connections between
members, which is inherently structured, should instead
be employed. Structural SVM [14] offers a generalized
framework to learn structured outputs by solving a loss aug-
mented problem. The classifier learns the function mapping
the input space X to the structured output space )/, given a
sample of input-output pairs S = {(x1,¥1),.- -, (Xn,¥n)}-
A discriminant function F' : X x ) — R is defined over the
joint input-output space so that F'(x,y) can be interpreted
as measuring the compatibility of x and y. As a conse-
quence the prediction function f results

f(x) = arg max F (x,y;w) 2)

where the maximizer over the label space ) is the predicted
label, i.e. the solution of the inference problem. Following
the parametric definition of correlation clustering in Eq. 1
the compatibility of an input-output pair can be defined as

wrxy) =w'Y Y o ©)
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F (Xv y; W) -
where ¢, is the pairwise feature vector of elements r and
t. The problem of learning in structured and interdependent
output spaces can been formulated as a maximum-margin
problem. We adopt the n-slack, margin-rescaling formula-
tion of [14]:
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where 69,(y) = U(x;,y:) — U(xi,y), & are the slack
variables introduced in order to accommodate for margin
violations and A(y,y;) is the loss function. In this case,
the margin should be maximized in order to jointly guar-
antee that for a given input, every possible output result is
considered worst than the correct one by at least a margin
of A(y;,y) — &, where A(y;,y) is bigger when the two
predictions are known to be more different.

The quadratic program in Eq. 4 introduces a constraint
for every possible wrong clustering of the set. Unfortu-
nately, the number of wrong clusterings scales more than
exponentially with the number of items. As we aim to real-
time performances, approximated optimization schemes
need to be considered. In particular we adopt the cutting
plane algorithm where we start with no constraints, and it-
eratively find the most violated constraint:

y; = arg m}jaxA(yi, y)— 09U (y) (%)
and re-optimize until convergence. Finding the most vio-
lated constraint requires to solve the correlation clustering
problem, which we know to be NP-hard [1]. Finley et al.
[7] propose a greedy approximation algorithm which works
by initially considering each person in its own cluster, then
iteratively merging the two clusters whose union would pro-
duce the worst clustering score.

One remarkable aspect of supervised correlation cluster-
ing is that there is no need to know in advance how many
groups are present in the scene. Moreover two elements
could end up in the same cluster if the net effect of the
merging process is positive even if their local affinity mea-
sure is negative, implicitly modeling the transitive property
of relationships in groups which is known from sociological
studies.

2.2. Loss function

The learning ability of the algorithm highly depends on
the choice of the loss function since it has the power to force
or relax input margins.

The problem of clustering people is in many ways sim-
ilar to the noun-coreference problem [3] in NLP, where
nouns have to be clustered according to who they refer to.
Above all, the combinatorial number of potential connec-
tions is shared. For this problem, the MITRE score [16]
has been identified as a suitable scoring measure. The
MITRE loss, Ay (y,¥), is founded on the understanding
that connected components are sufficient to describe dy-
namic groups and thus spanning trees can be used to rep-
resent clusters.

Consider two clustering solutions y, y and an instance of
their respective spanning forests () and P. The connected
components of () and P are identified respectively by the
trees Q;,4 = 1,...,nand P;,i = 1,...,m. Let |Q;| be

W

the number of people in group @; and p(Q;) the set of sub-
groups obtained by considering only the relational links in
Q; that are also found in the partition P. A detailed deriva-
tion of this measure can be found in [3].

Accounting for all trees (); we define the global recall
measure of () as

2 i1 |Qil = Ip(Qi)|
Yim1 @il =1

The precision of ) can be computed by exchanging ) and
P, which can be also seen as the recall of P with respect to
(), guaranteeing that the measure is symmetric. Given the
recall R the loss is defined as

Rgo =

(6)

Ay = 1-F )

where F is the standard F'-score.

3. Understanding people

A lot of work has been done in detecting, tracking and
locating people in 3D environments. This is indeed the first
step towards any kind of social interaction study or, in our
case, social groups detection.

3.1. Detection and Tracking

In an ego-vision scenario where steep head poses, oc-
clusions or quick changes in lighting conditions can easily
occur, even face detection can still be a problem. In order
to cope with the complexity of this scenario, our method
makes use of the Hough-Based Tracker (HBT) [8]. An ex-
tremely useful step of its tracking process is the segmen-
tation of the object it perform as it will be discussed in
Section 3.2. We extended and parallelized HBT in order
to track simultaneously multiple targets in real-time, we
also introduced an automatic initialization step using Viola-
Jones face detector. In practice, due to the complexity of
many ego-vision scenarios, we often rely on manual initial-
ization on the first frame of the video sequence in order to
cope with hard detection situations that could compromise
the following steps of our framework.

3.2. Head Pose Estimation

By calculating a rough estimate of someone’s head pose
is possible to understand with a certain precision where they
are looking at. In order to achieve this result in first-person
camera views, a two-step approach is used: the first step
consists in obtaining a first estimation using spatial features.
Given the head bounding box and segmentation provided by
our tracking phase (see Section 3.1), a few steps of normal-
ization are applied in order to achieve robustness to vari-
ous factors such as lighting and scale: contrast normaliza-
tion, resizing and background subtraction. Eventually, a 8 x
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8 x 16-dimensional dense HOG descriptor is extracted and
a further numeric normalization is applied through power
normalization: f(x) = sign(x)|x|* with «=0.5.

By applying this function over the feature vectors it is
possible to improve the classification performances. The
resulting feature vector is then classified by a Linear SVM
providing a first real-time estimate of the subject orienta-
tion.

A second step introduces temporal consistency. In fact,
when people talk in a group they usually focus their at-
tention on the one who has the floor, resulting in constant
poses for a while and changing when someone different
starts talking. A Hidden Markov Model (HMM) is hence
introduced, resulting in a set of latent variables z; coincid-
ing with the head poses, and a set of observations o; which
are the input images of the head. The joint probability of a
state z; and an observation o, is given by:

p(Zt, Ot) = p(zo) HP(0t|Zt)p(Zt|Zt—1)- 3

t=1

The state transition probability p(z¢|2;—1), modeled with
a transition matrix A, effectively introduces constraints over
the set of possible transitions. By controlling this matrix’s
values one can add temporal consistency to the framework
deciding which transitions are possible at a state z; and
which are not. The output of the HMM model is then treated
as the final predicted pose of the subject’s head.

3.3. 3D People localization

In order to determine the 3D position of each person in
the scene, we decided not to use camera calibration due to
the loss of generality that this would have resulted in an ego-
vision scenario. Aiming to detect the groups in the scene,
we do not need the exact position of each person but a lo-
cation estimation which has to maintain positional relations
between individuals. We rely on the assumption that all the
heads in the image lay on a plane, thus the only two signifi-
cant dimensions of our 3D reconstruction are (z, z), result-
ing in a “bird view” model. In order to estimate the distance
from the person wearing the camera, we trained a Random
Regression Forest [2] using the area of the head on the im-
age plane, obtained by the segmentation resulted from the
HBT tracker.

This provides a good estimation of the distances near the
first-person while coping well with the non-linearity of the
problem at hand. In order to estimate the x position ac-
counting for the projective deformation in the image, we
build a grid with variable cells sizes. Using the inferred
distance computed earlier, the z position on the grid is com-
puted (namely, in which row the person stands); then, a cell
on that row is decided by using the x position on the image
plane of the center of the person’s head. The last step in the
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construction of the 3D model is to add orientation informa-
tion. The “bird view” model is then complete and features
(z, 2z, 0) coordinates, where o represents the estimated head
orientation.

4. Experimental results

To evaluate our social group detector and head pose
estimation algorithm we provide two publicly available
datasets: EGO-GROUP and EGO-HPE datasets. EGO-
GROUP! contains 10 videos, more than 2900 frames an-
notated with group compositions and 19 different subjects.
Furthermore, 4 different scenarios are proposed in order to
challenge our method in different situations: a laboratory
setting with limited background clutter and fixed lighting
conditions (Figure 2a), a coffee break scenario with very
poor lighting and random backgrounds (Figure 2b), a fes-
tive moment with a crowded environment (Figure 2c) and
an outdoor scenario (Figure 2d).

EGO-HPE dataset” is used for testing our head pose esti-
mation method. This dataset presents videos with more than
3400 frames fully annotated with head pose. Being aimed
to ego-vision applications, this dataset features significant
background clutter, different illumination conditions, occa-
sional poor image quality due to camera motion and both
indoor and outdoor scenarios. We also use it to compare
our technique against two state of the art approaches.

One of the more crucial and challenging components for
our social group detection is the automatic extraction of the
head pose of the subjects in the scene. A high error in such
data creates a strong noise in the features used to cluster
groups. In order to show the impact of the head pose esti-
mation phase in our pipeline, we tested our egocentric head
pose estimation method against other current state of the art
methods over the EGO-HPE dataset. The first method we
compared to is proposed by X. Zhu et al. [17]: by building
a mixture of trees with a shared pool of parts, where each
part represents a facial landmark, they use a global mixture
in order to capture topological changes in the face due to
the viewpoint, effectively estimating the head pose. In or-
der to achieve a fair comparison in terms of required time,
we used their fastest pretrained model and reduced the num-
ber of levels per octave to 1. This method, while being far
from real-time, provides extremely precise head pose esti-
mations even in ego-vision scenarios when it can overcome
detection difficulties. The second method used in our com-
parison is [5]. This method provides real-time head pose
estimations by using a regression forest trained with exam-
ples from 5 different head poses. The code provided by the
authors does not yet perform automatic facial landmark es-
timation, hence we use the publicly available state of the art

Uhttp://imagelab.ing.unimore.it/files/EGO-GROUP.zip
Zhttp://imagelab.ing.unimore.it/files/EGO-HPE.zip
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(a) Laboratory (b) Coffee

(d) Outdoor

(c) Party

Figure 2: Examples from the EGO-GROUP dataset. Each picture shows one of the different testing scenarios used by the

method.

Table 1: Comparison of our head pose estimation and two
state of the art methods on EGO-HPE dataset.

Our Method | Zhu et al. [17] | Dantone et al. [5]
EGO-HPE1 0.750 0.685 04138
EGO-HPE2 0.670 0.585 0.326
EGO-HPE3 0.668 0.315 0.330
EGO-HPE4 0.821 0.771 0.634

landmark estimator [ 1 5] and the performance of this method
are strictly tied to the output of this step. Table 1 shows the
results in terms of accuracy of this comparison: the devel-
oped head pose estimation method outperforms its state of
the art counterparts if applied to egocentric video sequences
while still working in real-time. Nevertheless, error occurs
and thus the possibility of misclassified poses must be con-
sidered when training and testing the clustering algorithm.

When detecting social groups the choice of which data
train onto is extremely crucial: in different social scenar-
ios distances and poses can assume different significances.
For this reason, in order to achieve good performances in
a real world application training should be context depen-
dent. However, the risk of overfitting is considerable: Table
2 shows the performances of our method applied to every
scenario of the EGO-GROUP dataset by repeating the train-
ing over the first video from each scenario. Results obtained
by training the method over the union of the training sets of
each scenario are also displayed. To our knowledge, this is
the first work that tackles with group partitioning in an ego-
centric video perspective, hence the lack of further compar-
isons with other approaches. In particular from this data
can be seen how, for example, training the weights over the
outdoor sequence outperforms training on the coffee setting
when testing on the coffee itself, but performs rather worse
on different scenarios. This is due to overfitting on a par-
ticular group dynamic present in both the training and the
coffee videos, but absent from other sequences. In order to
have an estimate of how different trainings perform, stan-
dard deviation over the absolute error can be computed. It
emerges that laboratory setting is the more general train-

ing solution with an average error of 10.94 and a standard
deviation of 1.14, while training over the party sequence,
although it can achieve impeccable results over its own sce-
nario and an average error of 11.16, presents a much higher
deviation (8.66). Training over the set given by the union
of each training set from the different scenarios results in a
standard deviation of 7.84 over a mean error of 11.35, show-
ing how this solution, while maintaining the overall error
rates, does not provide a gain in generality. In the further
experiment we will assume that the training has been done
over the laboratory setting, which as described showed to
be the most general and less likely to overfit on one feature
rather than on another.

An important parameter of our group detection approach
is the dimension of the clustering window: being able
to change window size allows to adapt to different situ-
ations. The window size effectively regulates over how
many frames calculate the groups, resulting in being much
less noise-sensitive with bigger windows but less capable
of capturing quick variations among the groups composi-
tion. On the other hand, a small window size allows to
model even very small changes in groups but its perfor-
mances are strictly tied to the amount of noise in the fea-
tures, e.g. wrong pose estimations or an imprecise 3D re-
construction. In our experiments we show that a window
size of 8 frames provides a good compromise between ro-
bustness to noise in the descriptor and fine grained response
of our system. Figure 3 reports the results on EGO-GROUP
of our method in terms of absolute error, evaluated with the
MITRE loss function described in Section 2.2, varying win-
dow sizes. As the chart shows, results under different win-
dow sizes are tied to the amount of noise in the feature vec-
tors. In particular, one can notice how the party sequence
(red plot) does not benefit from increasing the window size:
this is due to the good performance in head pose and dis-
tance estimations. Since there is very little noise to remove,
the decay in accuracy is mainly caused by the loss of infor-
mation caused by the excessively coarse grain in the group
estimation. On the other hand, the coffee setting (blue plot)
presents one of the most challenging scenarios for our head
pose estimation method, thus the gain in performances in-
creasing window sizes. However, by increasing it too much
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Table 2: Comparison between training variations on our method. The table shows how different training choices can deeply
impact on the performances: while the laboratory scenario presents a rather balanced training environment, a training set
extracted from the party or the coffee scenarios can overfit on some features leading to very high performances when applied
to videos with the very same situation and worse results if used on other data.

Training: Laboratory Training: Coffee Training: Party Training: Outdoor Training: All
Test scenario | Error | Precision | Recall | Error | Precision | Recall | Error | Precision | Recall | Error | Precision | Recall | Error | Precision | Recall
Coffee 11.55 82.99 97.17 | 11.69 79.17 100.00 | 18.90 69.44 100.00 | 6.75 92.62 94.06 | 6.50 88.80 99.46
Party 9.33 100.00 83.63 | 0.00 100.00 100.00 | 0.00 100.00 100.00 | 10.92 100.00 80.34 | 3.15 96.27 98.05
Laboratory 11.91 91.68 85.79 | 14.75 74.67 99.43 | 1443 74.81 100.00 | 27.75 72.60 72.81 | 19.97 74.32 88.05
Outdoor 10.97 87.39 95.09 | 11.31 81.25 100.00 | 11.31 81.25 100.00 | 29.76 100.00 58.93 | 15.83 83.93 89.17

the loss of information overcomes the gain from the noise
suppression and worsens the performances. In general, it
can be noted how increasing the window size past 8 - 16
usually worsens the overall performances of the proposed
method.

20.00

18.00

16.00

14.00 ¥

12.00 .

10.00

8.00 T T T
1 2 4 8 16 32
—4=—Coffee == Party Laboratory === Outdoor

Figure 3: Comparison between absolute error results under
various window sizes in our method.

5. Conclusion

In this paper we presented a novel method for estimating
group compositions in ego-vision scenarios. We developed
a head pose estimation technique designed for first person
camera views and used it to effectively compute head pose
of the subjects in the scene. Furthermore we estimated the
3D location of the people without the need of camera cal-
ibration. Using these information, we employ socially in-
spired features and the correlation clustering algorithm to
partition the people in the scene into related groups. We
tested our approach on two publicly available datasets we
provide and show its validity in the challenging setting of
egocentric camera views.
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