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Abstract— Brain-inspired computer vision (BICV) has evolved
rapidly in recent years and it is now competitive with traditional
CV approaches. However, most of BICV algorithms have been
developed on high power-and-performance platforms (e.g. work-
stations) or special purpose hardware. We propose two different
algorithms for counting people in a classroom, both based
on Convolutional Neural Networks (CNNs), a state-of-art deep
learning model that is inspired on the structure of the human
visual cortex. Furthermore, we provide a standalone parallel C
library that implements CNNs and use it to deploy our algorithms
on the embedded mobile ARM big.LITTLE-based Odroid-XU
platform. Our performance and power measurements show that
neuromorphic vision is feasible on off-the-shelf embedded mobile
platforms, and we show that it can reach very good energy
efficiency for non-time-critical tasks such as people counting.

I. INTRODUCTION

Brain-inspired computer vision (BICV) has attracted much
attention lately as a possible means to overcome the limits
of current algorithmic solutions by taking inspiration from a
proven, energy-efficient vision system: the mammalian brain
[4]. Convolutional neural networks are designed to imitate the
deep, layered structure of the visual cortex and its capability to
link low-level features and derive higher level concepts in each
new layer. In this way, they can often achieve better efficiency
and generality than traditional computer vision techniques,
which usually rely on strictly separated phases of extraction
and classification of image features.

Potential applications for BICV are usually constrained by
cost and power consumption. Fortunately, modern system-on-
chips for the embedded and mobile markets are able to provide
an amount of performance rivaling that of desktop computers
of the previous generation, and even this gap is closing quite
rapidly: deploying heavy neuromorphic algorithms on cheap
embedded chips is now feasible, at least when energy - as
opposed to time - is the main constraint.

In this work, we concentrate on BICV algorithms for
monitoring classroom occupancy to drive the HVAC system of
our faculty building. Counting people is a task that humans can
perform reasonably well (even if with a significant error rate).
For a CV system, though, it raises a number of challenges:
head orientation, distance from camera, color, expression and
hair can differ and the room itself can vary wildly in contrast,
luminosity and hue depending on external factors. An algorithm
that is used to count people must be robust with respect to all

of these sources of noise.
We propose and compare two distinct approaches to oc-

cupancy monitoring, both relying on convolutional neural
networks (CNNs). The main contributions of this work are: (i)
the development of the algorithms (along with the dataset used
to train the CNNs); (ii) their embedding and acceleration on
Odroid-XU, a low-power embedded board based on a state-of-
art mobile SoC platform; (iii) the analysis of their accuracy,
performance, and energy footprint.

The rest of the paper is organized as follows: Section
II describes related works. In Section III we discuss the
mathematical model we used for CNNs and our software
implementation. In Section IV we describe the two algorithms
we developed for classroom occupancy estimation. Finally, in
section V we show accuracy, performance and energy results
for both algorithms.

II. RELATED WORKS

Convolutional neural networks, proposed by Lecun et al.
[18], are a deep learning model that is rooted in Hubel and
Wiesel’s work [16] on the cortex of a cat. Their model of the
visual cortex is composed of simple cells and complex cells,
correspondent to convolutional and pooling layers respectively.
Other important models inspired on the same findings are
the Neocognitron [12] and the HMAX model [25], which
differ from CNNs in that the weights they use are not learned
through supervised backpropagation, but layer by layer (for the
Neocognitron) or by a combination of unsupervised learning
and hardwired weights.

Both convolutional neural networks and HMAX have been
used to solve a variety of real-world computer vision tasks
such as image classification [17][19][21] and scene labeling
[9][10]. Convolutional networks are also being used by Google
[1] and Microsoft [8] to power various tasks such as visual
search algorithms and speech recognition.

Recently, much research has gone into implementing neu-
romorphic algorithms on custom embedded platforms. For
example, Farabet et al. [11] introduce NeuFlow, a FPGA-
based dataflow processor designed explicitly to maximize
performance with convolutional neural network algorithms. The
authors of [2] also propose a multi-FPGA system to efficiently
implement neuromorphic algorithms based on the HMAX
model. Targeting FPGAs requires essentially designing custom
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HW to deploy on expensive chips; by contrast, we focus on
mobile chips that are ∼10x less expensive and programmable
in SW by a much larger community.

There are other models, such as those based on the more
physiologically faithful “spiking” neurons, that are also being
studied. Important academic research lines focusing on com-
putation (as opposed to the simulation of the brain) include
liquid state machines [20] and reservoir computing [23][22]. In
these models, a random recurrent network of spiking neurons is
excited by a stimulus and output is read out from the internal
state of the network through a learned classifier. Although
interesting, these approaches are less mature and are not yet
competitive with traditional CV.

There has also been some research around traditional CV
techniques for people counting. Andriluka et al. [3] and
Breitenstein et al. [7] propose various techniques for pedestrian
detection and tracking, while Hou et al. [14] propose a
technique for occupation estimation in a crowded outdoor
area based on expectation maximization. All these approaches
are ad-hoc and hence not easily retargetable, while BICV
algorithms can be readily adapted to new tasks.

III. CONVOLUTIONAL NETWORK MODEL

Convolutional neural networks [18] (CNNs) are a well known
deep learning model inspired to the structure of the human
visual cortex. The model we use is mainly inspired to recent
advancements in feature extraction from complex scenes [10].
In a CNN, each layer operates on an array of feature maps,
i.e. 2D images that embed some feature of the input of the
network. Each layer takes all or some of the feature maps of the
previous layer and produces a set of feature maps that feed the
next layer. Two main kinds of layers are present: convolutional
layers and pooling layers.

Convolutional layers implement the localized receptive field
of the human cortex: each output feature map is produced
by filtering a set of input feature maps with two-dimensional
convolution kernels (or weights). Pixel yn(i, j) of the n-th
output feature map is given by

yn(i, j) = tanh

(
bn +

∑
m∈CFn

(
Wn,m ∗ xm

)
(i, j)

)
(1)

where ∗ is the 2D convolution, bn is the bias, Wn,m is the
weight, xm is the m-th feature map and CFn is the set of
connected feature maps of the n-th output feature map.

Pooling layers take input feature maps and reduce their
size by mechanisms such as average-pooling or max-pooling:
output pixels are computed as (respectively) the average or the
maximum over a pool of input pixels, such as a 2x2 square.
Using the same representation as in equation (1), the max-
pooling layer performs

yn(i, j) = max
{
xn(i, j); · · · ;xn(i+ P, j + P )

}
(2)

where P + 1 is the pooling factor.
This CNN model can be extended by replicating the action

of all convolutional and pooling layers on multiple scales that

share the same weights to impose scale-invariance. To merge
different scales into a single feature map, we use an average-
merge layer that rescales all of the feature maps to a common
scales and computes their average.

Weights and biases in CNNs can be trained through super-
vised backpropagation. For the purpose of this work, we used
two tools for network learning: the open source EBLearn [24]
tool and a simpler tool (PyConvNet) we developed in Python,
based on the open source Theano [5] library. Both EBLearn
and PyConvNet make use of multi-core and GPU computing to
speed up the learning phase, which is based on the stochastic
gradient descent algorithm [6].

To deploy the trained convolutional neural networks we
developed a portable stand-alone software library written in
C99, CConvNet, targeted for both x86 and embedded (ARM)
targets. To accelerate CNNs, we take advantage of their data
parallelism by using the OpenMP programming model; we also
use the NEON extensions for vectorization on ARM targets.
The CConvNet library is open-source and available from our
website: http://www-micrel.deis.unibo.it/∼conti/cconvnet.

IV. OCCUPANCY ESTIMATION ALGORITHMS

A. People counting by head detection

Figure 1: Head detection CNN.

The first approach we followed can be classified as a template
matching as it verifies the presence or absence of a face at each
possible location in the image by sliding the detection window.
The architecture of the detector shown in Figure 1 is based on
the LeNet-5 proposed by Le Cun at al. [18] where there are
only 2 output neurons and a less deep set of fully connected
layers. The overall approach is similar to what Garcia et al.
proposed in [13].

The input image shot by the camera is converted to
a luminance map and prescaled at 3 different resolutions
(1152x864, 960x720, 800x600). The choice of the resolutions
is dependent on the position of the camera in the room and
was tuned to minimize the number of detections needed to
cover the whole area and depth. The sliding window of the
detector is shifted by half the detector window width and spans
the whole set of scaled images.

The input of the detector is a 32x32 crop of the scaled
image, while the outputs of the network are a boolean value
indicating the presence of a face and the confidence of the
decision, both derived from the values (y0, y1) of the output
neurons. During training, we used a ground-truth output of
(−1, 1) and (1,−1) for the output neurons to indicate faces
and backgrounds, respectively. The final classification is the
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Figure 2: People density estimation CNN.

following: an image is a face if y1 − y0 < 0; the confidence
of the decision is given by 1

2 |y1 − y0|.
The network was trained using the EBLearn [24] software.

The full dataset is based on the LFW [15] dataset with the
addition of 3000 faces cropped from pictures taken by the
cameras installed in the classrooms. The additional images are
needed to increase the robustness of the network to partially
covered and non-frontal faces. To train the network to recognize
the background we created our own dataset, consisting in 17000
32x32 crops from 165 images of empty rooms taken with
different light conditions; in order to reduce training time we
used only a subset of 5000 randomly selected.

In order to improve accuracy, considerable training time
was spent in bootstrapping loops to decrease the rate of false
positives on the background. The bootstrapping loop consisted
of running the detection again on the full images previously
used to create the background dataset. The detection was done
considering a very low confidence threshold of 0.01 to identify
false positives. Each false positive was cropped from the image
and added to the background dataset. The bootstrapping step
stopped when 400 false positives were detected or all the images
in the set had been checked. After extending the background
dataset with all false positives, the procedure was concluded by
running again the training. If necessary, the whole bootstrapping
loop was repeated: in our case, we stopped after 3 iterations
when the total number of false positive over all empty images
decreased below 400.

The training time for a single bootstrap run was of 2.5 hours
on a i7 workstation running at 2.7 Ghz. The total training time
including the first training and the three following bootstraping
loops was 10 hours; the final accuracy we achieved was 97.6%
on 500 randomly selected images of the validation dataset.

Since the detector window slides by half the detector window
width at a time, a single face often results in multiple hits.
After processing all the detection at the different scales, face
candidate boxes are thus mapped back to the input scale and
the bounding boxes are grouped according to the proximity of
their centers, along with their confidence value. If the centers
of two bounding boxes are less than 30 pixels aside, we retain
only the smallest one, with its confidence value set to the sum
of the confidence of each box. Applying a threshold of 3 on

the confidence value of the resulting boxes filters out most of
the false positives detected on body parts other than heads.

B. People counting by density estimation

The second approach we followed to estimate the number of
people in a classroom is based on estimation of people density,
and is inspired by the full-scene parsing algorithm proposed
in [10]. Rather than identifying heads in the image and then
counting them, we trained a convolutional neural network to
classify each pixel as part of a human or not. The output of
the network was then interpreted as the people density in the
surroundings of a pixel, and thus can be used to estimate the
number of people in the image.

The whole image is parsed by a single big convolutional
neural network, which is shown in figure 2. The image is
processed in full RGB color at three scales: 1 (1600x1200),
1/
√
2 (1131x848) and 1/2 (800x600); feature maps from the

various scales are finally unified by an average-merge layer.
The output of the average-merge layer of the CNN is a

192x142 feature map that can be interpreted as the probability
density of human presence in a given region. The value of
each pixel ranges from −1.0 to +1.0. Figure 2 shows an
example density map; “cool” regions indicate a low probability
or density of human presence, while “hot” ones indicate a high
probability. In the example all pixels not reaching a threshold
value of 0.0 have been set to −1.0 (i.e., null people density).

We trained this network on PyConvNet exploiting Theano’s
ability to offload most of the computation on a GPU. For
training, we took advantage of the CNN scale-invariance
property by using 1000 smaller 400x300 images taken by
the camera built by cropping full-size images in a random
position. This shortcut allows us to: 1) train the network at
higher speed (about 80 minutes on a Nvidia Tesla GPU), and 2)
maximize the randomness of the image background, that could
confuse the training procedure. During learning, the output
of the network for each training image was compared with a
ground-truth output, where the pixels in head regions had been
set to +1.0 and all other regions to −1.0; we used the well
known negative log-likelihood cost metric to drive the gradient
descent backpropagation training.

An output linear stage multiplies the 192x142 output map of
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the CNN with a weight matrix to obtain the overall estimation
of classroom occupancy (i.e., a single number). The weight
matrix was obtained by linear regression over a set of 100
images where people had been manually counted. Contrary to
the CNN itself, the output weight matrix is heavily dependent
on proportions and prospective and specific to a single room.

V. RESULTS

A. Accuracy

To test the accuracy of head detection (HD) and density
estimation (DE) we ran them on a large set of images taken
from three classrooms in our faculty; the camera took three
pictures one minute apart every ten minutes in the 8am-8pm
time span (216 images/day). We manually counted the number
of people present in two days in two of these classrooms to
form a ground-truth dataset: Figure 3 presents the results of
the HD and DE algorithms compared with it.

Algorithm Room 1 Room 2
Head detection 6.46 8.55
Density estimation 8.35 8.44

Table I: People counting RMS error

Table I shows root-mean-square error1 for both algorithms
in both rooms. Error sources differ depending on the algorithm.
DE can fail if i) the CNN does not correctly detect head
features, or ii) the output stage does not weigh pixels correctly.
The first case happens mainly in low-light conditions, where
some pixels are wrongly classified as high-density. The second
kind of error is due to transient conditions, such as a head
occupying a higher than usual area in the camera view. For
HD, error rate is highly dependent on the rate of false positives,
though in some conditions (particularly low-light) some heads
can be missed. The overall better performance of HD can be
attributed to the bootstrapping effort to eliminate false positives;
the same procedure could not be replicated for DE, as the CNN
has a full image as output instead of a single boolean value.

1ERMS =
√

1
Nimages

∑
(ypredicted − yreal)2

Room 1, 2013-10-17

Room 2, 2013-12-16

Figure 3: Example of occupancy estimation.

For some applications (for example lighting control), it is
critical to distinguish between empty and non-empty rooms. In
this case HD performs generally better than DE: in the result set
from the first room 12 images are inaccurately identified as non-
empty by HD and 22 by DE over a total of 51 empty images.
Both algorithms inaccurately identify as empty 8 images over
the remaining 165.

Result fluctuation could be attenuated by correlating results
in time domain instead of considering each image apart; this
could considerably improve accuracy, though it would also
impose new constraints on performance (i.e. minimum frame
rate).

B. Performance on Odroid-XU

To evaluate the performance of the algorithms on an
embedded platform, we used an Odroid-XU board featuring
a Samsung Exynos 5410 SoC. The Exynos 5410 contains a
cluster of four low-power ARM A7 cores and one of four high-
performance A15 cores, organized in big.LITTLE configuration
(i.e. working alternatively). The Odroid-XU is able to run both
Linux and Android; we ran our tests on Android to ease future
integration with the camera application generating images,
which is an Android app.

We implemented our algorithms using the CConvNet li-
brary, compiled with GCC 4.6 from the Android NDK,
with the following flags for automatic NEON vectorization:
-ftree-vectorize -mfpu=neon -mfloat-abi=softfp

-march=armv7-a. CConvNet can use OpenMP to parallelize
the inner loops of Equations 1 and 2; alternatively, coarse-
grained parallelism can be extracted by applying multiple
CNNs over an image simultaneously. In the first case, when a
convolutional layer is executed a pool of threads is created using
the #pragma omp parallel clause. The threads compute
multiple rows of the same output feature map in parallel,
without waiting one another (we use a #pragma omp for

nowait clause). An implicit barrier is placed at the end of
the convolution operation. Pooling layers are parallelized by
computing each output feature map in a different thread. In the
second case, we disable internal parallelization and replicate
the CNN data structures to allow for multiple instances of the
CNN to work simultaneously; we use OpenMP to parallelize
the outer loops that span the input image. From the functional
point of view, both algorithms show virtually identical results
on x86 and on the Odroid-XU board.

Figure 4 shows execution time and energy consumption for
the execution of both algorithms on a single image, while
scaling the number of OpenMP threads from 1 to 4 with the
OMP_NUM_THREADS environment variable. Execution time is
divided in time spent in convolutional layers, in pooling layers
and in other parts of the program (e.g. image loading and output
stages). Head detection (Figure 4a) and density estimation
(Figure 4b) show different properties, mainly related to the
sizes of the input window and of the CNN used. Sequential
HD is ∼50% faster than DE: this effect is due to the fact that
HD uses a much simpler CNN and, even if the CNN has to
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Figure 4: Energy and execution time per image vs frequency.

PowerVoltage

Figure 5: Power and voltage measured while running the density estimation CNN with 4 threads, sweeping maximum frequency
from 300 MHz to 1600 MHz in 100 MHz steps.

operate many times on each image, the total computational
burden is simply smaller than that of DE. The small size of
the input window (32x32) limits the amount of fine-grained
data parallelism that can be extracted from HD. In fact, with
4 threads the thread creation overhead in HD would be greater
than the potential gain from fine-grained parallelism. HD was
therefore parallelized using coarse-grained parallelism, i.e. with
each thread applying the CNN to a different window. By
contrast, DE’s much larger CNN works on whole pictures and
can largely exploit fine-grained data parallelism.

Figure 4 also shows the total energy consumption for both
the A15 and the A7 clusters, measured through the Odroid-XU
onboard sensors. Using the ondemand governor of the Linux
kernel, the A7 cluster is used until the maximum frequency
is set to 600 MHz, while the A15 is used from 700 MHz
onward. It is very interesting to note that for our task the
performance gain when we pass from sequential to parallel
execution also leads to improved energy efficiency, while the
gain due to higher clock frequencies always results in a greater

energy footprint. Moreover, it is clear that powering up the
A15 cluster is worth it only if there is a performance constraint,
which is not our case (one picture per minute is the highest
rate). At the most efficient point (4 threads, 300 MHz), HD
consumes 3.97 J/image, and DE 4.76 J/image. The battery of a
smartphone such as a Samsung Galaxy S4 can hold more than
9.8 Wh (35 kJ), which means that (neglecting idle power) up
to 8750 images could be processed before needing a recharge
(∼40 days at the same rate of 216 images/day used in Section
V-A).

Figure 5 shows voltage and power readings for the DE case
(HD ones are qualitatively similar). The voltage plot shows
voltage scaling applied to different clusters when changing
the operating frequency. We can see the much finer voltage
control that is done on the A15 domain with respect to the
A7 domain and the direct impact it has on power. The voltage
spikes we see aligned with the maximum activity are due to the
attempt by the external SMPS to compensate for the increase
of current consumption and the resulting IR drop at transistor
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level. Power consumption has a discontinuity around 700 MHz
where the A15 cluster turns on; this discontinuity is caused not
only by a higher consumption of the A15 cluster but also by
the higher static power of the A7 when idle. The main reason
is that the A7 cluster never enters a deep sleep state while the
A15 does. The performance speedup of the A15 over the A7
does not match the power increase; this is the cause of the
rapid decrease of energy efficiency seen in Figure 4 between
600 and 700 MHz.

VI. CONCLUSION

We have demonstrated two implementations of neuromorphic
algorithms for classroom occupancy estimation on a standard
off-the-shelf embedded SoC. The two techniques presented
show that BICV methods such as convolutional neural net-
works can attain very good results in complex tasks2, and
have therefore great potential in a variety of embedded CV
applications such as automotive and biomedical.

We also show that it is possible to achieve these results on
off-the-shelf hardware with good energy efficiency, spending
as few as 3.97 J/image. To further lower power consumption
in neuromorphic applications and meet the needs of more
constrained applications, we believe a new generation of
highly optimized brain-inspired computing architectures will
be needed.
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