
Fast LBP Face Detection on low-power SIMD architectures

Olexa Bilaniuk, Ehsan Fazl-Ersi, Robert Laganière
University of Ottawa
Ottawa, ON, Canada

obila060|laganier@uottawa.ca

Christina Xu, Daniel Laroche, Craig Moulder
CogniVue Corporation
Gatineau, QC, Canada

cxu|dlaroche|cmoulder@cognivue.com

Abstract—This paper presents an embedded implementation
of a face detection method based on boosted LBP features
for Single Instruction Multiple Data (SIMD) architectures.
The implementation exploits parallelism and data reuse in the
detection algorithm and is integrated into CogniVue’s Gen-1
APEX platform, which uses a SIMD design and is extremely
energy efficient. The proposed embedded face detection system
runs at 5 VGA frames per second, while providing similar
accuracy to the PC version of the LBP face detection algorithm
included in the OpenCV library.

Keywords-face detection; LBP features; SIMD architecture;

I. INTRODUCTION

One of the most fundamental requirements for many
computer vision systems that deal with humans is face
detection, that is, the capability of localizing human faces
in an image or a video stream. In the last decade, face
detection has received significant attention in academia and
industry, mainly due to its wide range of applications, from
surveillance and biometrics to human-computer interaction
and digital photography.

The research on face detection, for the most part, has
been focused on designing new algorithms or improving the
accuracy of the existing methods. Therefore, the majority of
the available face detection methods are software solutions
designed for general purpose computational processors that
are expensive, power demanding, and difficult to integrate
with other devices (e.g., IPTVs and Set-top boxes) and tech-
nologies (e.g., Smart IP Cameras). Given that face detection
is often being used as a primary module in higher level sys-
tems (e.g., face recognition, face verification, face tracking,
etc.), it is crucial to have embedded solutions specifically
optimized to detect faces as fast as possible to leave more
time and resources to the remaining modules involved in
the systems (e.g., face recognition or tracking). While an
embedded face detection solution lowers the hardware and
energy costs significantly, as it requires only a subset of
hardware components (in comparison to general purpose
computer based solutions), it facilitates the integration with
other technologies, such as security cameras, TVs, digital
cameras, etc., to create smart devices.

In this paper, we present an embedded face detection
system based on the widely popular face detection method
of Viola and Jones [1], where a set of simple features are

computed and combined to form a strong classifier for fast
and accurate face detection. While in the original method,
Viola and Jones suggested the use of Haar-like features, in
our implementation we focus on a variant of the algorithm,
which uses features based on the Local Binary Pattern (LBP)
operator [2]. LBP features are very appropriate for embed-
ded systems in that they are both local and fast-to-compute.
Furthermore, since LBP features are more complex and
informative than Haar-like features, often a small number
of them are sufficient to produce a strong classifier for face
detection. As a result, while the classifiers based on LBP
features perform almost as accurately as classifiers based
on Haar-like features, they are often about 10 times more
compact (i.e., with lower number of features) and usually
perform much faster on most hardware platforms (including
ordinary PCs).

Our main contribution in this paper is to propose an
embedded implementation for Single Instruction Multiple
Data (SIMD) architectures that exploits parallelism and data
reuse in this face detection algorithm. The proposed imple-
mentation runs at 5 VGA frames per second on CogniVue’s
CV2201 APEX core, which uses less than 0.5% of the
power that an ordinary CPU uses, and around 6% and
1.5% of the power that a design based on FPGA [3] or
GPU [4] uses, respectively. The CV2201 APEX design is
a first generation version of massively parallel processor
by CogniVue and significant improvements have occurred
since this novel architecture was introduced many years
ago. Gen-1 APEX was initially used primarily for multi-
standard video encoding/decoding applications and then in
recent years more focused on accelerating image and vision
processing based applications.

The remainder of this paper is organized as follows. In the
next section, we review the state-of-the-art embedded face
detection systems. Section 3 briefly describes the Viola and
Jones face detection algorithm based on LBP features. Our
proposed implementation is presented in Section 4, followed
by experiments and results in Section 5. Finally, Section 6
concludes this paper by discussing the method and outlining
some of the potential directions for future work.

616

II. BACKGROUND

The majority of the existing face detection methods use
the sliding window technique, where the image is scanned
with a fixed-size rectangular window. A classifier is applied
to the sub-image defined by the window, and returns the
probability that the window bounds a face. The process can
be repeated on successively scaled and/or rotated copies
of the image so that faces can be detected at any size
and/or orientation. Various methods of this type often differ
on their choice of the classifier. While some approaches
use feature-based techniques, approaches based on neural-
networks (e.g., [5]) and statistical-learning-based techniques
(e.g., [6]) have proven to be more effective.

In a widely influential approach [1], Viola and Jones
suggested boosted cascade of weak classifiers for face
detection, where each weak classifier uses a set of simple
and fast-to-compute features to detect almost all faces while
rejecting a certain portion of non-face image regions. This
method, with some variations [7], has been integrated into
the Open Source Computer Vision Library (OpenCV). The
speed and accuracy of this method has prompted many
researchers in the field of embedded systems to work on
various implementations that facilitate the porting of this
algorithm to embedded systems.

In [8], Theocharides et al. proposed an Application-
Specific Integrated Circuit (ASIC) architecture which par-
allelizes the access to image data to facilitate the porting of
the face detection algorithm. They reported a computational
speed of 52 FPS, but they did not state the size of the image
frames in their experiments. In another approach, Wei et al.
[9] proposed an FPGA architecture that computes the Haar-
like features in parallel to accelerate the implementation. In
their experiments, they achieved a rate of 15 FPS for 120×
120 images. Gao et al. [10] proposed another FPGA design
for the Viola and Jones face detection algorithm, where
the calculation of the features was parallelized for FPGA,
but some necessary pre-processing and post-processing tasks
were assigned to the host. They obtained a rate of 98 FPS for
256×192 image frames. In another approach [11], [12], Cho
et al. proposed a complete design of the algorithm for FPGA,
capable of processing 3 features, and in later versions, 8
features in parallel. They achieved frame rates of 6.5 and 16
VGA (640× 480) frames per second, respectively.

While FPGAs can be very fast, particularly for well-
designed digital signal processing applications, they are very
expensive and often demand relatively high development
time since there is a hardware configuration component
involved as well. Therefore, recent attempts have been
focused on accelerating the face detection algorithm using
GPUs, which are massively parallel and easier to program.
Harvey [13] proposed one of the first implementations of
the Viola and Jones face detection method for GPU by
parallelizing the feature calculation process and speeding up

some of the pre-processing. Their implementation achieved
a rate of 4.3 FPS for 2 NVIDIA GTX 295 GPUs on VGA-
size images. In a more recent work, Hefenbrock et al. [14]
presented another GPU implementation of the face detection
algorithm, obtaining performance comparable to that of
the FPGA implementations in [9]. More specifically, their
implementation performed at about 15 FPS on a desktop
server containing 4 Tesla GPUs.

Even if GPUs are cheaper and easier to program when
compared to FPGA, energy constraints often prevent the
successful employment of GPUs in embedded systems, since
GPUs are much more power demanding than FPGAs. The
implementation we propose in this paper is designed for the
Gen-1 APEX family of processors, an instance of the SIMD
architecture designed by CogniVue, which like GPUs, it is
programmable and highly parallel, but unlike them, it is very
energy efficient and has a very small footprint which makes
it a perfect candidate for embedded vision solutions.

III. FACE DETECTION ALGORITHM

As mentioned earlier in the paper, we use a variant
of the cascade face detection algorithm proposed by Vi-
ola and Jones [1], which uses LBP features rather than
Haar-like features, to produce faster and more compact
classifiers [2]. We base our work on an implementa-
tion of this method and a corresponding trained classi-
fier (i.e., lbpcascade_frontalface.xml) included in
OpenCV.

The LBP cascade algorithm implemented within OpenCV
slides a processing window over an image, evaluating suc-
cessive stages of a cascade (learned by the Gentle AdaBoost
algorithm) by scoring their constituent features. A feature
ft describes a 3 × 3 neighbourhood of rectangular areas,
where each of these areas has size (ft.width× ft.height).
The neighbourhood, which is wholly contained within the
processing window, has size (3× ft.width, 3× ft.height)
and its top-left corner is at an offset (ft.x, ft.y) relative
to the top left corner of the processing window. Figure 1
shows a schematic illustration of a feature, its parameters
and how the integral image can facilitate the calculation of a
feature. The value of each feature is computed by comparing
the integral of the central rectangular area to that of its 8-
connected neighbouring areas. This operation yields an 8-bit
value called a Local Binary Pattern (LBP). This LBP is then
used as an index into Look-Up Tables (LUTs) generated
by the training process to determine whether the feature is
consistent or not with the presence of a face.

A number of features together constitute a stage of the
cascade. Each feature has two weights associated with it, one
positive and one negative. Depending on whether the feature
is consistent or inconsistent with a face, either the positive or
negative weight, respectively, will be added to a sum. This
sum is compared to a threshold specific to each stage; If
the sum is below the threshold, the stage fails, the cascade

617

Figure 1. LBP-Multiscale Block. OpenCV’s implementation uses a
processing window pW with parameters .w = 24 and .h = 24, within
which features ft of size .w x .h at offset (.x, .y) are evaluated.

terminates early, and the processing window advances to
the next position. Oherwise, the next stage in the cascade is
attempted. If all stages fail to reject the candidate window,
it is assumed a face has been detected.

Because LBP is a single-scale classifier, the image for
which to run the detection must be resized to the scales one
is interested in and run the detection for each scale. This
involves the computation of an image pyramid.

To avoid computing the integral of rectangles redundantly,
an integral image is calculated, which dramatically speeds
up the calculation of features.

IV. IMPLEMENTATION FOR SIMD
In this section, we first briefly introduce the Single

Instruction Multiple Data (SIMD) architecture and discuss
the limitations they pose on the implementations. We then
describe our proposed implementation of the cascade LBP
face detection method for SIMD designs.

A. SIMD Architecture

SIMD is a computing paradigm wherein a single instruc-
tion operates on several data points in parallel. SIMD favours
uniformity of access, and therefore, data must usually be laid
out in the “lanes” of a vector, and most SIMD processes
perform independent operations on each lane of the operand
vectors. Cross-lane operations are often limited on SIMD,
usually involving only shuffles and less frequently basic
arithmetic operations.

Element-wise operations on vectors are well suited for
this form of processing: addition, subtraction and scaling of
vectors only require element operations that are completely
independent of every other element operation.

Less well suited are operations that are inherently se-
quential, data-driven, non-uniform or that have random
data motion behaviour. Typical situations displaying this
behaviour are image integration, data-driven shuffles and

Figure 2. A schematic illustration of CogniVue’s Gen-1 APEX core

scatter-gather operations (storing and loading data using
vectors of indices).

In this paper, we use the CV2201 SoC with one Gen-
1 APEX core for our implementation. Figure 2 shows
a schematic illustration of an Gen-1 APEX core. The
CV2201 contains two ARM9-family processors and the
Gen-1 APEX, a SIMD vector processor with 96 CUs (Com-
pute Units). Effectively, this vector processor can operate
on 96 lanes of a vector at once. However, as they are
linked in a ring configuration, these CUs are restricted to
accessing only their 3KB of private storage, as well as those
of their immediate neighbours; More distant neighbours’
storage may also be accessed but at greater cost. This places
a low practical limit on the amount of data that can be
simultaneously loaded into the CUs and constrains further
cross-lane operations to those involving neighbouring lanes.

B. SIMD Considerations for Cascade Algorithms

Even though cascade algorithms are decidedly sequential
in operation and their performance depends on early termi-
nation, there are still several ways in which data can be used
in parallel or reused across feature calculations.

First, we know from Section 3 that the LBP features
computed within the processing window have both an off-
set and a size. But it is not necessary to evaluate two
features of the same size (common width and height) but
different offsets at each point. Rather, we may evaluate
the feature only one, cache it, and when time comes to
evaluate the other, simply look up in the cache at the
correct offset for the already-calculated LBP pattern. Indeed,
while there are 136 features in OpenCVs cascade (i.e.,
lbpcascade_frontalface.xml), there are only 29
distinct feature sizes. As such, only 29 different LBP patterns
must be calculated (one for each feature size, computed
at offset (0, 0)). Then to evaluate a feature at point (x, y)
with offset (∆x,∆y), one can simply look up the pattern at

618

location (x+∆x, y+∆y) in the buffer of LBPs as evaluated
for offset (0, 0).

LBPw×h,∆x,∆y(x, y) = LBPw×h,0,0(x + ∆x, y + ∆y)

Secondly, since SIMD architectures do not lend them-
selves well to divergent code paths, it may be faster to
evaluate several stages of the cascade in batch, suspending
rejection until the end of the stage batch. This allows
for uniformity in processing at the cost of unnecessary
calculations for candidates which have been rejected in the
early stages of the batch.

Figure 3 illustrates the rate at which false candidates
are rejected. The rejection behaviour corresponds to an
exponential decay. As a rule of thumb, every 5 more stages
performed leaves 10× fewer candidates remaining.

0 2 4 6 8 10 12 14 16 18 20
101

102

103

104

105

Stage

C
an

di
da

te
s

le
ft

at
en

d
of

st
ag

e

Remaining candidates at ends of stages (Logarithmic)

Figure 3. Rejection behaviour of the cascade

Viewed as a description of the cost of the cascade, only
the computational effort below the curve is essential; Any
effort above the curve is redundant because it is work done
on candidates that have already been rejected.

A single-threaded CPU implementation like OpenCV’s
stays strictly below the curve, but it must evaluate alone all
of the early stages, where there are hundreds of thousands
of false candidates. This is expensive and slow.

What we propose for SIMD is therefore to stray some-
what above this curve. We perform the first few stages on
the SIMD processor, performing some redundant work in
parallel with useful work, in the expectation that the massive
gain in parallelism will permit the vast majority of “easy”
false candidates to be rejected in parallel faster than the CPU
could have dispatched them. This frees the CPU to run only
the remaining stages of the cascade on the candidates that
could not be rejected by the SIMD processor.

C. Algorithm

In the classic serial LBP implementation in OpenCV, a
feature’s 8-bit LBP is computed on the fly from the integral
image. It is then used as an index into a 28 = 256-bit
LUT, retrieving a single bit: 0 or 1. This bit selects one of
two real-valued weights. Three to ten features are evaluated
per stage, and their weights added and compared to the
stage’s threshold. In general, provided most features passed,
the stage passes; Otherwise an early exit is made and the
processing window is moved.

This implementation suffers from a number of drawbacks
which affect performance, and its design makes it inherently
difficult to fit in a strict SIMD processor. Firstly, the eval-
uation time for a single feature at a single location is in
the tens of cycles. At minimum, an evaluation using this
scheme requires 16 integral image reads, up to 27 integer
arithmetic operations to compute the integral of the nine
blocks and eight comparisons, shifts and logical ORs just
to produce the 8-bit LBP. The LBP is then split into a byte
offset and bit offset using a shift and a logical AND. A
byte read is made using the byte offset as an index into a
LUT. The bit chosen by the bit offset is then used to select
one floating-point value out of two in another table, and this
floating-point value is added to a floating-point sum. The
sum is then compared to the threshold to determine whether
or not to proceed to the next stage.

It is inconceivable that computing the LBP, using the
LBP to look up into the LUT, selecting a floating-point
number and adding it to the running sum could take any
less than a few cycles on any architecture. Many of the steps
involved are strictly dependent upon the preceding ones, and
thus they constitute a long dependency chain. The latencies
involved cannot be masked by pipelined, parallel or out-of-
order execution.

Our implementation introduces several changes to make
the algorithm suitable for SIMD architectures.

• OpenCV uses a processing window of 24 × 24 and
thus has a maximum feature size of 8× 8. All feature
sizes from 1× 1 through, say, 3× 5 through 8× 8 are
permitted, making for 64 valid feature sizes.
We instead trained a cascade with feature sizes of only
1× 1, 2× 2 and 4× 4.

• OpenCV computes its LBPs on-the-fly, immediately
discarding them once the LUT lookup is done. We
on the other hand compute all LBPs before-hand and
cache them. If the cascade requires computing the LBP
of a given size at a given offset, the computed LBP is
fetched from the appropriate buffer at the corresponding
offset.
The purpose for the restriction to only three feature
sizes is that we then only require three buffers to cache
the computed LBPs.

• OpenCV understandably packs its on-the-fly-computed

619

8-bit LBPs to a single byte to use it as an index into a
LUT. But table lookups are difficult to SIMD-vectorize;
Indeed only recently has the x86 architecture adopted
vector gather instructions (in AVX2), and those have
the limitation of being restricted to 32-bit words at their
finest granularity.
We partly sidestep this problem by laying out the LBPs
completely differently in our buffers. We store the LBPs
in large blocks, with the bits of each LBP striped across
it. The size of this block in bytes is equal to the width
of the vector unit in bits.

We now arrive at our key leap. The use of the 8-bit LBP
as an index into a 28-bit LUT is equivalent to an 8-to-1
Boolean function.

Implementing this first level of the cascade as Boolean
functions may appear at first glance to have severe dis-
advantages. For one, we have found empirically that the
Boolean functions take on average 140 AND, OR and NOT
instructions to implement, and so evaluating them has very
high latency.

However, even a single byte stores 8 bits, and modern
processors have general-purpose registers 32 bits or 64 bits
wide. Some even have vector registers that are 128 or
256 bits wide. It is thus possible, even within the simplest
processors, to evaluate in n-way-parallel fashion the Boolean
functions, by striping n 8-bit LBPs across 8 n-bit registers
and applying bitwise operations to them. This uses only
Boolean logical operations, which are the cheapest, fastest
and most widely available instructions in any CPU. Often,
these instructions will have a latency of only one cycle. The
cost of these 140 cheap instructions is amortized across the
8, 32, 64, 128 or 256 bits of the registers in use, yielding
a cost per evaluation much less than 140. Indeed, at 128
bit widths, the cost approaches ≈1 cycle per evaluation per
pixel, much less than the serial implementation can hope to
ever achieve.

This reasoning can be similarly extended to the second
level of the cascade, with even more performance improve-
ment potential. Each feature will have one of two floating-
point weights associated with it, depending on the result of
its evaluation. But since these weights are constants, and so
is the stage threshold, it is possible to precompute all 2n

possible sums and the result of their comparison against the
threshold. This yields a LUT of size 2n bits, which can be
indexed with an n-bit bitvector consisting of the single-bit
outputs of the n underlying features. Again, this reduces to
an n-to-1 Boolean function.

For instance, the first two stages in our cascade involve
only three features each. This would still require two
floating-point additions and one comparison per pixel at
minimum to compute the stage’s result in OpenCV’s im-
plementation. However, the pass and fail weights associated
with these features are such that if any feature passes (That
is, the lookup into its LUT returned a 0), the whole stage

passes. If we arbitrarily decide that the value of a failed
stage is 0 and a passed stage is 1, then what we need to
implement the combining logic for the first and second stage
is merely a 3-input NAND gate. This can be implemented as
two AND instructions and one NOT instruction in software,
which amortized over 128 bits amounts to the stupendously
low cost of less than 1

40 of a cycle per pixel.
Finally, the third level of the cascade can be viewed as

a large gate which requires all stages to have reported 1 in
order to accept the candidate as a face and return 1. The gate
that returns 1 if and only if all its inputs are 1 is simply the
AND gate.

The sum total of these points is seen in Figure 4. As the
cascade progresses, a bitmap of the remaining candidates (in
black) is rapidly eroded to white as the Boolean functions
for each stage are evaluated and false candidates are logic-
ANDed out in the third-level AND-gate.

D. Advantages

The advantages of this new approach are numerous:
• There is no data-dependent or branching code. This

allows for the use of this implementation in very wide,
strict SIMD, deeply-pipelined and/or superscalar pro-
cessors. This approach scales linearly with the number
and depth of the pipelines.

• It is easy to extend this to large vector widths. For large
enough vector widths, the approach is even faster than
serial code in eliminating false candidates in the early
stages, and it scales linearly with the vector width.

• It is trivially and ideally suited for FPGA hardware.
• It recasts the problem of cascade classifiers into the

well-studied electrical engineering problem of minimiz-
ing n → 1 Boolean circuits. We have used MISII to
minimize the software circuit; Little further speedup is
expected from this corner.

• It depends for speed primarily on the still-increasing
vector register widths, rather than on clock speeds,
which have ceased increasing.

Not only is this approach well-suited to embedded systems,
it is also tailor-made for the x86 architecture. Indeed, the
x86 instruction set has several short-vector instructions that
we may leverage to implement Boolean gates. The SSE2
instructions PAND, POR, PXOR and PANDN, available in all
64-bit x86 CPUs, can be used to evaluate Boolean functions
128 bits at a time (the width of an XMM register).

Newer CPUs with AVX2 can instead use the VEX-encoded
versions of those instructions, thus exploiting the full 256-bit
width of the YMM registers.

The x86 architecture is even blessed with floating-point
versions of these instructions (ANDPS, ORPS, XORPS,
ANDNPS). These permit even x86 CPUs without SSE2 but
with SSE, or without AVX2 but with AVX extensions, to
match the performance of their newer peers. For instance,

620

neither Intel’s Sandy Bridge nor Ivy Bridge microarchitec-
ture implements the AVX2 instruction set, unlike the newer
Haswell, but both can make use the floating-point logical
instructions available in AVX.

As though this was not enough, Intel’s roadmap calls for
the introduction in the future of the AVX512 instruction set
extension, with 32 512-bit-wide ZMM registers. This permits
again a doubling in performance. But what’s more, the
AVX512 Foundation instruction extension set includes the
very useful VPTERNLOGD, which allows one to implement
any three-operand Boolean function in a single instruction.
The usefulness of this instruction cannot be overstated.

Aside from the ever-widening vector registers available
to us, we note that Intel CPUs have long been capable of
up-to-3-way out-of-order superscalar execution of register-
register integer and floating-point logical operations. With
latencies of a single cycle and reciprocal throughput of 0.33
cycles per instruction, Intel CPUs can effectively triple their
already-large advantage. This underscores the scalability of
our approach.

V. EXPERIMENTS

In this section, we evaluate and discuss the performance
of our SIMD implementation, in terms of face detection ac-
curacy, image frames processed per second, and power con-
sumption of the designed and developed embedded system.
To verify that the modifications we made to the LBP cascade
face detection algorithm to facilitate its integration into an
embedded system does not result in any drop in the accuracy
of the original algorithm, we ran our implementation against
the CMU face detection databases Test Set A, Test Set B
and Test Set C [15][16] and compared the results to that of
the OpenCV implementation on the same database. Table 1
shows that restricting the available features to only those of
size 1 × 1, 2 × 2 and 4 × 4 does not significantly impact
detection. We obtain marginally more true positives on all
datasets, at the price of marginally more false positives.

Database CMU Test A CMU Test B CMU Test C
Targets 169 157 185
Cascade Ours OCV Ours OCV Ours OCV

TP 121 120 90 87 153 153
FP 8 3 2 0 9 1

Table I
FACE DETECTION PERFORMANCE COMPARISON

Using the system with a collection of VGA image frames,
consisting of different number of faces, we observed that the
system on average performs at 5 FPS. While the calculation
of the LBP features is one of the fastest processes involved in
the proposed face detection implementation (since LBP fea-
tures are computed in parallel through the 96 CUs included
in Gen-1 APEX), the progression through different stages
of the cascade was among the most expensive processes.

As reviewed in Section 2, quite a few embedded systems
have been proposed based on FPGAs and GPUs that perform
faster than our proposed system with rates of up to 16 frames
per second. However, two things distinguish our work from
previous ones: First, the fact that our embedded system
manages to marry two normally incompatible paradigms,
SIMD and cascade classifiers, through a new approach based
on Boolean functions, and second, the fact that the system
(i.e., CogniVue’s Gen-1 APEX) has a Thermal Design Power
(TDP) of only 250 mW. Compared to an FPGA design
based on Virtex-5 LX330, the NVIDIA Tesla C1060 and
C2050 GPUs, and the Geforce GT 220 GPU, our system
consumes about 16 times, 760 times and 232 times less
power, respectively. This makes our proposed system one of
the most energy efficient embedded face detection systems
available today.

VI. CONCLUSIONS

In this paper, we presented an embedded implementa-
tion of a face detection method based on boosted LBP
features. Our proposed implementation exploits parallelism,
data reuse and an entirely new approach to cascade execution
in the face detection algorithm and was integrated into
CogniVue’s Gen-1 APEX platform, an instance of a SIMD
architecture. Our experiments show that while our proposed
embedded system performs sub-real-time, it is much more
energy efficient than the existing embedded solutions based
on FPGAs and GPUs.

REFERENCES

[1] P. Viola and M. Jones, “Robust real-time face detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp.
137–154, 2004. 1, 2

[2] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li, “Learning
multi-scale block local binary patterns for face recognition,”
in International Conference on Biometrics (ICB), 2007, pp.
828–837. 1, 2

[3] “Available online at:,” http://www.xilinx.com/products/
designresources/powercentral/. 1

[4] “Available online at:,” tp://www.nvidia.com/page/products.
html. 1

[5] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” in Computer Vision and Pattern Recognition,
1996. Proceedings CVPR ’96, 1996 IEEE Computer Society
Conference on, Jun 1996, pp. 203–208. 2

[6] S. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum,
“Statistical learning of multi-view face detection,” in Com-
puter Vision ECCV 2002, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2002, vol. 2353, pp.
67–81. 2

[7] R. Lienhart, E. Kuranov, and V. Pisarevsky, “Empirical analy-
sis of detection cascades of boosted classifiers for rapid object
detection,” in In DAGM 25th Pattern Recognition Symposium,
2003, pp. 297–304. 2

621

http://www.xilinx.com/products/designresources/powercentral/
http://www.xilinx.com/products/designresources/powercentral/
tp://www.nvidia.com/page/products.html
tp://www.nvidia.com/page/products.html

[8] T. Theocharides, N. Vijaykrishnan, and M. Irwin, “A parallel
architecture for hardware face detection,” in Emerging VLSI
Technologies and Architectures, 2006. IEEE Computer Soci-
ety Annual Symposium on, vol. 00, March 2006, pp. 2 pp.–.
2

[9] Y. Wei, X. Bing, and C. Chareonsak, “Fpga implementation
of adaboost algorithm for detection of face biometrics,” in
Biomedical Circuits and Systems, 2004 IEEE International
Workshop on, Dec 2004, pp. S1/6–17–20. 2

[10] C. Gao and S.-L. Lu, “Novel fpga based haar classifier
face detection algorithm acceleration,” in Field Programmable
Logic and Applications, 2008. FPL 2008. International Con-
ference on, Sept 2008, pp. 373–378. 2

[11] J. Cho, B. Benson, S. Mirzaei, and R. Kastner, “Parallelized
architecture of multiple classifiers for face detection,” in
Application-specific Systems, Architectures and Processors,
2009. ASAP 2009. 20th IEEE International Conference on,
July 2009, pp. 75–82. 2

[12] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based
face detection system using haar classifiers,” in Proceedings
of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’09. ACM, 2009, pp.
103–112. 2

[13] J. P. Harvey, “Gpu acceleration of object classification algo-
rithms using nvidia cuda,” Master’s thesis Rochester Institute
of Technology, Sept 2009. 2

[14] D. Hefenbrock, J. Oberg, N. Thanh, R. Kastner, and S. Baden,
“Accelerating viola-jones face detection to fpga-level using
gpus,” in Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium
on, May 2010, pp. 11–18. 2

[15] K.-K. Sung and T. Poggio, “Example-based learning for view-
based human face detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 20, no. 1, pp. 39–51,
Jan 1998. 6

[16] “Test images for the face detection task online available:,”
http://vasc.ri.cmu.edu/idb/images/face/frontal images/. 6

Figure 4. Detection Process. Source Image, Mipmap, Candidate Masks
after each Stage. Black = Remaining candidate.

622

http://vasc.ri.cmu.edu/idb/images/face/frontal_images/

