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Abstract

Videos recorded by wearable egocentric cameras often
suffer from quality degradations that cannot be corrected.
When several wearable video cameras are viewing the same
scene, it is possible to combine their multiple videos into
a single high-quality video. Existing techniques select for
each point in time the video having highest quality, but the
highest quality video may not be relevant. E.g. the best
quality video can come from a person that happens to look
sideways from the main attraction.

We propose the curation of a single video stream from
multiple egocentric videos by requiring that the selected
video will also view the most interesting region in the scene.
Importance of a region is determined by the “wisdom of the
crowd”, i.e. the number of cameras looking at a region. The
resulting video is more interesting and of a higher quality
than any individual video streams can possibly obtain. Sev-
eral examples are presented demonstrating the effectiveness
of this technique.

1. Introduction

The use of wearable egocentric video cameras is increas-
ing, and one day such cameras may be used daily by many
people. A notable aspect of wearable video is that popu-
lar scenes will often be observed simultaneously by multi-
ple video cameras. For example a lecture will be simulta-
neously recorded by many students in the audience. This
means that several similar videos of the lecture will be cre-
ated. The redundancy of videos in popular scenes creates
both a challenge and an opportunity for video curation and
summarization techniques.

A key issue with egocentric video is shakiness and blur,
as human heads perform drastic motions very frequently.
Much work has been done on video stabilization ([8, 12, 6]),
but even state of the art stabilization techniques frequently
fail when applied to egocentric videos. Another key issue
with egocentric video is that humans often perform actions
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that they would not wish to share in the output videos e.g.
staring at their phone or out of the window. The above is-
sues make egocentric videos of events rather poor and users
are unlikely to share their videos without significant cura-
tion.

In both cases mentioned above, information is lost either
by the motion of the camera or by not observing the region
of interest. The most that can be hoped for by single video
techniques is good stabilization and interpolation over the
missing frames.

Current video stream selection techniques deal with
hand-held cameras that are actively directed to point at the
region of interest. Egocentric cameras do not have this lux-
ury as they are always on and mostly do not have viewfind-
ers. A key challenge is to classify which frames do not view
the region of interest and thus should not be shown (e.g.
those containing the user looking at his watch or mobile
phone). Although much work has been done on determin-
ing “interestingness” ([7]), it is far from solved as it requires
good high-level understanding of the scene.

We present a novel method for the curation of high-
quality video from a collection of low-quality egocentric
videos. We assume that the region of interest was observed
by multiple egocentric cameras, each stream being shaky
and occasionally observing uninteresting regions. As men-
tioned above, single video enhancement techniques (stabi-
lization, deblurring, interesting frame detection) will yield
good quality results for each stream only some of the time.
On the other hand our approach is to combine all video
streams so that high-quality results are obtained at all times.

We rely on two properties of egocentric videos:

1. Unintentional motion is uncorrelated between individ-
ual users. The periods of blurry and shaky in videos of
individual users will usually occur at different times.

2. “Wisdom of the crowd” - at any given time most users
look at the region of interest in the scene. This is sim-
ilar to saying that procrastination is uncorrelated be-
tween different users. E.g. different users probably
look at their watch or at the window at different times.
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These properties can be exploited in several ways. The
first property implies that at each time interval some videos
would be more stable and sharper than others. By choos-
ing the best quality stream at each time period we obtain
an output video of the highest possible quality. The second
property implies that by determining which cameras look at
the same region, we can detect the most popular region in
the scene and can therefore reject streams looking at unin-
teresting regions.

The result of our method is a video containing a sequence
of high quality and interesting frames. As transitions be-
tween streams usually create a sharp jump between two ad-
jacent frames, our method also minimizes the number of
transitions between streams. We also prefer to transition
between streams with closely overlapping fields of view to
minimize the discomfort of such transition.

The contributions of our paper are: (1) A measure for
the “intrestingness” of the frames (’popularity’ measure)
which is based solely upon the chromo-temporal similar-
ity between frames. Such information is available in many
common scenarios resulting in a highly robust method. (2)
A method for matching scene region of interest between
frames across streams. Our method uses HMM and Nor-
malized cuts. (3) An objective function based upon qual-
ity, popularity and smoothness requirements for creating a
single high quality video from multiple videos solved by
dynamic programming.

We begin by describing our video quality measures in-
volving stability and sharpness of each frame (Sec. 3.1).
We then describe our method for determining popular and
unpopular frames (Sec. 3.2). In Sec. 3.3 a method for de-
termining the cost of transition between two video streams
based on region overlap is described. Using the above mea-
sures, an optimization problem is formulated for determin-
ing the best set of frames maximizing quality and popularity
scores while minimizing sharp transitions between frames
(Sec. 3.4). Several experiments are shown (Sec. 4) demon-
strating the relevance and effectiveness of our method.

2. Previous Work

2.1. Single Video Enhancement

The most relevant work on video enhancement address
video stabilization and deblurring.

Video stabilization is an established field of research.
Early papers in video stabilization estimated 2D shifts be-
tween the image planes of subsequent frames [13]. More
stable motion is obtained by either fixing or smoothing the
shifts. Later papers [4] attempted to recover the 3D mo-
tion of the camera. By recovering and smoothing the cam-
era motion in 3D, higher quality results can be obtained.
Recent papers [8, 12, 6] assume that accurate recovery of
3D geometry and motion often fails. Instead they advocate

combining 3D constraints with 2D image plane motion to
obtain state of the art stabilization results.

Current stabilization method can perform very well for
many types of videos, but are not robust for egocentric
video. As noted in a recent paper [11], large and fast dis-
placements caused by head motion are difficult to track, giv-
ing generally poor stabilization.

Motion deblurring is also a very active field. Recent pa-
pers include [10, 5]. Blind blur kernel estimation is a slow
process and most formulations are unable to handle image
rotation (but see [19]). In our approach we bypass the need
for image deblurring by selecting a sharp video.

2.2. Stream Selection

Selecting the best surveillance camera out of a set of
camera feeds has attracted much research interest. Most of
the work is concerned with various criteria for determining
the most interesting stream [17]. The static video camera
setting is rather different from the egocentric video scenario
and is therefore not directly applicable.

Some work [16, 15] has been done on combining videos
(Video Mashup) from several mobile cameras. Their work
has concentrated on learning video quality measures from
professional Video Mashups. As the papers deal with hand-
held cameras, all streams are assumed to view the region of
interest. This assumption does not hold for wearable ego-
centric cameras that are always on and mostly do not have
viewfinders. Arev et. al. introduce in an upcoming paper
[1] a method for producing a coherent video of an activ-
ity from multiple feeds of “social cameras”. They use 3D
reconstruction of the scene as well as the 3D poses of the
cameras. This approach can generate good results, but 3D
reconstruction may be very difficult in many cases. Unlike
[1], our approach involves simple descriptors that do not
need 3D reconstruction, and perform robustly in practice.

3. From Multiple Videos to a Single Video
Head mounted egocentric videos are often of poor qual-

ity due to large motions of human heads, causing videos
to be jumpy and blurry. Video stabilization and image de-
blurring algorithms are usually unable to give satisfactory
results for such challenging videos. Our objective in this
work is to use several egocentric videos of the same event
to create a single high-quality video. In Sec. 3.1 3.2 qual-
ity and popularity measures are defined for determining the
desirability of each frame. In Sec. 3.3 dynamic smoothness
costs are defined for transitions between video streams. The
optimal set of frames is found efficiently by a dynamic pro-
gramming method detailed in Sec. 3.4.

3.1. Video Quality Measure

Egocentric videos often contain periods of poor image
quality. Large head motions are very common, resulting in
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very unstable and sometimes blurry videos. For each frame
in the video we calculate its SURF features [2] and track the
feature points in the subsequent frame.

We define the shakiness of each frame t in stream v
as Qv

stab(t), the average square displacement of all feature
points between frame t and frame t+ 1:

Qv
stab(t) =

√
(dxvmean(t))

2 + (dyvmean(t))
2 (1)

Frames with small movements are therefore strongly pre-
ferred to frames with large movements. It is possible to
first stabilize each individual video separately but we have
not found it necessary. The resulting video is good whether
each input video is stabilized or not.

Another significant factor affecting image quality is mo-
tion blur. Under fast motions images can be significantly
degraded. Following [9] we use the peakiness of the gradi-
ent distribution as our blur measure. Specifically we use the
ratio between the 90th percentile and the 99th percentile.
Lower scores indicate more peaked distributions for higher
gradients and therefore sharper images.

Qv
sharp(t) =

percXv
90(t)

percXv
99(t)

+
percY v

90(t)

percY v
99(t)

(2)

Where percXv
m indicates them th percentile of the absolute

gradient in the x direction and the same follows for y. By
choosing frames with low Qsharp(t) scores, sharp frames
are preferred.

3.2. Popular is Interesting

Determining the interesting frames in a single video is
a very challenging task requiring a good degree of scene
understanding. Current methods fall far short of such capa-
bilities. An important contribution of our paper is utilizing
a collection of sequences captured by different users for ac-
curately identifying interesting frames. When sitting in a
lecture for example, users often stare at objects that are not
of primary interest to other users such as their watches or at
their books. Such frames will frequently be of high image
sharpness and stability. For the single video case the im-
portance of such frames is unclear whereas for the multiple
users case they are likely to be considered as uninteresting.

Our approach is to use multiple cameras for determining
the interestingness of each frame by evaluating its “popular-
ity”. Popularity is defined by the number of cameras look-
ing at the same time at the same scene region for a long
enough period of time.

To compute the popularity of frames at some time t, we
must determine how many cameras are looking at the same
region. As the baseline between different observers is of-
ten very wide, we have found that image comparison by
keypoint matching is not always robust, instead we match
frames based on their color histograms.

For each frame F v(t) in video v at time t we com-
pute 256 bin histograms in each of their chromatic com-
ponents (Cb and Cr). We denote the histogram operation as
HCb(), HCr() for the two components. We further define
the Earth Movers Distance (EMD) between two frames as
the sum of the EMD [18, 14], computed separately for each
chromatic component. This is given in Eq. 3:

EMD(A,B) =

EMD(HCb(A), HCb(B))+EMD(HCr(A), HCr(B))
(3)

We model each video stream v to consist of several se-
quences of frames, each containing observations of one of
the K regions of interest in the scene (Rv

k, k = 1 : K). For
example in classrooms or concerts K = 1, as we have a
single area of interest. In a meeting of 3 people K = 2 as
each person can the see the other two participants. There are
also numerous anomalies where the frames do not contain
a region of interest (they might contain images of the win-
dow or other uninteresting regions). Mathematically this is
formulated as a HMM, where the observable variable is the
color histogram of a frame F v(t) and the hidden variable is
the identity of the region of interestRv

k viewed by the frame,
F v
Label(t). The unnormalized log (emission) probability of

a histogram given a region of interest is defined by:

log(P (H(F v(t))|H(Rv
k))) =

−min(EMD(H(F v(t))|H(Rv
k))

σ
, τ) (4)

Where the estimation procedure for the center histogram of
the ROI H(Rv

k) is described below. The mismatch cost be-
tween frame and cluster is capped at τ , modeling frames
in which anomalous regions are viewed for a short period.
σ is the 20

K%th percentile of the distances between cluster
centers and frame histograms, describing the variability in
distances around cluster centers.

Most adjacent frames in a video stream observe the same
region of interest. To encode this in the HMM, we impose
a Potts transition probability CSmooth on switching region
of interest labels between temporally adjacent frames. The
unnormalized log probability of transition between labels
F v
Label(t) and F v

Label(t+ 1) is defined as below:

log(P (F v
Label(t+ 1)|F v

Label(t))) ={
0 ifF v

Label(t) = F v
Label(t+ 1)

−CSmooth otherwise
(5)

As we do not know the ROI centers we need both to
estimate the ROI center histograms H(Rv

k) and infer the
frame labels F v

Label(t). We do this using an EM type proce-
dure. We initialize the ROI center histograms by clustering
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the histograms of each stream v into K centers using K-
Means. We use these values as initial guesses for the color
histograms of the K scene regions of interest in each video
v.

Finding the optimal MAP labeling of frames F v
Label(t)

can be done efficiently using standard methods [3]. The
MAP labeling assigns each frame t in stream v to one of the
ROIs Rv

k. Frames with distance from their assigned clus-
ter centers larger than τ are assigned as anomalous. Us-
ing the new cluster assignment we recompute the ROI cen-
ters, anomalous frames are not used for recalculating cluster
centers. The above procedure (MAP inference and center
re-computation) is repeated until convergence, in practice
it only takes around 3 iterations. The final result is a set
of ROI centre histograms for each stream H(Rv

1..K), and
frame assignment to clusters F v

Label(t).
We proceed to find the identity of ROIs across differ-

ent streams corresponding to the same scene region. As
we do not know for certain which ROIs in different streams
Rv1

i ,Rv2
j correspond to the same scene region, we propose

a measure dmatch(R
v1
i , R

v2
j ) for the likelihood of a match.

The measure has chromatic and temporal overlap compo-
nents. The chromatic component is given by the EMD be-
tween the ROI centers corresponding to similarity of color
content (normalized by the distance between the most sim-
ilar clusters). The temporal overlap component is given by
the ratio of temporal overlap between the times of frame
assigned to the ROIs and the minimal number of frames as-
signed to the ROI. We assume that frames assigned to ROIs
in different cameras corresponding to the same scene re-
gion will be mostly overlapping in time. Formally this can
be written as:

dmatch(R
v1
i , R

v2
j ) =

EMD(Rv1
i , R

v2
j ) + λ · (1−

overlap(Rv1
i , R

v2
j )

minDuration(Rv1
i , R

v2
j ))

(6)

Where λ is a parameter (we use 3). The affinity matrix A is
defined by Av1,v2

i,j = e−dmatch(R
v1
i ,R

v2
j ).

Finding the most likely assignment of ROIs across differ-
ent streams can be cast as a clustering problem. We solve it
using Normalized Cuts with affinity matrix A and K clus-
ters. The optimal assignment induces a set of scene labels
Sk,k = 1..K which can be assigned to each Rv

k. Note that
scene labels are independent of the stream.

Finally we can denote the popularity score for frame
F v(t) as the number of frames at time t sharing the same
label Si.

Cv
pop(t) = #{ṽ|F ṽ

Label(t) = Si} (7)

3.3. Smoothness Measure for Transition Cost

Although choosing the frame of the best quality and
popularity at each time interval results in the best possible
score, it is obvious that switching very frequently will re-
sult in a jumpy video with frequent abrupt transitions. As
we would like to discourage overly frequent transitions, we
associate a certain cost with each transition between streams
(i.e. when frame t + 1 comes from a stream different from
that of frame t). We denote the cost of transitions between
streams v1 and v2 at time t, Cv1,v2

Smooth(t).
Due to spatial proximity, transitions between more

closely overlapping streams are preferred to more detached
streams e.g. streams both showing the lecturer‘s head rather
than one showing his head and the other showing his feet.
Overlap is computed by matching feature descriptors be-
tween frames (we use SURF [2]) and estimating an affine
transformation between them. Although not as robust as
color histograms (thus not used as a popularity measure),
we have elected to use keypoint matching as it is a bet-
ter measure of overlap. Due to geometric and radiometric
differences between streams, not all frames can be reliably
matched. For such cases we default to a constant cost equiv-
alent to an overlap of 0. The overlap is computed as in Eq.8:

Ov1,v2(t) =
F v1(t) ∩ F v2(t)

F v1(t) ∪ F v2(t)
(8)

Where F v1(t) ∩ F v2(t) denotes the intersection between
the areas of frame t of videos v1,v2 and F v1(t) ∪ F v2(t)
corresponds to their conjunction.

We therefore choose the cost of transition between two
streams at time t to be:

Cv1,v2

Smooth(t) = Cs · (2−Ov1,v2(t)) (9)

We use Cs = 100.

3.4. Optimization

In Sec. 3.1 3.2 we have detailed the suggested cost func-
tions for selecting each frame. The cost is dependent on the
quality and popularity of the frame. In sec. 3.3 we have de-
tailed our smoothness cost function minimizing sharp tran-
sitions between video streams based on the overlap between
frames.

The above cost function can be cast as a dynamic pro-
gramming problem. Let Z(t) denote the stream selected as
time t. We define the singleton cost term CPrior(Z(t)) as
in Eq. 10:

CPrior(Z(t)) = Q
Z(t)
stab(t) + α ·QZ(t)

sharp(t)− β · C
Z(t)
pop (t)

(10)
The pairwise cost between subsequent Z(t) values is

given by the smoothness cost as in Eq. 11

CPair(Z(t), Z(t+ 1)) = C
Z(t),Z(t+1)
Smooth (t) (11)
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Figure 2: The effect of our method on the stability of the
sequences. The RMS camera motion of the 3 sequences is
3.44 pixels per frame whereas the RMS camera motion in
our optimized sequence is only 0.25 pixels per frame. This
is an improvement of 13X without the usage of any stabi-
lization algorithm. The x-axis represents the frame number
from the start of the sequence and the y-axis represents the
RMS camera motion, measured by pixels per frame.

The total cost is the sum of all singleton and pairwise
costs as given by Eq. 12:

CTotal(Z(1)..Z(T )) =∑
t

CPrior(Z(t)) + CPair(Z(t), Z(t+ 1)) (12)

The cost function can be optimized exactly by dynamic
programing [3] with complexity O(TV 2), where T is the
number of frames in each stream and V the number of
streams.

The output video is the temporally ordered sequence of
frames, where the frame at time t is selected from stream
Z(t).

4. Experiments
We present several experiments demonstrating the per-

formance of our method in relevant scenarios. All scenario
were taken by 3 synchronized head worn egocentric cam-
eras (GoPro HERO 3 and 3+) The different scenarios were
recorded by different participants. After recording the sce-
narios, the videos were processed by our method detailed
in Sec. 3. Smoother transitions were obtained by imple-
menting a linear-fade effect at the transition between cam-
era streams in the output video.

The scenarios are detailed below:

• Scene A - Lecture - An undergraduate lecture was
recorded by 3 cameras. One of the users alternates be-
tween writing notes and looking at the lecturer. Each
of the videos experiences sharp transitions and peri-
ods of shakiness. The output video is stable, contains

Figure 3: The effect of our method on the popularity of
the sequences. The average fraction of important frames
viewed by the 3 sequences is 0.77 whereas the average frac-
tion of important frames viewed in the output sequence is
0.93. The x-axis represents the number of frames from the
beginning of the sequence and the y-axis represents the av-
erage fraction of important frames included in the sequence.

footage from all 3 cameras and only shows frames of
interest (those containing the lecturer)

• Scene B - Concert - An open air musical concert was
recorded by 3 cameras. Some of the users look at ar-
eas other than the performer and all experience peri-
ods of severe shakiness. The output video is of much
higher quality and only shows frames containing the
performer. Frames from only two cameras were se-
lected as one of the users is a much shakier photogra-
pher than the others.

• Scene C - Seminar - A seminar in a small classroom
was recorded by 3 cameras sitting in the second row of
chairs. The lighting is much darker than in the other
scenarios. The output video is of higher quality than
the component videos and only displays the region of
interest (the speaker).

The complete videos can be seen on
https://www.youtube.com/channel/
UCce6USxoqtBh9-MRRnnlQwg/videos

In Fig. 2 the stability score of each input video frame is
plotted as a function of time for all streams. The stabil-
ity of the output video generated by our method is also
shown on the graph. The root mean squares (RMS)
movement between adjacent frames is used to measure
the stability of the sequence. The average RMS stabil-
ity of the input videos is 3.44 pixels, whereas the RMS
of output video is 0.25 pixels a 13X improvement. It
is readily seen from the graph that the output video is
better than all input videos.

In Fig. 3 the popularity score of each of the input and
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Figure 1: Example result of the Popularity Measure. The left and the right frames were marked by our algorithm as ’popular’
whereas the middle frame was marked as ’unpopular’. The popularity measure quantifies the importance of a frame. Unpop-
ular frames are not included in output sequence and therefore the identification of popular frames is an essential part of our
optimization procedure.

a. b.

Figure 4: The Smoothness Measure. (a) The measure of similarity between the frames at time t for each of the cameras based
upon their overlapped field of view (see text). The similarity is measured between 0 to 1, where 1 indicates identical frames.
Sequence 2 and sequence 3 are very similar. (b) The transition cost between sequence 2 and 3 is less than the transition cost
to sequence 1 and we can see that the optimized sequence indeed exhibits more transitions between these sequences.

output video frames is plotted as a function of time.
Low popularity frames are very rarely selected in the
output video. The average popularity score within the
input videos is 0.77 as opposed to 0.93 in the output
video. The output video frames are more popular than
all component videos. This demonstrates that in rep-
resentative scenarios, our algorithm is able to choose
frames that are both popular and of high quality.

5. Conclusion

We have presented a method for creating a single high
quality video of an event from several variable quality
wearable egocentric videos. This was done by select-
ing at each time instant the highest quality frame which
the crowd deemed interesting. Most current methods
are suitable for mobile phones and consider all frames
to be interesting. As egocentric cameras are always on
we have no guarantee that all frames are interesting. In
fact many parts of each input video contain unwanted

footage such as staring at the window or glancing at
the user‘s mobile phone. By detecting the parts of the
scene that most users looked at at any given time we
were able to find the frames of interest.

We suggested measures for both quality and popular-
ity of each frame, and an overlap based technique for
smoother transitions between shots. The frame selec-
tion problem was formulated as an energy minimiza-
tion problem and efficiently optimized using dynamic
programming. Real-life experiments were presented,
demonstrating the effectiveness of the method in sev-
eral scenarios of interest.

We believe our method will be highly beneficial for
creating high-quality footage in scenes that at the
present time are recorded at sub-par quality or not at
all e.g. small lectures, seminars, amateur concerts and
events.

At the moment our method uses no priors specific to
the event recorded e.g.frames containing no moving
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a. b. c.

Figure 5: The sequences we have used in the experiments.(a) Lecture, (b) Concert, (c) Seminar.

objects are usually of low interest, prefer frames with
the object of interest in the center. It is very likely that
learning such priors from data would improve frame
interestingness further. This is left as a future research
direction.
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