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Abstract

In this paper, we present a novel approach for segment-
ing video into large regions of generally similar activity.
Based on the Dirichlet Process Multinomial Mixture model,
we introduce temporal dependency into the inference algo-
rithm, allowing our method to automatically create long
segments with high saliency while ignoring small, inconse-
quential interruptions. We evaluate our algorithm and other
topic models with both synthetic datasets and real-world
video. Additionally, applicability to image segmentation is
shown. Results show that our method outperforms related
methods with respect to accuracy and noise removal.

1. Introduction

The constantly decreasing cost of high-quality video
cameras has inspired their inclusion in many professional
environments, particularly for surveillance. One common
need/task with stored long-duration video is to review (or
summarize) the predominant activities in the video. Con-
sider video cameras in police patrol cars and, more recently,
on the officers themselves. Three (of many) activities that
could be expected from the viewpoint of an officer are: 1)
passing a citizen on the sidewalk, 2) giving a citizen di-
rections, and 3) giving a citizen a ticket. If egocentric im-
ages of each of these activities were examined, the same vi-
sual feature will likely be seen: a person near the center of
the frame. The differentiating factor is the temporal extent.
Passing someone is only likely to occur for a few frames.
Giving directions is likely to take longer. Finally, writing
a ticket may often take minutes. In this case, given lower-
level visual features, the temporal extent of the feature is
key to determining the different classifications. Futhermore,
even the importance may be temporally dependent, in that a
passing citizen is largely irrelevant while writing a ticket is
an important activity to log.

In this paper, we present a novel approach for taking

such video and segmenting it into large temporal regions
of generally similar activity. Our approach is to incorpo-
rate temporal dependence into the inference algorithm it-
self, and thus is capable of altering classification based on
both temporal extent and the neighborhood around frames.
This results in activity segments that are appropriately large
and more contiguous.

We use the Dirichlet Process Multinomial Mixture
(DPMM) model as the basis for our work. We modify it
to include temporal (or, in general, distance) dependencies
within the inference calculations. We evaluate and compare
performance against competing models with temporal de-
pendece as well as classic topic models.

2. Related Work

Originating in the area of document modeling, topic
models are becoming popular in computer vision inference
in part due to their strong grounding in Bayesian statistics
and construction using histograms of features.

Similar to our goal and approach, Blei and Frasier [2]
proposed the distance-dependent CRP (ddCRP), a modifi-
cation to the well-known Chinese Restaurant Process. Thus,
the temporal dependency is introduced at the clustering
level, rather than at the data level, as in our approach. This
makes it difficult for temporal similarity to overcome dis-
similarity in data points. We will show in our comparative
analysis that this causes their algorithm to have difficulty
ignoring small noise regions.

Perhaps closest to our work is the 2-layer stacked
DPMM algorithm proposed by Kitani et al. [12]. First, an
online variant of DPMM is used to process the input data.
The classifications are then divided into contiguous, non-
overlapping, 12-element segments. Histograms constructed
from each of these segments serve as the input to a second
DPMM which outputs the final classification. Our method
differs from this in several key ways. First, our windowing
method is smooth and overlapping, allowing precise transi-
tions between segments. Second, we allow the window size
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to be varied (both manually and automatically). Finally, in-
ference is performed simultaneously on both levels of our
model, rather than in two sequential steps.

Other examples of such modifications to topic mod-
els include the dependent Dirichlet Process proposed by
MacEachern [13] which, unfortunately, suffers the same
inability to overcome data dissimilarity as previously dis-
cussed in ddCRP. Sticky HDP was proposed by Fox et al.
[8] to address this, however they note that their method is
only intended to prevent cycling between two simlar states.
Our method is capable handling multiple, differing states.

Hospedales et al. [11] focus on short term activities
which is diametrically opposed to our own objective (long
segements). Specifically, they base their work on HMM’s,
which will be sensitive to short term variations. Emonet et
al. [7] explicitly state that their work will be extremely sen-
sitive to the temporal scale of the activities. We demonstrate
the scale insensitivity of our algorithm in the experimental
results.

Other examples of incorporating temporal relationships
into inference algorithms include [1, 3, 4, 5, 6, 10, 17, 20].

3. Dirichlet Process Multinomial Mixtures

The Dirichlet Process Multinomial Mixture model is one
member of the topic model family, that both learns the topic
structure and uses the Dirichlet Process (DP) to induce a
theoretically infinite but practically limited number of top-
ics. Here we provide a basic overview of the compenents
needed to derive our method. Readers interested in more
details about the DP and related Gibbs samplers are directed
to [18, 15].

3.1. The Dirichlet Process

The Dirichlet Process is essentially a distribution over
distributions. It forms a countably infinite subset of a base
distribution where each element of the subset is paired with
a mixture probability. Alternately, sampling from the DP
can also be specified as a partition over a discrete set:

φ, z ∼ DP(α0G0) (1)

where G0 is the base distribution, α0 is the concentration
parameter (which controls the spread of probability across
the subset and allows for bias), φ is a matrix (or vector of
parameter sets) with each φi being a sample from the base
distribution G0 (i.e., φ is a subset of the domain of G0), and
z is the partition vector assigning each element of the set to
one of the samples in φ. This is the partition view of DP,
which results from the Chinese Restaurant Process.

3.2. Chinese Restaurant Process

The Chinese Restaurant Process (CRP) is a partitioning
distribution, where a sample from it is a partition over a

discrete set. It operates according to the following anal-
ogy: Assume a restaurant exists which contains an infinite
number of tables. A (possibly) infinite series of customers
enters the restaurant. Then, the probability of customer i
sitting at table k is proportional to the number of customers
already sitting at that table. Furthermore, the customer has
a non-zero probability of sitting at an unoccupied table pro-
portional to α0. Finally, the CRP is exchangeable, meaning
that any permutation of the customers (keeping the same as-
signments) will have equal probability. In other words, the
order of arrival of the customers does not matter. Combin-
ing these, the final distribution is specified as:

P (zi = k | z−i) ∝
∑
j 6=i

1(zj=k) (2)

P (zi = knew | z−i) ∝ α0 (3)

where z−i indicates all elements of z except i.
A model equivalent to the DP (partition view) using the

CRP can be specified as:
φk ∼ G0 (4)

z ∼ CRP(α0) (5)

where each element i of the set belongs to the topic with
parameters φzi .

3.3. DPMM

Given the above formulation, the DP mixture model us-
ing the multinomial distribution can be specified. First, each
data element is assumed to have been sampled from a multi-
nomial distribution:

xi | zi, φ ∼ Mult(φzi) (6)

Next, the parameter set φ needs a prior and we choose the
common Dirichlet distribution (as it is the conjugate prior of
the Multinomial distribution):

G0 = Dirichlet(β0) (7)

where β0 is a parameter influencing the sparseness and/or
structure of the topics.

Finally, the two are tied together using the DP:
φ, z ∼ DP(α0G0) (8)

This can then be rewritten using the CRP:
φk ∼ Dirichlet(β0) (9)

z ∼ CRP(α0) (10)

xi | zi, φ ∼ Mult(φzi) (11)

from which a Gibbs sampler can be derived. Of particular
note is the “assignment” probability, the probability that a
data point will be assigned to a specific topic k:

P (zi = k | z−i, φ, x) ∝

∑
j 6=i

1(zj=k)

 ·(∏
v

(φkv)
xiv

)
(12)
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The right-hand part of this equation comes from the
multinomial distribution and is a measure of the similar-
ity between a data element and a topic. The left-hand part
comes from the CRP and is responsible for the clustering
effect in the algorithm. Specifically, if the data element is
similar to one (or more) of the topics, it will most likely be
assigned to the topic among these with the most members.
Conversely, a new topic may be created if it is sufficiently
dissimilar to any topics to overcome the influence from the
topic size. In general, we refer to these two parts as the data
and clustering components of the algorithm.

4. Temporal-Dependence in DPMM
As previously discussed, temporal relationships are a key

element in video segmentation. However, there is no tem-
poral dependence in the standard DPMM (required for ex-
changeability). Hence, it becomes necessary to modify the
model. There are two locations in the model where it is
natural to consider adding such dependence, corresponding
precisely to the clustering and data components.

4.1. Recursive Dirichlet Process Multinomial Mix-
tures (RDPM)

Temporal dependence can be incorporated into DPMM
via the data component of the model, and is the approach
we propose in this work. The weighting concept is similar
to the ddCRP, but the question remains as to what should be
weighted. A naı̈ve choice might be to weight the data his-
tograms themselves. That is, the weighting function would
be applied as a filter over the input data. However, this ap-
proach effectively creates mixtures of topics, something the
basic DPMM-based models have difficulty handling.

Instead, consider feeding the output of one DPMM into
another DPMM in a recursive manner. The topic assign-
ments from the lower layer are used to create a series of
histograms, where each data element has a corresponding
histogram constructed from its lower-level DPMM assign-
ment and those of its temporal neighbors. This is similar in
concept to the 2-layer stacked DPM-OL proposed by [12],
but we will later show the important differences.

Making the modification yields the following model:

H0 = Dirichlet(λ0) (13)

G0 = Dirichlet(β0) (14)

w, θ ∼ DP(γ0H0) (15)

φk ∼ G0 (16)

z | w, θ ∼ Steerable-CRP(w, θ, α0, λ0, f, d) (17)

xi | zi, φ ∼ Mult(φzi) (18)

where w and θ are the partitioning and parameters for the
second-level DPMM. The distribution referred to in Eqn. 17

as Steerable-CRP takes the population density-based clus-
tering of the standard CRP and incorporates a bias that
steers the clustering towards density templates θc chosen
by the selection vector w. Further, the target density is a
combination of all templates, weighted using distance d and
windowing function f . The full distribution is as follows:

P (zi = k | z−i, w, θ, λ0) ∝
(
nk − 1(zi=k)

)[
(Cλ0 + 1)

∏
c

(θck)

(∑
j f(dij)1(wj=c)

)
(
∑

j f(dij))
−1

]
(19)

P (zi = knew | z−i, w, θ, λ0) ∝ α0λ0 (20)

where C is the number of unique values in w.
The Gibbs sampler for this model can be derived as:

P (wi = c | w−i, θ,H0, z) ∝
(
mc − 1(wi=c)

)
·∏

k

(θck)

(∑
j f(dij)1(zj=k)

)
(
∑

j f(dij))
−1 (21)

P (wi = cnew | w−i, θ,H0, z) ∝ γ0
Γ(Kλ0)

Γ(λ0)K
·

∏
k Γ

(
Kλ0 +

(∑
j f(dij)1(zj=k)

)(∑
j f(dij)

)−1)
Γ(Kλ0 + 1)

(22)

θc | w,H0, z ∼ Dirichlet

(
λ0 +

∑
i

yi 1(wi=c)

)
(23)

P (zi = k | z−i, φ, w, xi) ∝

[(
nk − 1(zi=k)

)∏
v

(φkv)
xiv

]
[

(Cλ0 + 1)
∏
c

(θck)

(∑
j f(dij)1(wj=c)

)
(
∑

j f(dij))
−1

]
(24)

P (zi = knew | z−i, φ, w, xi) ∝[
α0

Γ(V β0)

Γ(β0)V

∏
v Γ(β0 + xiv)

Γ (V β0 +
∑
v xiv)

]
[λ0]

(25)

φk | z, x ∼ Dirichlet

(
β0 +

∑
i

xi 1(zi=k)

)
(26)

where

mc =
∑
i

1(wi=c), nk =
∑
i

1(zi=k),

yik = 1(zi=k), K =
∑
k

1, C =
∑
c

1
(27)

We refer to our proposed method as Recursive DPMM, or
RDPM.
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This formulation has advantages over ddCRP, classic
DPMM, and the 2-layer stacked DPM-OL. Our formulation
can easily ignore noise (small, short-duration regions differ-
ing from the surrounding larger regions) as they only have
a small effect on the second-level histogram. Where the
2-layer stacked DPM-OL approach uses a fixed-size, non-
overlapping window, our approach uses overlapping win-
dows. Also, as our approach explicitly links the two levels,
the possibility exists for the second level to influence the
first level. In other words, the second-level topic assignment
can affect which first-level topic assignment is chosen. Fi-
nally, and importantly, inference on the parameters for the
windowing function is possible, which we describe next.

4.2. Window Parameter Inference

The most common choices for a windowing function
(Gaussian, Laplace, etc.) have at least one parameter. This
unfortunately means that yet another parameter is needed
for the model. However, we provide a method to do in-
ference on the additional window parameter(s). As before,
there are two approaches we might take to accomplish this,
corresponding to the clustering and data components of the
model.

Considering the data component, it would seem that the
best window parameter value should be the one which max-
imizes the likelihood of each second-level histogram. How-
ever, in the case of a window size parameter (the most com-
mon type), this has the effect of driving the size to 0. This
results from the fact that, for a given topic, the most likely
histogram is the most pure histogram (concentrated in a sin-
gle category).

Alternately, we can approach the problem from the per-
spective of the clustering component. It is desirable that the
algorithm should a) use the smallest reasonable number of
topics, and b) form the largest possible contiguous regions.
We can achieve both goals if a parameter is more likely
when it would cause an element to move into a topic with
more members (within the contraints of the main model).
This is accomplished by adding an element to the sampler:

P (ρ | w, θ, z) ∝ P (ρ)P (w | z, θ, σ)

∝ P (ρ)
∏
i

mw̃i(ρ)
(28)

where

w̃i(ρ) = arg max
c

(
mc

∏
k

(θwik)
∑

j f(dij , ρ)1(zj=k)

)
(29)

is the maximum-likelihood topic assignment when using
parameter ρ.

Note that this does not give a closed form distribution
and thus an approximate sampling technique such as im-
portance sampling or Metropolis-Hastings will be required.

The end result is that, in the case of window size, the
parameter will be increased as long as the size of small re-
gions (relative to the parameter) can be reduced and will
stop increasing when only large regions remain.

5. Experiments
In order to test the efficacy of the proposed temporally-

dependent RDPM algorithm, a series of experiments using
synthetic and real video sequences were explored. Results
are compared to several common approaches. We addition-
ally show the applicability of the algorithm to the task of
image segmentation.

5.1. Synthetic Dataset 1: NOISE

This dataset was intended to test performance on han-
dling noise-like events: small regions of one topic contained
inside larger regions of another. The partition vector z (in-
dicating the topic to which each data point belongs) was
set to contain a sequence of equal-sized regions of different
topics. In the center of each region, a small noise region
of a differing topic was placed. The size of the small re-
gion increases as the sequence proceeds, which allowed the
level of noise rejection to be measured. A visualization of
the NOISE dataset and the corresponding ground truth labels
(desired regions) is shown in Fig. 2 (left, top and bottom
rows).

The actual data points are generated by sampling from
the generative model:

xi ∼ Mult(φzi), φk ∼ Dirichlet(0.1) (30)

with the added restriction that for every pair of topics k and
j, the KL-Divergence between their paramaters, φk and φj ,
was greater than 3.

5.2. Synthetic Dataset 2: PERIODIC

The second dataset, PERIODIC, was created using a sim-
ilar method to the first, but modified to allow mixtures of
topics. This is a challenging scenario for topic models and
DPMM in particular. Ground truth remains a sequence of
equal-sized regions. Odd numbered regions are also still
generated from a single topic. However, even numbered re-
gions are generated from a mixture of the topics of the two
neighboring regions:

xi ∼ h(i) Mult(φzi) + (1− h(i)) Mult(φyi) (31)

where the mixture function h(·) is a modified sine wave of
slowly increasing frequency:

h(i) =
1

2
sin(c · i+ 1) +

1

2
(32)

A visualization of the PERIODIC dataset and ground truth
can be seen in Fig. 2 (right, top and bottom rows). Note that,
for the purposes of visualization, only the mixture topic
with highest proportion is shown.
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(a) (b)
Figure 1. Egocentric video sequence. (a) Sample frames and (b) Sample depth map.

5.3. Egocentric Video Sequence

The next dataset comes from a 7 min egocentric stereo
video sequence of a walk around a college campus, includ-
ing both indoor and outdoor scenes (see Fig. 1.a). The video
was recorded using a Sony HDR-TD10 3D camcorder. A
depth map was constructed (using OpenCV) from the video
which served as the basic input sequence for testing (see
Fig. 1.b). The depth at each pixel was quantized into one
of three regions: less than 4 feet (near), greater than 14
feet (far), or in-between (mid). Finally, a 3-bin histogram
for each image was constructed over these depth categories.
This is a simple feature set (compared to the motion features
of [12]), but it was selected for two reasons. First, it is more
challenging for an inference algorithm to achieve adequate
performance using a simple feature set versus a sophisti-
cated one, making performance of each algorithm more ap-
parent. Second, initial testing showed that even with this
simple feature set, it was possible to find video segments of
consistent activities.

5.4. Image Segmentation

The final dataset was selected to demonstrate the appli-
cability of the method to other tasks, such as image seg-
mentation. This makes use of the fact that RDPM (as well
as ddCRP and DPM-OL) are distance-based methods, and
thus should work regardless of whether temporal distance
or spatial distance is used. Similar to the work of Gosh
[9], we select images from the LabelMe database [19]. Ap-
proximately 1000 superpixels are extracted [14] and sum-
marized using 64-bin color histograms. Ground truth is also
assigned to each superpixel using the labeling provided by
LabelMe.

5.5. Algorithms

We initially tested the temporal datasets with our RDPM
method, using a Gaussian window function with spread pa-
rameter σ2 = 20 (unless otherwise specified). We then
tested the variant of our method where σ2 is inferred.

For comparison, 4 other algorithms were examined. The
first is a straightforward K-means implementation. The K
parameter was set to the known number of topics for the
synthetic datasets. For the video sequence, K was set to
6 (the number of topics detected by the best performing

Noise Rand Avg
NOISE Accuracy Removal Index Seg Len
K-means 88.4% 0% 0.744 184
DPMM 88.4% 0% 0.744 184
2-layer 89.3% 57.5% 0.735 318
DPM-OL
H-ddCRP 88.4% 0% 0.744 184
RDPM, 93.2% 41.7% 0.843 267
fixed σ2 = 20
RDPM, 99.9% 100% 0.998 552
inferred σ2

Ground truth 100% 100% 1 552
Table 1. Accuracy, noise removal rate, Rand index, and average
segment length on dataset NOISE.

method). The second comparison algorithm was an imple-
mentation of the DPMM model described in Section 3.3.
The third algorithm was the 2-layer online DPMM (DPM-
OL) model with clip size of 12 (or a 10x10 grid for image
segmentation), as proposed by [12]. The final algorithm
was a Gibbs sampler for the Hierarchical ddCRP Multi-
nomoial mixture model (H-ddCRP) [2], using a Gaussian
windowing function with parameter σ2 = 20. The default
value of σ2 = 20 was selected for our approach and H-
ddCRP to closely match the 2-layer DPM-OL window size
of 12. For any parameters not explicitly mentioned above
(e.g., α0), several values were tested and the value giving
the best result was kept.

6. Results
6.1. NOISE Dataset

Figure 2 shows the final segmentations for dataset NOISE
over the set of algorithms. As noise removal is the primary
concern of this experiment, we show the fraction of total
noise removed in Table 1. Additionally, we provide the ac-
curacy and Rand index [16], a measure of clustering sim-
ilarity related to accuracy. Finally, since our final goal is
to extract long segments, we provide the average segment
length.

We see that K-means, DPMM, and H-ddCRP perform
essentially identically. They recover the base topic regions
but also recover the small noise regions, meaning no noise
removal.

The 2-layer DPM-OL algorithm demonstrates better per-
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NOISE Dataset PERIODIC dataset

K-means K-means

DPMM DPMM

2-layer DPM-OL 2-layer DPM-OL

H-ddCRP H-ddCRP

RDPM with fixed σ2 = 10 RDPM with fixed σ2 = 20

RDPM with fixed σ2 = 20 RDPM with inferred σ2

RDPM with fixed σ2 = 35 PERIODIC dataset ground truth (desired output)

RDPM with fixed σ2 = 50

RDPM with inferred σ2

NOISE dataset ground truth (desired output)

Figure 2. Output timeline of various algorithms on datasets NOISE & PERIODIC. (Best viewed in color)

formance, removing over half of the noise. However, there
is only a slight increase in accuracy. On the borders of re-
gions, issues caused by the non-overlapping windows re-
sults in several borders being shifted (aliasing) and one bor-
der being misclassified. This counteracts much of accuracy
gained from noise removal. We also note that the noise re-
moval is inconsistent, in that one larger noise region is re-
moved while two smaller regions are kept. While increas-
ing the clip size (above 12) would improve noise removal,
it would also exacerbate the aliasing problem. Conversely,
reducing the clip size would reduce the aliasing problem but
also decrease noise removal.

With σ2 = 20, the proposed RDPM achieves somewhat
better accuracy but lower noise removal than the 2-layer
DPM-OL. However, none of the border issues that plagued
the 2-layer DPM-OL are present. As shown in Fig. 2, us-
ing values of σ2 other than the default demonstrates that
the amount of noise removal can be precisely controlled.
Slowly increasing σ2 causes a steady, consistent decrease
of noise in the final result. Finally, at σ2 = 50, all the noise
is removed.

The RDPM variant with the inferred window parame-
ter provides similar results to σ2 = 50. With the inferred
parameter (σ2 = 101.3), the accuracy is near perfect and
100% of the noise is removed. One may note that the in-
ferred parameter value is larger than stricly required. This
is due to the fact that the inference mechanism requires the
parameter to grow as long as large regions do not shrink.
There is no requirement that the parameter must be as small
as possible. In other words, the parameter will grow to the
largest size that does not cause adverse effects. Finally, as
expected, we see that average segment length increases with
accurracy.

PERIODIC Acc. Rand Index Avg Seg Len
K-means 21.7% 0.387 14.6
DPMM 67.2% 0.539 24.8
2-layer DPM-OL 31.6% 0.391 1267
H-ddCRP 65.8% 0.544 22.9
RDPM, fixed σ2 = 20 98.1% 0.962 330
RDPM, inferred σ2 92.6% 0.856 330
Ground truth 100% 1 400

Table 2. Accuracy, Rand index, and average segment length for
various algorithms on dataset PERIODIC.

6.2. PERIODIC Dataset

With the PERIODIC dataset, we expect most algorithms
to have difficulty adapting to the complex mixture of topics.
Since this experiment is concerned with the classification of
each region, we exclude the noise removal measure. Table 2
provides the results.

In Fig. 2, we see that the K-means algorithm has extreme
difficulty with this dataset. Due to the similarity between
the mixed regions and their neighbors, the algorithm has
difficulty even classifying the simple single topic regions.
This gives very poor results (see Table 2).

DPMM has little difficulty recovering the single topic
regions, but is unable to handle the mixed regions. Rather
than each mixed region becoming a single topic, multiple
topics are created matching various mixture proportions.
The end result is an accuracy of 67%. The 2-layer DPM-OL
algorithm also has significant difficulty, but in the opposite
manner. It overgeneralizes and collapses the 19 true regions
into 6. This results in a very low accuracy of 32%. H-
ddCRP again shows essentially the same results as DPMM,
recovering the single topic regions but failing on the mixed
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K-means

DPMM

2-layer DPM-OL

H-ddCRP

RDPM with fixed σ2 = 20

RDPM with inferred σ2

Video dataset ground truth (desired output)

Figure 3. Output timeline of various algorithms on video sequence. (Best viewed in color)

Video Sequence Rand Index Avg Seg Len
K-means 0.393 36.8
DPMM 0.367 35.6
2-layer DPM-OL 0.428 153.7
H-ddCRP 0.353 63.7
RDPM, fixed σ2 = 20 0.413 97.7
RDPM, inferred σ2 0.674 397.5
Ground truth 1 823.4

Table 3. Rand index and average segment length for various algo-
rithms on video dataset.

regions.
Compared to the previous approaches, our RDPM per-

forms extremely well on this challenging dataset. With
σ2 = 20, it nearly perfectly classifies both single topic and
mixed regions, with an accuracy of 98%. Interestingly, us-
ing the inferred σ2 in this case results in slightly poorer (but
still strong) performance. We attribute this to the algorithm
being overly aggressive in selecting a larger window size
(σ2 = 572.0), and may indicate the need for a limiting fac-
tor in the parameter inference mechanism. This will be ex-
amined in more detail in a future work.

6.3. Real Video

As discussed previously, we desire long, contiguous re-
gions which ignore/remove small, inconsequential interrup-
tions. From visual inspection of the results in Fig. 3, we can
see several obvious regions of long term activity (for ex-
ample, the middle yellow region in the sequence) common
across the algorithms. Comparison with the source video
shows that these regions correspond with general activities
such as walking indoors, walking outdoors, and following
someone. The small regions interspersed within these larger
regions are typically events such as a pedestrian crossing the
path of the camera. In this work we consider such events in-
consequential (though other tasks may desire such events),
therefore our evaluation criteria is that these small regions
should be eliminited while the large, semantically-coherent
regions should be as long and uninterrupted as possible.

The K-means and DPMM algorithms are able to extract

several large regions of similar activity. However, these re-
gions are broken by many small, short-duration interrup-
tions. The 2-layer DPM-OL, H-ddCRP, and RDPM (σ2)
algorithms are better able to smooth over the small interrup-
tions in the large regions. However, in the smaller regions
there are still a number of interruptions. With this dataset
we see the clear benefit of using our RDPM method with
parameter inference. Using the inferred window parameter
(σ2 = 615.8), only the largest regions remain giving the
desired longer, continuous video segments.

To confirm these observations, we identified the major
activities in the video sequence (such as indoor/outdoor
travel and following behind an individual in a crowd) and
compared the output of each algorithm to this ground truth.
The results in Table 3 confirm our observations, specifically
that our proposed algorithm produces longer segments (on
average) and better clustering than competing methods.

6.4. Image Segmentation

In the context of image segmentation, our goal of long,
uninterrupted sequences translates to large, contiguous re-
gions. As shown in Fig. 4 (and Table 4), the results demon-
strate that the three methods do a reasonable job of seg-
mentation. Similar to the video experiment above, both our
own RDPM and DPM-OL produce large segments. Again,
as above, H-ddCRP shows more attention to the details in
the scene and thus an inability to bridge over those details
to create large regions. On the other hand, the windowing
(grid) required by DPM-OL causes the segmentation to be
blocky and thus results in a lower Rand index (segmenta-
tion similarity) value vs. H-ddCRP. Our proposed RDPM
method produces smoother segmentations, with large aver-
age size, fewer interruptions and with a higher Rand index
than competing methods.

The primary issue in the results produced by RDPM is
that it may tend to oversmooth the region boundaries. For
example, the corners of the red regions in the top image
have been rounded off. This is due to a large windowing
function and the fact that the algorithm will tend to seek
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Image Ground Truth RDPM H-ddCRP DPM-OL

Figure 4. Results of image segmentation. From left to right: source image, ground truth segmentation, output of RDPM with inferred σ2,
output of H-ddCRP, and output of 2-layer DPM-OL. (Best viewed in color)

Image Rand Index Avg Region Size
Segmentation Img. 1 Img. 2 Img. 1 Img. 2
2-layer DPM-OL 0.779 0.672 289130 53333
H-ddCRP 0.838 0.696 56497 25263
RDPM, inferred σ2 0.908 0.717 307200 45714

Table 4. Rand index and average region size for various algorithms
on image dataset.

a 50/50 split between categories at border. Thus, the al-
gorithm will adjust borders so that they are as smooth as
possible.

Overall, the proposed RDPM approach has shown im-
proved performance over K-means, DPMM, 2-layer DPM-
OL and H-ddCRP on the various complex datasets evalu-
ated, including video (temporal) and image (spatial) seg-
mentation tasks.

7. Summary
In this paper we have proposed a modification to the

DPMM topic model designed to introduce temporal depen-
dence into the inference process. This is accomplished by
layering two DPMMs, where the input of one is histograms
(weighted by temporal distance) constructed from the ouput
of the other. Results on multiple datasets (video and im-
ages) have shown that the proposed algorithm outperforms
other state-of-the-art algorithms.

This research was supported in part by AFRL under con-
tract No. FA8650-07-D-1220.
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