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Abstract

This paper describes a method for object (e.g., vehicles,
pedestrians) detection and recognition using a combination
of 2D and 3D sensor data. Detection of individual data
modalities is carried out in parallel, and then combined
using a fusion scheme to deliver the final results. Specif-
ically, we first apply deformable part based object detec-
tion in the 2D image domain to obtain initial estimates of
candidate object regions. Meanwhile, 3D blobs (i.e., clus-
ters of 3D points) containing potential objects are extracted
from the corresponding input point cloud in an unsuper-
vised manner. A novel morphological feature set Morph166
is proposed to characterize each of these 3D blobs, and only
blobs matched to predefined object models are kept. Based
on the individual detections from the aligned 2D and 3D
data, we further develop a fusion scheme to boost object
detection and recognition confidence. Experimental results
with the proposed method show good performance.

1. Introduction
In this work, we propose a sensor fusion method for en-

hanced object detection and recognition in outdoor urban
environments. The input consists of a 2D image captured
with an EO (electro-optical) sensor and a 3D point cloud
captured by a Lidar sensor such as the Velodyne-64 (See
Figure 1). We assume the sensors are pre-calibrated, and the
2D and 3D data are aligned. This means for each point of
the 3D point cloud, there is a corresponding point within the
2D image based on rigid body transformation. Given EO
images with appearance information such as color, texture,
and gradient information, and 3D point clouds with accu-
rate depth (distance) information, the main goal is to lever-
age both for improved object detection and recognition. Our
method can be used for a variety of different ground objects
such as pedestrians, cyclists, cars, trucks, or buses, but we

Figure 1. Sensor inputs to our system: A 2D image (top) and the
corresponding 3D point cloud (bottom). Both of the data are part
of the Kitti dataset.

chose to detect car objects, which are widely available in
many public datasets.

Many 2D and 3D fusion methods have been proposed
for the task of object detection in the past. In general, most
existing techniques fall under two categories: indoor and
outdoor. The former primarily focuses on utilizing small
RGB-D(e.g., Kinect, Xtion Pro) or range sensors in con-
junction with 2D cameras to improve object detection in a
close-range indoor setting. The latter typically uses larger
and more sophisticated 3D Lidar sensor along with 2D sen-
sors to improve detections in a wide-range outdoor setting.

For indoor object detection, Bo et al. [2] introduced a
generic approach based on hierarchical kernel descriptors
to unify both 2D and 3D features to improve detection ac-
curacy. Bar-Hillel et al. [1] proposed an integrated sys-
tem to fuse image intensity and range information at mul-
tiple levels for improved object classification. Specifically,
high-level fusion at the classifier level as well as low-level
fusion of local descriptors were jointly explored. Collet
et al. [5] developed a framework to perform indoor scene
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segmentation that preserves physical objects using both 2D
appearance and 3D shape data. In addition, a novel mid-
level fusion technique based on the concept of regionlet was
proposed. Lai et al. [13] introduced a detection-based ap-
proach to fuse the HoG (Histograms of Oriented Gradients)
[6] features on both 2D and depth images to achieve ac-
curate scene labeling and improve the robustness of object
detection. Spinello et al. [21] proposed an adaptive hier-
archical fusion approach to address the multi-modal object
detection problem. For each modality, a weight function
is computed using Gaussian Process that reflects the confi-
dence of the respective detection. Other related techniques
can be found in [3, 20]. In addition, a large-scale RGB-
D benchmark dataset [14] consisting of a variety of indoor
objects is also available for experiment on fusion-based de-
tection.

Object detection in outdoor settings is often related to the
problem of urban scene parsing, where the goal is to iden-
tify objects such as vehicle and pedestrians. Guo et al. [10]
proposed a hierarchical road understanding system based
on sensor fusion (i.e., Velodyne and monocular cameras)
for intelligent vehicles. Their system consisted of a set of
parallel modules running simultaneously to perform plan-
ning, object identification and tracking. Häselich et al. [12]
presented an approach to fuse data from a Lidar sensor and
three cameras with a Markov random field for terrain clas-
sification. The result of the system is an annotated 2D class
grid for an autonomous system to navigate in unstructured
environments. A similar fusion-based terrain classification
system was developed in [15]. Munoz et al. [17] addressed
the problem of outdoor scene understanding with multiple
modalities when there is not a unique correspondence be-
tween data points across modalities. They proposed to treat
different modalities as class objects and introduced a joint
inference procedure that couples the predictions among all
of the modalities. Zhou et al. [23] proposed a method to
fuse laser point cloud and visual images at the data level us-
ing a reconstruction algorithm. They specifically addressed
the problem of false depth assignment for visual image and
incorrect colorization for laser points which result from dif-
ferent sensor viewpoints. Zhao et al. [22] proposed a
fuzzy logic inference framework with MRF (Markov Ran-
dom Field) based temporal fusion for scene parsing. Their
method not only incorporates data from multiple sensors,
but also from external scene knowledge. Finally, some of
the 2D and 3D fusion techniques have already been inte-
grated to real-world driving systems such as [19] and [4]
for object detection.

Inspired by the success of prior work, we address the
problem of object detection in outdoor urban environments
with a 2D/3D fusion-based approach. The three major steps
in our approach are:

1) Object detection within 2D images: Perform object

Figure 2. The overview of the object detection using 2D and 3D
fusion method

(over) detection on 2D EO images using DPMs (Discrimi-
natively Trained Deformable Part-based Models) [7] to gen-
erate an initial estimate of object candidate regions.

2) Object detection within 3D point clouds: Extract 3D
blobs from the input point cloud in an unsupervised man-
ner through clustering. A novel morphological feature set
Morph166 is proposed to characterized each of the 3D
blobs. Blobs matched to predefined objects are kept.

3) Fusion of 2D and 3D detection results: Each detected
object (from both 2D and 3D input) is associated with a con-
fidence score indicating the likelihood of the object. Detec-
tions from both modalities are projected to a common data
space and subsequently combined to generate the final de-
tections based on the fused confidence scores. The overall
object detection pipeline of the proposed method is shown
in Figure 2.

The rest of the paper is organized as follows. Section
2 shows the 2D object detection step with DPMs. Section
3 shows the details of object detection within a 3D point
cloud. Specifically we introduce a novel morphological fea-
ture set to capture the characteristics of 3D blobs. Section 4
describes a fusion scheme to combine results from both 2D
and 3D domains to boost object detection accuracy. Finally
Section 6 concludes the paper.

2. 2D Object detection with DPMs

Discriminatively-trained Deformable Part-based Mod-
els(DPMs) were first introduced by Felzenszwalb et al. [7]
and have shown remarkably good results for category-level
object detection. Basically the method enriches the Dalal-
Triggs model [6] by using a star-structured model defined
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Figure 4. Block diagram of the 3D processing pipeline.

jointly by a “root” filter (analogous to the Dalal-Triggs fil-
ter), multiple higher resolution part filters, and a spatial
model for the location of each part relative to the root. The
DPM detector first finds a global match for the object us-
ing the root filter, and then uses its part filters and spatial
models to fine-tune the result. In our experiment, we use
the pre-trained DPM model (for car) from the Kitti [9] Data
sets in order to have a fair comparison. The DPM model is
trained by a Latent SVM.

For each frame from the EO sensor, we perform over de-
tection, which means we keep many more 2D object detec-
tion boxes than the number of expected objects. As shown
in Figure 3, the rectangular bounding boxes are the 2D
object detection boxes obtained from the DPM detection.
The red bounding box is the detection box with the highest
confidence score, followed by the green and blue detection
boxes. However, a lot of false positives (in black boxes) are
retained in this step. This is to ensure as many objects (i.e.,
cars) are detected as possible. Most of the irrelevant detec-
tions will be filtered out later during the 2D and 3D fusion
steps.

Figure 3. DPM object over detection results. The Red box has the
highest detection score, the green box and the blue box has the
second and third highest detection score.

3. 3D Object detection with Morph166
Given a point cloud acquired by a Lidar sensor, the

3D detection pipeline starts with down-sampling the point
cloud to yield a more compact capture of the scene.
The ground plane is then estimated, and 3D blobs above
ground are extracted through clustering. Subsequently,
morphology-based features are extracted from these 3D
blobs. Finally, these blobs are classified according to a set
of pre-defined classes. The overall step of 3D processing is
shown in Figure 4.

A. Downsampling: In order to filter and downsample the
point cloud, a typical voxelized grid approach is taken. A
3D voxel grid is essentially a set of fixed-width 3D boxes
in space over the input point cloud data. In each voxel, all
the points will be approximated by their centroid. A 3D
voxel grid can be created efficiently with a hierarchical Oc-
tree [16] data structure. Each Octree node has either eight
children or no children. The root node describes a cubic
bounding box which contains all points. At every tree level,
this space is further subdivided by a fixed factor, which re-
sults in an increased voxel resolution. In this work, we uti-
lize the VoxelGrid functionality implemented in the Point
Cloud Library1 (PCL). The size of each voxel is fixed at 0.1
meter. A significant portion of the points are removed by
the end of this step.

B. Ground plane removal: In this step, we extract the
ground surface from the downsampled point cloud. The
ground surface is important as it serves as the key refer-
ence for various geometrical estimates. This step is es-
sentially done by fitting a planar model to the point cloud
and finding the ones with sufficient number of points. To
speed up the search process, Random Sample Consensus
(RANSAC) [8] algorithms is used to generate plane model
hypotheses. The Point Cloud Library provides a convenient

1Point Cloud Library, http://www.pointclouds.org/
documentation/tutorials/planar_segmentation.php
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Figure 5. Visual example of removing ground surface from an in-
put point cloud. Objects above the ground plane are kept an passed
to the next step of the 3D processing pipeline.

implementation to extract the planes in their parameter form
ax+by+cz+d = 0. Planes are extracted according to their
size in a sequential order. At each iteration, the set of points
(inliers) aligned with the model hypotheses is selected as
the support for the planar model, and they are archived and
removed from the point cloud. The remaining points will be
used to identify the next best plane. This process continues
to detect planes and remove points until the the size of the
point cloud reaches a certain threshold. Note that, for each
detected plane, an additional step is taken to project all in-
lier points to the plane such that they lie in a perfect plane
model. This makes subsequent computation more efficient
and less error prone.

Given the extracted planes, the next step is to identify
and remove the one that corresponds to the ground surface.
Recall that the normal of a plane can be computed using the
planar model coefficient directly. Let us assume two planes
n0 and n1:

n0 =<a0, b0, c0>

n1 =<a1, b1, c1> .
(1)

The angle θ between two planes is related to the normals
of the planes as follows:

n0 • n1 = ||n0|| ||n1||cosθ. (2)

Given the plane (y = 0) with normal n0 =< 0, 1, 0>,
the angle between the plane n1 =< a1, b1, c1 > and n0 is
computed as:

θ = arccos

(
b1√

a21 + b21 + c21

)
180/π. (3)

Thus, the ground surface can be identified by computing
the angles between all planes with respect to n0, and keep-

ing the ones which are parallel to n0. In our implemen-
tation, we allow a ±5◦ to compensate for possible sensor
movements. An example of ground plane removal is shown
in Figure 5. Subsequent steps will operate on points/objects
above the ground surface.

C. 3D blob extraction: Given the point cloud above
ground, clustering is used to divide the cloud into smaller
parts in order to generate candidate object blobs for recogni-
tion. Most of the existing clustering methods rely on spatial
decomposition techniques that find subdivisions and bound-
aries to allow the data to be grouped together based on a
measure of “proximity. However, these methods are useful
only for applications requiring equal spatial subdivisions.
For situation where clusters can have very different sizes,
a more complex algorithm is needed. Specifically, the al-
gorithm needs to understand what an object point cluster is
and what differentiates it from another point cluster. Here
we define a cluster as follows.

Let Oi = pi ∈ P be a distinct point cluster from Oj =
pj ∈ P if ‖pi − pj‖ > dth, where dth is a maximum im-
posed distance threshold. The above equation states that
if the minimum distance between a set of points Oi and
another set Oj is larger than a given distance value, then
the points in Oi are set to belong to one point cluster and
the ones in Oj to another distinct point cluster [18]. From
an implementation point of view, it is important to have a
notion of how this minimal distance between the two sets
can be estimated. A solution is to make use of approxi-
mate nearest-neighbors queries via kd-tree representations.
This allows for fast generation of clusters in an unsuper-
vised manner. After initial clusters are extracted, an addi-
tional filtering step is performed to remove overly small /
large 3D clusters. The ones which survive the filtering step
are considered 3D candidate object blobs, and are passed to
the next step in the pipeline for feature extraction and clas-
sification. Figure 6 shows the candidate 3D blobs generated
after the clustering and filtering step.

Figure 6. An example of 3D blobs obtained with the clustering-
based approach applied to the point cloud without ground plane.
Colors are mapped to segmented blob IDs.
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Figure 7. An examples of projecting various slices of a 3D blob into 2D images

D. 3D blob classification: It is challenging to extract ro-
bust features from a 3D object for recognition. The main
reason is that the point cloud data are irregularly scattered
in the 3D space, as opposed to the regularly and uniformly
sampled 2D images. The point density is also reduced
for objects further from the sensor. To address this is-
sue, we propose a novel morphological feature set named
Morph166 to characterize each 3D blob. The basic idea is
to project the 3D blob into multiple horizontal 2D image
slices at various heights. The 2D slices contain sufficient
3D shape information of the object if slices are sampled
within a close range (similar to CT/MRI scanned slices).
The 2D image slices are regularly spaced images, and thus
all the available image processing techniques can be ap-
plied to process these image slices, such as spatial filter-
ing, view-invariant feature extraction, and other operations.
Furthermore, the 2D image resolution is adaptively selected
depending on the 3D point cloud density to avoid form-
ing ill-conditioned images where the point cloud data are
very sparse. In general, our adaptive sampling scheme al-
lows us to deal with point cloud data with as few as 50-100
points per object. In this work, each 3D blob is decomposed
into six slices, and seven morphological features along with
other moment invariant features are extracted from each
slice, resulting in a 166 dimensional feature vector. The
seven morphological features extracted are as follows.

Pixel number: the actual number of pixels in the slice.
Bounding box: the smallest rectangle containing the

pixel region in the slice.
Centroid: the center of mass of the pixel region.
Major-Axis-Length: a scalar specifying the length (in

pixels) of the major axis of the ellipse that has the same
normalized second central moments as the pixel region.

Minor-Axis-Length: a scalar specifying the length (in
pixels) of the minor axis of the ellipse that has the same
normalized second central moments as the pixel region.

Eccentricity: specifies the eccentricity of the ellipse that
has the same second-moments as the pixel region.

Extent: specifies the ratio of pixels in the region to pixels
in the total bounding box.

In summary, the first 10 element of the Morph166 fea-
ture vector consist of the Centroid and Orientation differ-
ence between slices. The next 7 elements consist of the
aforementioned morphological features extracted from the
largest sub-patch in the top slice. Immediately following
are 42 elements corresponding to the seven morphological
features extracted from each of the six 2D slices. Figure
7 shows examples of 2D slices obtained for a 3D blob of
a car object. Finally, the rest of the 107 elements in the
Morph166 feature are listed below. Please refer to [11] for
details about the moment invariants.

• height (z), length (x), width (y)
• x mean, y mean, z mean
• x std, y std, z std
• Seven moment invariants for all slices
• Pixel number difference ratio between slices
• Pixel area size (in meter) difference between slices
• Bounding box area size difference ratio between slices
• Patch centroid (x, y) position difference between slices
• Patch length-to-width ratio difference between slices
• Moment invariants difference between slices
• Sub-patch number in all slices
• Largest sub-patch area to full area ratio in all slices
• 2nd largest sub-patch area to full area ratio in all slices
• Area ratio between the top two sub-patches in all slices

5768



Each detection from 2D DPM 
results in a confidence 

score (C_2d).

Match 2D detections to 3D blobs 
with back-projection

Compute object confidence score(C_3d) of a 
matched 3D blob based on the trained model 
with Morph166. Reward or penalize a DPM 

detection accordingly

Fuse the DPM and Morph166 confidences 
as Cfusion = C_2d + w*C_3d

Figure 8. Illustration of 2D/3D fusion process.

Given the computed feature associated with each 3D
blob, a standard supervised learning paradigm is adapted
in our system for 3D object classification. For each class of
object (e.g., car), a SVM model is trained in a one-against-
all fashion. When a new 3D candidate blob is generated, it
will be fed to the models trained for different classes. The
one model giving the highest confidence score will be iden-
tified, and the 3D blob will be classified as the correspond-
ing class.

4. 2D/3D Fusion for Improved Detection

We propose a simple fusion technique based on linear
combination of the confidence scores of 2D and 3D detec-
tions. The overall 2D/3D fusion steps are illustrated in Fig-
ure 8. We start with identifying the correspondences be-
tween 2D and 3D detections. Recall that our input contains
synchronized 2D and 3D data, thus it is straight forward
to project detection results between 2D and 3D space. For
each 2D detection bounding box, we search through all the
rectangular projections (see yellow boxes in Figure 8) of
the detected 3D blobs onto the 2D image space. The 3D
blob projection that has the maximal overlap with the 2D
bounding box is considered the matched correspondence.
The overlap between the 2D bounding box and 3D blob pro-

jection is calculated as follows

overlap =
Rrect ∩Rblob proj

Rrect ∪Rblob proj
, (4)

where Rrect is the area of the 2D rectangular bounding box
resulted from DPM detection, and Rblob proj is the area of
the 3D blob projection.

If a correspondence is found between a pair of detections
with 2D confidence score as C2D and 3D score as C3D, we
set the new fusion score as Cfusion = C2D + ωC3D. If a
correspondence is not found, then we penalize 2D detection
by setting Cfusion = C2D − α. The value of ω and α are
determined empirically, and set to 0.55 and 0.4 respectively.

5. Experiment
In order to evaluate the proposed fusion-based object de-

tection approach, we selected 6 different sequences from the
standard Kitti benchmark dataset2 for our experiment. This
dataset provides full sequences of Velodyne scans in differ-
ent urban settings. For each 3D scan, a pair of synchronized
2D images are provided. In our experiment, 3D blobs are
first extracted from all sequences in an unsupervised man-
ner as diescribed in Section 3. Blobs from the first half
of the sequences are reserved for training, and blobs from
the second half are reserved for testing. 2D images of the
corresponding sequences are used for the same train/test di-
vision. We compute the Precision-Recall curves and the AP
(average precision) scores for 2D only detection, 3D only
detection, and fusion-based detection. Detections are con-
sidered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a cor-
rect detection, the area of overlap α0 between the bounding
boxBb of the detected object and the ground truth bounding
box Bgt must exceed 50% according to the formular:

α0 =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
(5)

Note that for 3D detection, we only evaluate objects
which are within 25 meters of the sensor. This is because
points beyond that range are too sparse for reliable object
classification. Other parameters are tuned to the best per-
formance for each method. The overall experimental result
is plotted in Figure 9. The proposed fusion-based method
outperforms both 2D and 3D only detections substantially.

6. Conclusion
In this work, we propose a 2D/3D fusion-based object

detection and recognition method for outdoor urban en-
vironment. 2D detections are obtained by state-of-the-art

2http://www.cvlibs.net/datasets/kitti/raw_data.
php. Sequences begin with ”2011 09 26 drive”.

6769

http://www.cvlibs.net/datasets/kitti/raw_data.php
http://www.cvlibs.net/datasets/kitti/raw_data.php


Figure 9. Precision-Recall curves and AP scores for the detection
of car over 6 Kitti sequences.

DPMs detector, and 3D detections are obtained through
classification of 3D blobs extracted from the scene point
cloud. In particular, a novel morphological feature set
Morph166 is proposed to characterize each 3D blob. Detec-
tions from individual modalities are then combined and re-
inforced each other to boost the overall detection and recog-
nition accuracy. The effectiveness of the proposed method
is demonstrated with 6 outdoor sequences on the standard
Kitti benchmark dataset.
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