This CVPR2014 Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Frame Rate Fusion and Upsampling of EO/LIDAR Data for Multiple Platforms

T. Nathan Mundhenk, Kyungnam Kim, Yuri Owechko
HRL Laboratories LLC

Malibu, California
t nmundhenk@r !l . com

real time refers to the speed of the Velodyne 6diisar
that completes 10 360° sweeps per second. Thuk) at
frames per second, image data is fetched from the 2
sensor and is painted onto the LIDAR data thatvebti
has no color. This painted point cloud is then [iiedd

and the new colored backfilled point cloud is renedeand
that also leverages the images features to weigiw h displayed for the user. '_I'he device also displays diutput .
point clouds are filled. Multithreaded programingndh and can save streaming data at 10 fp_s. For prhctica
GP-GPU methods allow us to obtain 10 fps with a purposes, we will r_efer to our demonstration systesma
Velodyne 64E LIDAR completely fused in 360° using aPanDAR (Panoramic EO / LIDAR).

Ladybug panoramic camera. The method also genesaliz
to other kinds of point clouds such as those olethihy
aerial vehiclesThe primary advantage of our approach is
it combines 360° fusion with upsampling in real éim

Abstract

We propose a method for fusing a LIDAR point cltmud
camera data in real time, which will also backfilie
myriad of data holes LIDAR creates. This is dona imay

Our approach can be contrasted with prior art i th
following ways. First, many prior works only dealthv
one or a few standard cameras fused to a BEDAR

without mode smoothing.

1. Introduction
This is a method which will take in a stream ofnfi&

scan and do not cover the full 368%h a camera [1].
Many methods use basic interpolation to try arlbéick a
point cloud [2]. Our method of backfilling attempts be
very careful in how it creates an interpolativeceff Some
prior works do fusion of full 360°%image to LIDAR but

data from a 2D camera such as a standard video oprobably do not run at frame rate [3-3}Iso, many

panoramic camera, and it will fuse that data ir-tieae to

a point cloud frame provided by a 3D metric sersarh
as a LIDAR (see figure 1). The colored 3D pointuclp
which is created by fusion, is denser than the imaig
LIDAR point cloud. This is because we project pixel
from the 2D video source back into the point cloodill

in empty regions. Figure 2 shows an example.

methods do not try to leverage camera data to Wélp
filling but work primarily on local point cloud gdient
data [6]. Compared with [7], this method puts engihan
finding a small set of exemplar support points owéich
the most complex statistics are performed. Thisval
expensive point cloud gradients to be computed tver
entire image area quickly without mode generalimathat
can aggressively smooth out surfaces. Each imag igi

Fusion is completed and rendered in real time. Here essentially treated independently as it is backegted to

Figure 1: The left pane shows the PanDdd®nonstrator senst
with the red Ladybug sensor mounted over the si{&bdyne
64E LIDAR. A custom aluminum scaffold connects tiweo
sensors. The right pane shows the graphical imerfaitr
displays of the 3D model in the top, help menus treddeth
map at the bottom.

748

the depth map. Ideally, this should help presesxéute.

2. The Fusion Process Overview

The fusion process produces several outputs. The fi
one is thepainted point cloud. This is the image data
projected out into the point cloud. The fusion eg also
returns a depth map which overlays the distancen fro
camera to points in the image. This is interpretedd a
type of image and the fusion process will creatnlr
representation of the depth map and overlay thgiraii
image (see figures 1 and 4).

The fusion process is also responsible for baakdjlthe
point cloud. It does this by projecting image psx&ito the

Figure 2: The figure shows a room rendered at freae with our methodThe left image is the raw point cloud (enhancedhtke
points easier to see). The middle image is thedfpsént cloud and the right image is the backfilkett! fused cloudlhe user can togc
through different modes in the interface to shoe ghainunfused point cloud, the fused and painted, butledfcloud or the fused a
filled cloud. This is rendered and updated to ttreen in real time and can be manipulated to shiferent views using a mouse.

point cloud where points do not exist. Thus, it wmabs
new points from the existing point cloud and inpuage.

It attempts to determine where projected pointdaict
belong since some holes in a point cloud belongethe
This is done in part by restricting backfilled wowd sizes,
selecting reasonable support points and checkirgg th
sanity of obtained gradients.

The fusion process attains frame rate speed thrthegh
usage of a variety of methods of parallel processiiese
include the usage of SSE intrinsics, parallel tdirg and
GPU processing. The style of parallel processingdus
depends on what is most prudent for the given compb
of the fusion process. To reduce the wait time ashe
frame arrives, the fusion process creates and aiamt
threaded service pools that are responsible fdereifit
computations. For instance, if we have eight coingut
cores on a machine, the fusion process will creaat
point cloud painting thread threads. When a newntpoi

2.1. Calibration Notes

The cameras are calibrated with LIDAR in different
ways depending on the camera model. If we have a
standard EO camera, then we use EPnP [8] to darive
4 perspective transformation matrix. For the Ladybu
camera, we use their provided panoramic image. fidss
the shortcoming of inaccurate seams that are ateate
where each camera image overlaps. However, the
Ladybug driver can provide this image very quicl®p, it
is convenient to use. Each pixel in the panoramage
corresponds linearly to the azimuth and elevatiomfthe
camera to the location in space. For example, pixel
image column 0O all project to 0° azimuth from tlaenera.

If the image has 2048 columns, then all pixelsafumn
1024 are at azimuth 180°. Rows of the image are als
similarly linear. It is convenient to solve project by
triangulation because of this. Given the azimulbyation
from the Ladybug camera to a LIDAR point in space

cloud needs to be painted, the process manager wil(f. @), the center image pixel&,,c,) and pixels per

transfer the bare point cloud and image data tovidaéing
threads.

The fusion process can be thought of as being

comprised of a set of major steps (seen in figire 3

(1) Depth Map Projection — In this step, the point didsi
projected onto the camera.

Depth Normalization — This is a step that normalize
the distances of point cloud points to the camera.
Backfilling — Given the point cloud and how it is

@)
©)

projected into the camera, this creates a much more

dense new point cloud.

Point Cloud Painting — This is the inverse of the
Depth Map Projection step. Here we project point
clouds that we had prior projected into the imagekb
out into a new point cloud.

(4)

749

degree(4,,4,) we get the coordinates from a LIDAR

-
N Depth Map |
Projection
,
_______ Normalize P
| Depth Map
[
Normalized Depth Map

Painted/Filled Point Cloud

Figure 3:This is a block diagram for the general fusion pss
The details for each of the blue boxes can be seéme blocl
diagrams located in their sections. Flow of datahiewn witt
dashed lines and flow of instructions skown with a soli
arrow.

.

Figure 4: The image showtlse depth map superimposed ove
input image sectionfrom the Ladybug camera. The col
correspond to the distance from the camera tipoint.

point to the panoramic image as:
(1) u = cols — floor(c, +6.-1,)
(2) v =rows — floor(c, + ¢, * 1)

2.2. Depth Map Projection

The value ofstart is the index for the first point P we
will operate on whileendis the index of the last point we
will operate on. That means the thread will operaie
end — start number of points. The valu@l is the thread
id (the subscripted value ¢f. As an example, if we have
12 threads, tid will be an integer between 0 and 11

For each point in a thread, we will now transldiatt
point into camera coordinates, create a depth nfiaheo
distance to the point and handle the odd situatibere
points may overlap in camera coordinates. This itaesh
can happen because the LIDAR and camera are not
exactly aligned, so they have a slightly different
perspective. Points in the LIDAR may occlude one
another from the perspective of the camera. Soeeel o
have some way of dealing with these occlusions when
they are encountered.

2.3. Computing the Depth Map

Next we compute the depth map. This yields the
distance of a point in the point cloud mapped ® pixel
locationu,v. The depth map will be used in back filling
and later to project the filled/painted depth mate ia new

Depth map projection takes in the point cloud and painted point cloud.

projects it into the 2D image. The camera modéekigble

and allows for many different types of images and

Let §,, be the distance from the camera to the point

cameras to be used. The implementation is made morenapped to pixeli,v. More than one point might map to the
efficient through parallelization of workload using same pixel. We will handle that one later. For nove,

multiple work threads. GiveiN input points in a point
cloud and M threads, each thread will

few more or less than the other threadsNifdoes not
evenly divide byM.

The depth projection process will first check te #eit
has any work. If there are no elements in the pcliotd
that are ready, it will simply return. Otherwise, will
translate each point in the point cloud to the tnmage.
Given M threaddt,, t, ...t,,} andN points{P;, P, ... P}
each point contains a Euclidian coordinate in xgpace
{x4,¥4.2,} € P, for any pointy. Points can contain other
properties as well, but for now we are just intexdsn the
coordinates. We want to find the location in an geat
some pixel locatiom,vwhereF, projects to. Depending on

the type of camera model we have, we will do this

differently.

A thread will take a slice of work based on tharfata:

tid
3) start = N - v
(4) end =N - ti(:rl -1

750

compute this depending on the camera model. For a

process standard camera, we compute:
approximatelyN /M points. Some threads may process a

(5) Ouy = vV x¢+yt+z¢

We know theu,v for this pixel already because we just
computed it using projection transformation. Weoakske
a copy of thex.,y.,z., which we got from computing
andv. We now need to handle the case in which more than
one point maps to a pixel. We do this by taking the
minimum value. This is the point closest to the eean

8w

_ if 8!, < 8y
©) bun = {5

otherwise

2.4. Depth Normalization

Given the depth map, normalize the values to range
from 0 to 1. Also, store the normalizing value battwe
can denormalize the depth map at a later point. The
essential reason for doing this is that is makesntath
easier to deal with. The general form of normaimatve
use is:

Suv —8min
(7 18yl = ——

Smax—8min

This forces the value to range from 0 to 1. Typicalve
will set the parameters,,,, and 6,,, manually rather
than computing the max and min values. This hetps t
reduce potential outliers (see figure 4).

By setting max and/or min manually, we will therede

to clamp values so that the new normalized depth ma

ranges frome to 1. Heres is the smallest positive floating
point number representable on
FLT_EPSILON). We sett as the minimum distance
because we will reserve 0 for locations that needé
filled. We use the following rule for clamping vals

Lif |6yl > 1
®) 18l = {g o = &
Notice that we sel|§,,|| to O if the value is less than
Additionally, we set all locations in the normalizdepth
map to O if no value was ever projected to it. Tisatall
pixel locations in|d,,,|| are set to 0 if no point cloud point
ever mapped to it when we computed the depth mhis. T
will be used during backfilling and point cloud pting to
determine which image locations to skip. Additidpal
this allows us to unset values in the depth mapeédded;

r

P e

/T

/ | /'ﬂ ya—ay

—_/ ~_/ —
® e e
/ A i
/

Figure 5:(1) The LIDAR point cloud and camera image
fused. We then scan over the image with windowseédat
window we will try to backfill (deduce) a point & center. W
can see the window in (2). Here we first try to makire we d
not fill in a real hée by making sure there is at least one [
projecting into each quadrant of the window. This
computationallycheap, so we do it first. (3) We select sug
points from the set of points that project into thimdow by
selecting points which are clest to the camera but which
also most typical. (4) We select the top N pointsif the metri
we created in 3 by taking the best point in eacdgant and ar
extra points after that which measure highly. (% Wéw haven
points with at least one piin each quadrant. (6) We us
linear model to predict the missing point. The riaduced poii
is shown in red. If its depth is not too differehtin the neare
point in the support set, then it is placed badb ithe setof
LIDAR points (backfilled).

the machine (i.e.

as we just did when we clamped the values.

3. Backfilling

At this point, we have our initial depth image. i
the trimmed set of LIDAR points placed into an iredaat
corresponds to the camera image. We will now imtiate
over the depth image with a sliding window in a man
very similar to convolution. The window is sizéd* x
WY . Note thatW* = W?Y. We will start with the smallest
window W* =5 and scan the entire depth map and fill in
the values where we can, then we increase the windo
size by 2 s.tW* = 7. We will then scan the entire depth
image again. We will do this fog scales until we have
reached a maximum size. We will then iteratémes,
scanning the image from smallest to largest in dhme
way. Each iteration will backfill more points. Eatdtal
window will make a determination of which pointsuee
to try to backfill. This is a critical componentrfeeducing
error and keeping the linear approximation run tsaee.
The steps for this process can be seen in figure 5.

Step 1: Scan the image with windows of increasing size.
This helps to try to fill holes using more proxingints
first and then expand the area if that fails. W# try to
interpolate between points that are nearest inrcléry

to preserve finer details. In addition, by limitinde
window size, we limit the size of the hole we c#hin.
This is one component which helps to prevent usnfro
accidentally filing in data where there are in tfac
supposed to be holes (e.g. between railings).

Notice that as we add points from backfilling, waenc
use them in the next iteration to compute new goinhhis
Function Baclfill Window Scanning
For (7= 0: < max_iteration: r=7+1) {
For (s=2:5 < max_scales; s=s+1) {
Wx=2-(s+1)—-1

wY =w=*
For (/=0:/< camera_pixels: /=7+1) {
If(d) ==0){

d}’ = Backfill_Location(l, q;, W*,W?Y)
If(d?>1ord? <0) ¢
d? =0

3
3
Else §
dy =dyp
h
3
For (/=0:/< camera_pixels: /=/+1) {
dy =dy
3

allows us to span some larger gaps by filling thenflso
notice that we check to make sure new depth pargs
within the normalized space. This is an easy wayetorid
of possible outlier error points.

The functionBackfill_Locationwill scan over points in
the window sizedV* x W?Yat the locatior. It will apply
the support point selection process and executeaiin
approximation to estimate the missing point loaatio
These steps help to reduce errors such as passgkhro
(figure 6) and noise replication/amplification. The
function Backfill_Location goes through the following
steps:

Step 2: Are there enough points within the window to
make a linear fit and is there one point in eacidgant?

If not, return. Support points help to make suredeenot
build a shelf of points out from a ledge. A holegnbe
surrounded on all sides in order to be filled.

Step 3: Compute goodness for each point in the window.

This is derived as a combination of the distancéhef
point from the camera and its similarity to otheirs in
the window. Lein be the number of points that project into
this window. We will want to find a goodness forcha
point i of the n points. The first element of goodness is
similarity. So, we define feature responggso F,, given
m number of features. Eadh is a measure of a feature
such as pixel image location, color, intensity €tte
feature dissimilarity of point at to all other points gtin
the window s.ti # j and pointsi andj project into the
window we write as:

No Support Point
Selection

With Support Point Selection

2 2
_ Z;'l:1\/(F1,i_F1,j) +“'+(Fm,i_Fm.j)

n

9) M;
As the point at becomes more like all other point
approaches 0. So, if this number is high, it mahatthis
point is very different from the other points irethvindow.

For speed, our implementation only uses RGB color
values and the location of the point as features. (i
{r,g,b,x,y). However, other features could also be used.
By inputting location as a feature, this will tetal favor
points that are proximal to each other.

Next, we take the distance measure of poimbm the
camera as:

(10)

Here,y is a normalizing constant to make the distance
from camera metric range similar to features. Haavgeif
both feature and distances are normalized betweamndO

1, this can be set tgm. The idea here is to favor points
closer to the device. This rule is most usefuhire is a
preponderance of similar looking points at veryfediént
distances.

The goodness score for the pointi ab the window is
then:

(11) G, = MZ+ A2

Now we can do the next steps:

Step 4: Sort points in the window by their sco®& take

Figure 6: On the left we can see an area of thetogonot filled correctly when we do not selecppart pointsbut instead use all t
points in the window. The points estimated in ttase are placed half way between the roof anddke ledge. This is basse the roc
occludes the base ledge in that area of the caviesa Support point selection preventsfimn using points in the wall behind the r
and gives a more correct output. As an additiong rthe trees appear to retain their texture, vtiaesirable.

Number of Points In New Filled Cloud (12) d? = wo + U Wy + ;- w,

Iterations

[s 2 e We can solve this since we know theandv from the

I 2504k 2700k 2754k support points as well as their distamceThis is done by
o A 2676k 2930k 3051k solving a standard over determined matrix in lsasiares
o [2713k 2998k 3161k for the weights:
[
c
% Time Taken To Complete in Seconds 1w v a0
= N U N T (13) weee o[=

R 2287 6.118 9.131 1 u, vllo; d°

n

N 622 9.860 15.819

S 12103 20126 34.907 Note that it is easier to solve this by using image
Note: Raw Cloud Has 791k Points coordinates relative to the center of the curremdaw
coordinate.

Figure 8 The top table shows the number of points in the

back filled point cloud given an initial set of 7000 points. Th . a0 i
bottom table shows the amount of time it took togess fusio Step 6: Check thatd is in bounds. If not, set/to 0 and

and backfilling on the data. From the data, it appehat two return. Otherwise returdy.
iterations and a kernel frorBx9 to 17x17 is optimal for tl

number of points filled and time taken. We want to make sure that the new estimated psint i
)) not too far from the nearest point in our windowsant
the lowest scoring (toN) points per quadrant set. This prevents points from draping across regtbey

should not. For instance, it prevents the top eésrfrom

$orting is done using a static memory non-recurrent connecting to the ground in an overhead view. We
quick sort that can run on GPU [9]. In our methad, compute it as:

select the point with highest density in each qaadrThis

guarantees that we have one point in each quadrint _ _ wi
exists. We add points using these steps: (14) Omaxa = Onearest (1 ta T)
(1) Find the highest density point in quadrant 1, agid t (15) Sing = 5nearest/(1 + a-%)

support point list.
(2) Find the highest density point in quadrant 2, agld t Here §,,.4,.s; iS the distance to the point closest to the
support point list. camera within the kernel window boundaries. This is

(3) Find the highest density point in quadrant 3, apid t drawn from all the points in the kernel region, peit the
support point list. support pointsw,, is the width of the kernel. Generally,

: : : L this is in pixels.a is an adjustable parameter we set
(4) Find the h_|ghgst density point in quadrant 4, auld t constant in our implementation. The higher this harnis,
support ppmt list.) _ the further away points can be from the nearesttpén
(5) If we desire to add more than 4 points, add N-4180i practice it appears that this number can be hamedtand
not already added with the highest density then left alone. Thus, there appears to be a goud f
setting for many sensors.
We now have our final set of support points. Weehavo
last steps before returning a new filled point. ’
T

Raw Image Fused Point Cloud Fused + Backfilled
vz 4 5. ;e

Step 5: Linear approximaté; from support points] ‘.;“J':'-'r]
[%

This is done using any number of linear solverskfor = - -
number of values where the matrix is over deterthine

The currfa_nt implementation . usessingular yalue building from the CSUAV data set of Columbus Olfgam

decor_nposmor(SVD) to so_lve a “_near system. Since W(_a building seen in figure 6)The middle image shows the im:

only input 5 support points, this keeps SVD sane iNfygq to the raw point cloud. The image on the rigtaves thi

computation time. image fused in a backfilled point cloud. The colorghe fuse

only point cloud are correct, but it can be hardmeke ot

What we want is the distance to some poigtven its features given its sparseness. The back filled dclisu mucl
locationu, V. easier to interpret and appears to be generalhecor

Figure 7:The left most figure shows the image of a top

753

Panoramic View
of Scene

Unfilled Cloud

Filled Cloud

Comparative Distance Between Points (in cm)

Figure 9: This is a single frame from the PanDARic& The top frame shaathe panoramic image input. The unfilled cloudresate
by fusing the image to the raw point cloud. Nexit is the backfilled point cloud. The lower lefbage shows the originpbint cloud i
white and the new filled in points in red. In tiistance, 138,907 new points are created which up santbéecloud by just over 3.!
78% of these new points are less than 6.25 cm thenoriginal point. 3D Images in this figure weemdered wittCloudCompare

The goodness rule is applied very simply. If thevne

distance we derived is not within bounds, we wéll & to
0 and return:
(16) (2;7 — 0 i.f Cz\? > (Smaxd
0ifdf < Spmina
The backfilled point cloud is returned from norraati

distances by inverting equation (7) and denormaizhe
distance.

754

Backfilling is essentially a convolutional like
computation. This makes it trivial to port it to &PU
processing whereby each pixel that is projected lirato
the point cloud can be computed independently malfe.
Depending on the GPU used, this gives it an
approximately 5x speed up over conventional CPU
processing and allows frame rate computation.

currently since we can increase the size of keriéfgire
9 shows an example of a fused and backfilled pdintd
rendered at 10 fps on the PanDAR demonstrator. Midich
the noise in the PanDAR image that can be seendsd
the usage of a first generation Velodyne 64E. Thiseen

4. Experimental Results

4.1. Backfilling Standard Camera M odd and
Aerial Data

Depending on the size of kernels used and the numbeas jagged edges on what are in actuality smoofhcas.

of iterations, more points are filled in a giverese, but
will also take more time. In general, the minimuet ap
will return about three times more points than wieréhe
original cloud. For aerial data experiments, we tlse
public Columbus Surrogate Unmanned Aerial Vehicle

5. Conclusion

At frame rate, we can fuse EO from a 360° Ladybug
sensor to a Velodyne 64E LIDAR sensor as well as

(CSUAV) data set [10]. Figure 7 shows a breakdon o backfill the point cloud to increase detail. Thensafusion

the amount of time taken to fill in the point clouthis is
the cloud seen at close up on a single buildingrég. In
general, there is a diminishing return with the bemof
iterations for filling. For CSUAV data, and quatiteely
for PanDAR data, two iterations seem sufficient.

approach can be used on other types of cameras by
defining a different
backfilled locations look free of error and textuse at
least partially preserved.

camera model. Qualitatively,

References

With kernel size selection, there is an upper $ae
filling in a reasonable working LIDAR scan that Wil
nonetheless ignore large data holes. So for exarnfle
LIDAR scan beam can be observed spaced every 4spixe
when projected into the image, then a kernel of Siawill
sufficiently fill in the gaps between the returifsone has
an area with specular surfaces, the observed gayebe
the beams can be very large. It will take a muchea
kernel to fill in the missed returns from mirrorethdows
or fountains. With the CSUAV data, a kernel sizeahf
9x9 to 17x17 seems enough to fill in general gagisiben
the LIDAR scans. Much larger kernels can be used, b [4]
kernel sizes larger than 51x51 pixels begin to show
noticeable artifacts. As such, the method cannatdeel in
its current form to fill in very large holes in théDAR
scan. Areas that are occluded from the camereaeipdmt
cloud are not filled in. This is because we arejquiing
pixel data from the camera back into the point dlou

(1]

(2]

(3]

(5]

Since the PanDAR fusion/backfilling and the UAV [6]
fusion/backfilling use the same process, some @& th
lessons can be applied from one to the other. Herydhe
PanDAR system processes point clouds much faseetadu
the fact that the PanDAR point cloud has fewer fsoamd
the operable region of interest is very constraimethe
Ladybug image.

[7]
(8]
4.2. Panoramic Camera Mode Results

The current implementation runs on a Dell Preaisio g
T7600 Workstation with a GeForce 690 GTX GPU, 64 Gb
RAM and two six core 2.0 GHz Xeon E5 processors. To
get frame rate performance out of the fusion preedsen
running the PanDAR demonstrator, we limit the maxim
kernel size to 7x7. As processors increase in ieffay
and/or the code is improved, we should be abladehase
this number and get more filing than we are gettin

G. Zhao, X. Xiao, and J. Yuan, "Fusion of Vejoeé and
camera data for scene parsing " presented at thle 15
International Conference on Information Fusion
(FUSION), 2012

J. R. Arrowsmith, C. Crosby, and J. Conner.0@0Notes

on Lidar interpolation Available:

http://lidar.asu.edu/KnowledgeBase/Notes on_Lidderp

olation.pdf

R. Wang, F. Ferrie, and J. Macfarlane, "Autoimat

Registration of Mobile LIDAR and Spherical Panoraiia
presented at the CVPR Workshop on Point Cloud
Processing in Computer Vision, 2012.

F. M. Mirzaei, D. G. Kottas, and S. |. Roumeéi# "3D
Lidar-Camera Intrinsic and Extrinsic Calibration:
Observability Analysis and Analytical Least Squdabased
Initialization," International Journal of Robotics Research,
vol. In-Press, 2012.

R. Wang, J. Bach, J. Macfarlane, and F. Ferihe New
Upsampling Method for Mobile LIDAR Data," itEEE
Workshop on Applications of Computer Vision (WACV)
2012.

H. Badino, D. Huber, Y. Park, and T. Kanadeastand
Accurate Computation of Surface Normals from Range
Images," presented at the 2011 IEEE International
Conference on Robotics and Automation., Shanghai,
China., 2011.

J. D. a. S. Thrun, "An Application of Markov Rdom
Fields to Range Sensing," presented at the NIR®.20

F. Moreno-Noguer, V. Lepetit, and P. Fua, "Acte Non-
Iterative O(n) Solution to the PnP Problem.," lBEE
International Conference on Computer Vision (ICCRjo

de Janeiro, Brazil, 2007.

D. R. Finley. (2007). Optimized QuickSort — C
Implementation (Non-Recursive) Available:
http://alienryderflex.com/quicksort/

[10] Columbus Surrogate Unmanned Aerial Vehicle (CSUAV)

Dataset Available:
https:/ivww.sdms.afrl.af.mil/index.php?collection=csuav

